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Abstract

In this paper, a framework for localization of multiple co-channel transmitters using phase difference measurements between two

antennas mounted on sensors of a sensor network is proposed. To pursue localization, we equip each sensor with two antennas

and we use temporal cross-correlations between the received signals of the {two} antennas to extract the phase differences

between each antenna pairs, named as phase interferometry measurements (PIMs), provoked by each {transmitters} using

tensor decomposition. We calculate Cramer-Rao lower bound of error of localization using PIMs. Our simulation results show

that highly accurate estimations can be achieved using PIMs. We also compare the accuracy of our proposed technique with

a sensor network that exploits highly directional linear array antennas and show that {our} proposed technique can perform

similar to a network that employs very large antenna arrays.
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Abstract—In this paper, a framework for localization of multi-
ple co-channel transmitters using phase difference measurements
between two antennas mounted on sensors of a sensor network
is proposed. To pursue localization, we equip each sensor with
two antennas and we use temporal cross-correlations between
the received signals of the two antennas to extract the phase
differences between each antenna pairs, named as phase inter-
ferometry measurements (PIMs), provoked by each transmitters
using tensor decomposition. We calculate Cramer-Rao lower
bound of error of localization using PIMs. Our simulation results
show that highly accurate estimations can be achieved using
PIMs. We also compare the accuracy of our proposed technique
with a sensor network that exploits highly directional linear array
antennas and show that our proposed technique can perform
similar to a network that employs very large antenna arrays.

I. INTRODUCTION

Separating power spectra and localization of unrevealed
sources have several applications in electronic warfare, mobile
wireless networks and cognitive radio networks to just name
a few. This type of electromagnetic environmental awareness
is necessary for electronic support (ES) systems to detect
adversarial radio activities and localize hostile transmitters
[1]. In cognitive radio and mobile networks, localization of
primary users (PUs) and mapping their power spectra, referred
to as radio cartography, are crucial for spatial frequency
reuse and spectrum management [2]. Bazerque. et. al. sug-
gest using a network of omnidirectional antennas to measure
signal strength at different locations around the network and
introduce a technique for joint estimation of power spectral
density (PSD) in space and frequency [3], with the assumption
of a sparse placement of PUs in the network. In a more recent
work, this technique is expanded by using a network of linear
array antennas that exploit beamforming for tracking sources
and dynamic radio cartography [4]. The requirement of having
prior information on channel gain magnitudes between sensors
and potential locations of PUs is the main deficiency of these
techniques.

In the passive localization literature, various techniques have
been proposed to pursue the localization task. A class of

∗ indicates shared first authorship. This material is based upon work
supported by the National Science Foundation under Grant No. CCF-1718195.

techniques employs direction-of-arrival (DOA) or angle-of-
arrival (AOA) to estimate target locations and track moving
targets [5], [6]. Time-of-arrival (TOA) and time-difference-
of-arrival (TDOA) of received signals in a sensor network
are widely used in literature to find locations of targets [7].
Frequency difference of arrival (FDOA) in different sensors
also can be employed to localize moving emitters in an
environment [8]. Lately, methods that use a combination of
two or three of AOA/TDOA/FDOA techniques have gained
more attention [9], [10]. Phase interferometry is widely used in
electronic warefere applications for wide-band (WB) interfero-
metric direction finding [11], [12], [13]. Since phase difference
between two antennas introduces ambiguous DOAs, most
techniques proposed in the literature suggest using two or more
baselines to disambiguate phase difference [14], [15]. Here, we
suggest measuring phase differences using a sensor network
that collects PIMs from different geographical locations to
disambiguate the phase and directly translate phase differences
to PUs locations.

Tensor decomposition is a strong mathematical tool for
modeling and analysis of multi-dimensional data. Tensor-
based methods have been employed in communications and
coding frameworks since Sidiropoulos et. al. introduced them
for blind code-division multiple access (CDMA) [16]. Re-
cently, more advanced coding methods in communication sys-
tems are developed based on the tensor decomposition theory
[17], [18]. In addition to coding, tensor decomposition has
received attentions in vehicular communication [19], channel
estimation [20] and data compression [21]. Moreover, tensor-
based techniques are employed for localization-based spectrum
sensing [22], [23]. These localization methods employ attenu-
ation and phase shift from sources to antennas at receivers and
each sensor is equipped with a single antenna. In the present
work, we employ a tensor decomposition technique to extract
phase differences in a set of paired antennas on each sensor
of the network. The main contribution in this paper can be
encapsulated as follow:

• Introducing a tensor-based approach to separate power
spectra of PUs and to extract PIMs on each sensors
provoked by each PU



• Putting forward a localization scheme that employs PIMs
• Deriving Cramer-Rao lower bound (CRLB) of location

estimation using PIMs.
Notations: Throughout this paper, vectors, matrices, and

tensors are denoted by bold lowercase, bold uppercase, and
bold underlined uppercase letters, respectively. If W ∈
RN1×N2×N3 then (T ):,n2,n3

is a vector of length N1, also
known as a mode-1 fiber of W , defined by fixing all the
indices but one. Similarly, we have mode-2 and mode-3 fibers.
W (1), W (2), and W (3) are unfolded matrices whose columns
are fibers of the first, second and third mode of W , respec-
tively. Moreover, ◦ denotes the outer product, i.e., entries of
W = a ◦ b ◦ c is calculated as wn1n2n3

= a(n1)b(n2)c(n3)
and vec(.) is an operator that concatenates columns of a matrix
into a vector.

The rest of the paper is ordered as follows. Section II
formulates the problem. Power spectra separation and PIM
extraction from temporal cross-correlation matrix of received
signals through a tensor decomposition approach are intro-
duced in Section III. We analyze CRLB of localization using
PIM in Section IV. Section V presents experimental results.
Finally Section VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider a scenario where there are K transmitters (or
PUs) in a region of interest. A sensor network including N
sensors co-exists with PUs and each sensor is equipped with
two antennas whose distance is indicated by D (see Figure 1).
Distance between antennas of a ULA is at most half of the
wavelength [24], however, in our proposed technique there is
no constraint on D. Here, our main goal is to find locations of
all PUs. We presume that the environment is multi-path free.
Given these assumptions, received signals at two antennas of
sensor n can be simply formulated as

u1n(t) =

K∑
k=1

an,kgk(t−∆t
(1)
n,k) + v1n(t), (1a)

u2n(t) =

K∑
k=1

an,kgk(t−∆t
(2)
n,k) + v2n(t), (1b)
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1

Fig. 1. The geometry of the localization problem. A sensor network utilizes
sensors equipped with two antennas to measure phase differences between
antenna pairs.

where an,k marks channel gain between the nth sensor and
the kth PU, ∆t

(1)
n,k and ∆t

(2)
n,k are the time delays of arrival of

signal from PU k to the first and the second antennas of sensor
n, respectively, v1n and v2n mark white-Gaussian complex
noise at each antennas of sensor n, gk(t) marks the transmitted
signal of the kth PU as

gk(t) = mk(t)e−j2πfct , (2)

where mk(t) is a base-band message, gk(t) is assumed to
be narrow-band and wide-sense stationary, and fc is the carrier
frequency. Here, we assume that transmitters are co-channel
and therefore fc is the same for all PUs. We also assume that
all N sensors of the network are synchronized. The TDOA
between two antennas at sensor n can be reformulated as

∆t
(1)
n,k −∆t

(2)
n,k = ∆tn,k =

r
(1)
k,n − r

(2)
k,n

c
, (3)

where r(1)k,n and r(2)k,n denote the distances between the PU k
and first and seconds antennas of sensor n, respectively, and
c marks the speed of light. We have

r
(1)
n,k =

√
(x

(1)
sn − xPUk)2 + (y

(1)
sn − yPUk)2

r
(2)
n,k =

√
(x

(2)
sn − xPUk)2 + (y

(2)
sn − yPUk)2 , (4)

where (x
(1)
sn , y

(1)
sn ), (x

(2)
sn , y

(2)
sn ), (xPUk , yPUk) are locations of

the first and the second antennas of sensor n and the kth

PU, respectively. Given base-band messages are narrow band,
u1n(t) and u2n(t) can be formulated as [25]

u1n(t) =

K∑
k=1

an,kgk(t) + v1n(t), (5a)

u2n(t) =

K∑
k=1

an,ke
−j2π 1

λ (r
(1)
n,k−r

(2)
n,k)gk(t) + v2n(t) . (5b)

We form u1(t) = [ u11(t), . . . , u1N (t) ]T and u2(t) =
[u21(t), . . . , u2N (t)]T by integrating received signals from the
first and the second antennas of each sensors in two vectors.
In the next section we show how to collect information of
all sensors in a three-dimensional tensor and measure PIMs.
Tensor decomposition is exploited to perform a collaborative
localization in order to localize all targets simultaneously.

Our proposed tensor-based approach is mainly based on
CANDECOMP/PARAFAC (CP) decomposition [26], which
factorizes a tensor into a sum of rank-one tensors. CP de-
composition is an extension of singular value decomposi-
tion (SVD) which facilitates a wide range of applications
in sensor networks [27]. For example, a three-way tensor
W ∈ RN×N×NF of rank K can be decomposed as

W =

K∑
k=1

ak ◦ bk ◦ ck = [[A,B,C]], (6)

where ak ∈ RN , bk ∈ RN and ck ∈ RNF are factor vectors
of the kth rank-one component (Fig. 2). The factor matrices



refer to the collection of factor vectors from the rank-one
components, i.e.,A = [a1 a2 . . . aK ] and likewise forB and
C. The kruskal-rank which is also referred to as krank is used
to derive conditions on uniqueness of tensor decomposition for
matrices A, B, and C [26]. krank is defined as the maximum
number k, such that any k columns are linearly independent
[26].

=

𝒂1

𝒃1

𝒄1

+  …  +

𝒂𝐾

𝒃𝐾

𝒄𝐾

𝑾

Fig. 2. Schematic of CP decomposition to summation of K rank-one
tensors. Each rank one tensor of dimension 3 can be written as outer
product of 3 vectors.

III. PHASE INTERFEROMETRY LOCALIZATION USING
TENSOR DECOMPOSITION

In the previous section we modeled the received signal
at each antenna pairs of sensors and showed that each PU
provokes a specific phase difference on each sensor. We also
showed that phase differences are merely functions of PUs’
locations (which are unknown) and antennas’ locations (which
are known). In this section we are going to inaugurate a
technique to uncover these phase differences from temporal
cross-correlation of received signals. Let

Ru1u2
(τ) = E

{
u1(t)uH2 (t− τ)

}
(7)

represent cross-correlation between u1 and u2 at time lag
τ . We can reformulate u1(t) and u2(t) as

u1(t) = Ag(t) + v1(t), (8a)
u2(t) = Bg(t) + v2(t), (8b)

where g(t) = [ g1(t), . . . , gK(t) ]T is the source signals
of K PUs, v1(t) = [ v11(t), . . . , v1N (t) ]T and v2(t) =
[ v21(t), . . . , v2N (t) ]T are received white Gaussian noise at
the first and the second antennas of all sensors, respectively.
Moreover, according to (7) and (8), Ru1u2 can be reformu-
lated as

Ru1u2(τ) = AD(τ)BH , (9)

where D(τ) = Diag(ρ(τ)), ρ(τ) = [ ρ1(τ), . . . , ρK(τ) ]T ,
and ρk(τ) = E {gk(t)g∗k(t− τ)} marks auto-correlation func-
tion of gk(t) in time-lag τ . Moreover, according to (5b) ,
each element of matrix B = [bn,k] ∈ RN×K equals to
the corresponding element in matrix A = [an,k] ∈ RN×K
multiplied by a complex phase difference, i.e.,

bn,k = an,ke
−j2π 1

λ (r
(1)
k,n−r

(2)
k,n) . (10)

This phase difference within each pair of antenna plays the
key role in our proposed localization method. We define
∆φ = [∆φn,k], where ∆φn,k =

bn,k
an,k

= e−j2π
1
λ (r

(1)
k,n−r

(2)
k,n),

to represent phase difference between all elements of A and

B. We refer to ∆φ as PIMs. Let z(τ) = vec (Ru1u2
(τ)),

and Zi(w) be the discrete Fourier transform1 of the ith

(i = 1, . . . , N2) element of z(τ) [22]

Zi(ω) =

∞∑
τ=−∞

zi(τ)e−jωτ . (11)

By defining Wi(f) = Zi(
2πf
NF

), for f = 0, . . . , NF − 1, we
construct vectors wi = [ Wi(0), · · · ,Wi(NF − 1) ]T for i =
1, . . . , N2. Let W (3) = [w1, · · · ,wN2 ] which is the unfolded
replica of tensor W w.r.t. the third dimension. The tensor
representation can be expressed as

W = [[A,B∗,C]], (12)

where C = [c1, . . . , cK ]T corresponds to propagating PSD
from all PUs and entries of ck = [Sk(0), . . . , Sk(NF−1)]T are
sampled from Fourier transform of the kth PU auto-correlation
which is defined as follows

Sk(w) =
∞∑

τ=−∞
ρk(τ)e−jwτ .

The model in (12) is a PARAFAC model. Using a tensor rank
decomposition technique, A,B∗,C can be recovered up to
a scale and permutation in columns. There is a limit on the
number of detectable PUs (K) imposed by a constraint that
guarantees identifiability of PARAFAC decomposition [28]

krank(A) + krank(B) + krank(C) ≥ 2K + 2 , (13)

where krank(X) denotes the Kruskal rank of the matrix X .
Remark 1. Given A,B,C are full rank and NF ≥ K ≥ 2,

the following upper bound holds over the number of detectable
PUs

K ≤ 2N − 2 .

proof. Assume A and B are N ×K full rank matrices and
C is a NF ×K full rank matrix. For K < N , we have

krank(A) = krank(B) = krank(C) = K ,

and (13) is relaxed to K ≥ 2 that is assumed. For K ≥ N ,
we have

krank(A) = krank(B) = N, and krank(C) = K .

Referring to (13), it concludes that K ≤ 2N − 2. �
Since A and B are channel gain matrices from PUs to

sensors, it is very probable thatA andB are full rank. Rank of
C depends on PUs’ signals spectral densities. In particular, if
PUs emit signals that are uncorrelated in frequency spectrum
domain, it is very probable that C is full rank. Intuitively,
we can reason that the number of detectable PUs decreases
if PUs’ signals are correlated in spectrum domain or channel

1Cross-correlation Ru1u2 (τ) contains N2 entries that each one is a
function of τ . Thus, corresponding to each entry a Fourier transform can
be computed over variable τ . We can use either Fourier transform or discrete
Fourier transform. Here, we choose discrete Fourier transform since it is more
applicable in practice.



gian matrices are not full rank, since it would be much more
difficult to discriminate between PUs.

Since all elements of C are non-negative, the phase differ-
ence between each element of B and A can be calculated.
Consequently we can retrieve the matrix of phase differences
∆φ up to a permutation in columns. Each column of ∆φ
shows phase differences provoked by one of the PUs in all
sensors, and consequently it can be processed for localization.
Let ∆φk be the kth column of ∆φ,

∆φk = [ e−j2π
1
λ (r

(1)
k,1−r

(2)
k,1), . . . , e−j2π

1
λ (r

(1)
k,N−r

(2)
k,N ) ]T . (14)

Given known positions of sensors, ∆φk is only a function of
unknown parameters (xPUk , yPUk) which is the position of
kth PU. To recover the position of the corresponding PU, we
solve the following optimization problem

(xPUk , yPUk) = argmin
x,y

‖∆φ(x, y)−∆φk‖2 , (15)

where ∆φ(x, y) is formulated the same as ∆φk except that
(xPUk , yPUk) is replaced by (x, y). In other words, (15) is a
simple two-dimensional search on all possible positions in the
area of interest to find the location of the kth PU. In practice,
we assume a grid with Ng cells over the area of interest and
perform the search on that grid. Ng is a function of the size of
the area of interest and the localization resolution. The whole
process of localization using PIMs is summarized in Alg. 1
and Figure 3.

Algorithm 1 Localization based on PIMs
Require: Received signals from N paired antennas {u1n, u2n}Nn=1

Antennas’ locations {(x(1)sn , y
(1)
sn ), (x

(2)
sn , y

(2)
sn )}Nn=1

and estimated maximum number of PUs as CP rank (K)
1: Ru1u2 (τ)← E

{
u1(t)uH2 (t− τ)

}∞
τ=−∞

2: z(τ) = [zi(τ)]N
2

i=1 ← vec (Ru1u2 (τ))

3: {Zi(w)}N2

i=1 ← {
∑∞
τ=−∞ zi(τ)e−jwτ}N2

i=1

4: W ← {Wi(f) = Zi(
2πf
Nf

), f = 0, . . . , NF − 1}N2

i=1

5: A,B∗,C ← CPD on W with rank K

6: ∆φ←
[
∆φn,k =

an,ksn,kbn,k
||an,ksn,kbn,k||2

]
7: (xPUk , yPUk )Kk=1 ← localization by solving (15)

Output: PUs’ locations {(xPUk , yPUk )}Kk=1

𝒖1(𝑡)

1 2

2

2

1

1

𝒖2(𝑡)

Cross 

Correlation
DFT

Sensor 

Network

𝑾

Sensor 1

Sensor 2

Sensor 𝑁

PIM Tensor

Tensor 

Decomposition

𝑨,𝑩, 𝑪
2D Search

.
.
.

PUs
Locations

Sensors’ locations

Fig. 3. The block diagram of the proposed localization scheme.

Considering Alg. 1, computational cost of step 2 is
O(N2 log(N)), in case we approximate continuous Fourier
transforms by FFT with length N2 [29]. Assuming NF ≥
max(N,K), the computational cost of step 5 is O(KN3

F )
[30]. The computational cost of step 8 is O(NNg). Therefore,
overall computational cost of the proposed algorithm can be
determined either by step 5 or step 8, depending on which one
of them is greater.

IV. CRAMER-RAO LOWER BOUND OF ERROR (CRLB)

In this section we investigate CRLB for an unbiased es-
timator that employs PIMs as of (14). As we mentioned in
the previous section, we recovered phase differences between
two antennas of each sensor provoked by a PU. Given each
measurement is added by an independent white Gaussian
noise, Fisher information matrix (FIM) of phase difference
measurements from PU k can be calculated as [31]

J(xPUk , yPUk) =
1

σ2

N∑
i=1

∇x,y (∆φk)
H
i ∇x,y (∆φk)i ,

(16)
where σ2 is the variance of noise, (∆φk)i is the element i

of ∆φk and ∇x,y is gradient operator w.r.t x, y. Consequently
CRLB of variance of error turns into

E{(xPUk − x̄PUk)2 + (yPUk − ȳPUk)2} ≥
trace

(
J(xPUk , yPUk)

−1)
, (17)

where (x̄PUk , ȳPUk) is the estimated position of PU k. To
examine, the lower bound of error that can be achieved by
employing measurements in the form of (14), we conduct
several simulations. As an example, assume that 9 sensors
are placed in a line align with the left edge of the area of
interest. CRLB inside the area of interest is depicted in Fig.
4. As the figure illustrates CRLB varies from sub-meter values
near the edge closest to the sensor network, to more than two
meters near the two farthermost vertices to the sensor network.
Although in this simulation we suppose that signal-to-noise-
ratio (SNR) is 20dB, much higher SNRs is accessible due to
the independency of noise in antennas pairs that results in the
cancellation of noise terms in (9).

Assuming identical SNR at input antennas, CRLB illustrated
in Figure 4 is very close in shape and values to CRLB of the
same sensor network that utilizes directional antennas with
0.02o in standard deviation of directional of arrival (DOA)
estimation error [31], [32]. Such a precision in DOA estimation
can be achieved using a ULA with at least 80 antennas when
SNR = 20dB [33].

V. SIMULATION RESULTS

As we discussed in Section III, to localize multiple PUs
in an area of interest, we obtain PIMs for each PUs using
a PARAFAC tensor decomposition. To represent the cost
function of localization when measurements are not noisy, let
us define

f(x, y) = ||∆φ(x, y)−∆φx0,y0 ||2, (18)
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Fig. 4. Standard deviation of CRLB of location estimation using PIMs
of (14). In this scenario, 9 sensors are placed in a line aligned y-
axis, the first one is placed at (1,−1)Km, the ninth one is placed at
(9,−1)Km, and all other sensors are placed in equi-spaced locations
on a line that connects them. Two antennas of each sensors are
placed 10m apart aligned with y-axis , D = 10m, fc = 5GHz,
and SNR = 20dB.

where ∆φx0,y0 denotes PIMs of an arbitrary known PU placed
at (x0, y0). In our first simulation, we plot f(x, y) for a PU that
is placed at (500, 500)m, sensors are placed in a line aligned y-
axis from (1,−1)Km to (9,−1)Km in equi-spaced locations,
in particular, the first sensor is placed at (1,−1)Km and the
ninth sensor placed at (9,−1)Km, all the remaining sensors
placed between these two sensors. D is set to 10m. As Figure
5 illustrates, f(x, y) is a non-convex function that possesses
several local minimum and maximum; however, there is a
global minimum at the location of PU that can be revealed
by search.

In the following simulation, we compare the accuracy
of localization between two following sensor network. The
first sensor network is equipped with two omni-directional
antennas at each sensors which measures PIMs and localizes
PUs using the proposed algorithm, while the second sensor
network is equipped with ULAs, each uses M antennas, and
exploits DOA localization techniques. Sensor placements of
both networks are the same. We suppose that power of received
signals at each antennas of sensor n of the first and the second
sensor networks are identical, which means input SNRs of all
antennas in both scenarios are the same. However, since each
array of the second network, receives signal at M antennas,

𝑓
(𝑥

,𝑦
)

1

𝑓
(𝑥

,𝑦
)

Fig. 5. (a) Cost function of localization (f(x, y)) for a PU located
at (500, 500)m, (b) For a better visualization the reciprocal of the
same function ( 1

f(x,y)
) is depicted. In this simulation, the scenario

is the same as of Figure 4.
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Fig. 6. Comparison of location estimation errors (as definition of
(17)) between a sensor network that uses 2 antennas mounted on
each sensors and phase interferometry measurements and a sensor
network that uses ULAs with M antennas mounted on each sensor.
The scenario is the same as of Figure 4.

it can integrate all M signals to obtain a better SNR, while
each array of the first network receives signals at only two
antennas and can’t take advantage of the array gain in the first
place. Nonetheless, referring to (7), the first network can make
use of independency of noise at first and second antennas to
mitigate noise level heavily. Given only one PU is located in
the area, we assume that each antenna of the second network
measures DOA of the signal transmitted by the PU utilizing
spatial search at each array [34], and consequently localizes
the PU using the total least square technique [35]. We also
assume that antennas of each ULA are placed half wave-length
apart.

Figure 6 illustrates that the accuracy of the proposed
technique that only mounts 2 antennas with 166 wavelengh
distance apart on each sensor is in the vicinity of a network
that mounts arrays with M = 80 elements on each sensor
when SNR is between 3dB to 7dB, and is better than the
same array network when SNR is above 7dB. This leads to a
huge reduction in complexity of sensor’s antenna, since ULAs
should be equipped with phase shifters behind each antennas
and a complex receiver for beam steering [36]. Conversely, in
the proposed schema the phase difference between only two
antennas is measured. Moreover, antenna arrays are bound to
spatial search to find PUs, while the proposed method bypasses
spatial search by estimating PUs locations via integrating PIMs
from differnt sensors mounted at different locations around
the area of interest. This means a reduction in the required
time for PUs localization. Therefore, the proposed technique
significantly reduces the number of required antennas, the
complexity of the receiver and the required time for localiza-
tion compared to the network that exploits the DOA technique.
On the other hand, the number of detectable PUs using the
proposed technique is limited up to the bound of (13), while
the network that utilizes antenna arrays is capable of detecting
more PUs and the only limiting parameter on the number of
PUs is the resolution of localization.

VI. CONCLUSION

In this work, we proposed a localization framework based
on mounting two antennas on each sensor of a sensor net-



work. The antennas are placed multiple wavelength apart. we
measure phase differences at each pair of antennas provoked
by signal emission of PUs using a tensor decomposition
technique. We showed that using PIMs, highly accurate lo-
cation estimation of PUs can be obtained. We showed that the
proposed technique can perform similar to a sensor network
that utilizes very large ULA antennas which is more complex
than our proposed configuration in terms of implementation.
We discussed that the proposed technique can greatly reduces
the complexity, the cost and the time required for a sensor
network to localize multiple PUs in an area of interest in
comparison to a sensor network that utilizes electronically
steerable antennas.
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