
P
os
te
d
on

8
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
89
53
5.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Encrypted Communications: It’s not what it seems

Neelkumar Patel 1, Jay Sukhadiya 2, and Jinan Fiaidhi 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

Secure communications is when two entities communicate with each other and the communication is completely secured from a

third party or the intruder. This type of communication process can be achieved using encryption and decryption mechanism.

The implementation of Email encryption is performed with the intension of showing the working of encryption and decryption

mechanism. This web application allows user to send an encrypted electronic-mail to any domain and it can be only decrypted

using the receiver’s private key. Whereas, messaging android application was developed to replicate existing WhatsApp appli-

cation to see whether, it performs end-to-end encryption or it’s not what it seems. The application allows users to securely

communicate with each other via performing actual end-to-end encryption.

1

Encrypted Communications
It’s not what it seems!

Neelkumar P. Patel (1101357), Jay Sukhadiya (1110211)
Department of Computer Science

Lakehead University
Thunder Bay, Ontario

Email: {npatel46, jsukhadi}@lakeheadu.ca

Abstract—Secure communications is when two entities com-
municate with each other and the communication is completely
secured from a third party or the intruder. This type of
communication process can be achieved using encryption and
decryption mechanism. The implementation of Email encryption
is performed with the intension of showing the working of en-
cryption and decryption mechanism. This web application allows
user to send an encrypted electronic-mail to any domain and it
can be only decrypted using the receiver’s private key. Whereas,
messaging android application was developed to replicate existing
WhatsApp application to see whether, it performs end-to-end
encryption or it’s not what it seems. The application allows users
to securely communicate with each other via performing actual
end-to-end encryption.

Keywords—Encryption; E-Mail; Messaging Application; JAVA;
Android, WhatsApp; End-to-End Encryption.

I. INTRODUCTION

Encryption communication is basically known as
cryptography, which is the art and science of making a
system that is capable of providing information security. So,
when two or more devices communicate via an application
that features any kind of encryption, the information will be
transmitted as a unreadable text rather than an insecure plain
text. By using the right kind of encryption, one can build a
system where only the people engaged in the communication
can access the right data or information. Encryption algorithms
are divided into two categories: Symmetric key encryption
and Asymmetric key encryption. In symmetric key, only
one secret key is shared between the users and is used for
encryption and decryption. In asymmetric key, a public key
and a private key are used for encrypting and decrypting the
message respectively.

Most of the messaging applications or platforms provides
encryption of user’s data. It can be a myth, whether the
encryption is actually performed, even if it is performed, can
the encrypted data be easily decrypting by the organization as
it can have access to private keys. Based on these scenarios,
two different application were implemented to capture and
understand the real life encryption and decryption mechanism
taking place in various messaging application or platforms.

The Email encryption is a web application developed in
JAVA language using Integrated Development Environment
(IDE) Net Beans 8.2. It allows user to send encrypted mails
to any electronic-mail (Email) id. The messages are encrypted
using the public key of the receiver and can be decrypted
using the private key of the receiver. This application was not
made live to a particular domain. It completely works only
on local host. Hence, the public and private keys were both
stored locally.

An android application was developed named “ChatAppli-
cation”, in JAVA using Android Studio 3.1.6. The project is
completely online and uses real time Firebase database. It
allows the user to register, login and perform chatting with
other users. The public key is stored on the server and the
private key of individual users is stored on their personal
devices. Private key is not stored nor fetch anywhere from
the server. This paper describes the implementation of both
the application and conclude whether the real life encryptions
is actually what it seems.

II. EMAIL ENCRYPTION IMPLEMENTATION

The email encryption is a web application, where the
both public and private keys are stored locally. Using this
application, a particular users can send an encrypted mail to
any person. The GUI allows user to enter the receiver’s email
id and the message, which is needed to be encrypted as shown
in Fig. 1.

Fig. 1: GUI of Email application.

Fig. 2: Email Encryption Flow.

The encryption process of the application is shown in Fig. 2.
It is performed using the public key. Whereas, the decryption
process is performed using the private key of the same user,
which owns the public key used in the encryption phase. The
decryption process of the application is shown in Fig. 3.

Fig. 3: Email Decryption Flow.

When the submit button is clicked, The EncryptMes-

sage.java Servlet is called which performs actions based on
the request. Initially, the Servlet setup the mailer, which is
javax.mailer.jar, by configuring the Gmail properties. Then,
the first important step is the generation of keys. The keys
are created using the GenerateKeys.java class file. Later, the
message is encrypted using the RSA algorithm by calling the
methods of PerformEncryptDecrypt.java java class file. The
message is encrypted using the public key. The mail consisting
the encrypted message is sent via javax.mailer library and
messages are displayed as shown in Fig. 4. The preview of
the mail is shown in Fig. 5.

Fig. 4: Encrypted mail sent.

Fig. 5: Preview of encrypted mail.

The mail also includes a link which can be used to decrypt
the message. The link is redirected to a localhost (which can
also be redirected to a domain, if available) along with the
message ID. Then, the respective encrypted message is fetched
from the database and decrypted by calling the methods of
PerformEncryptDecrypt.java file with the help of private key.
Hence, the plaintext is retrieved back and displayed to the
intended user on the browser as shown in Fig. 6.

Fig. 6: Decrypted message of the mail.

The library javax.mail.jar is used to send for sending mail
[1]. It requires the properties to be set such as SMTP host, TCP
Port, authentication, password, etc. The code snippet is shown
in Appendix A. The Public and private keys are generated by
GenerateKeys.java as shown in Appendix B. Once the keys
are generated, the encryption and decryption operations are
defined in PerformEncryptDecrypt.java, shown in Appendix C.
Then, this operation are called in EncryptMessage.java servlet
and DecryptMessage.java servlet to encrypt and decrypt the
message respectively. The code snippet is shown in Appendix
D.

III. CHAT APPLICATION IMPLEMENTATION

The messaging application allows users to register and login
into their account through username and password. On login,
it displays the list of all users that are registered to the

application. It allows the user to chat with any user just by
clicking on the name. The messages stored are completely
in encrypted form, which are encrypted using the receiver’s
public key. So that, only the receiver’s private key can decrypt
it. These keys are generated during the registration process.
The public key is stored on the server & the private key
is securely stored on the local storage of user’s device and
keys are unique for each users. The encryption and decryption
process of the application is shown in Fig. 7 and 8 respectively.

Fig. 7: Messaging Encryption Flow.

Fig. 8: Messaging Decryption Flow.

Firstly, the user needs to register himself, on clicking
“Register” button, an onClick event listener of the button
will be executed which register the user and generated public
and private keys. The private key is stored as a file having
named “{username} private” with no file extension. This
isn’t the actual private key. It is the encoded version of
private key using Base64 encoder. Whereas, the public key
is encoded with Base64 encoder and stored on the server,
which is accessible by any user. The keys are generated using
KeyPairGenerator and the algorithm used is RSA. Once the
user is registered, the user can logged in using the username
and password as shown in Fig.9.

(a) User Registration. (b) User Login.

Fig. 9: Login and Registration Activity.

A list of all the users is displayed and on clicking the
names, two users can start chatting with end-to-end encryption
scenario. When a sender type the message and click on the
“Send” button as shown in Fig. 10. The message is fetch from
the edit text of application. The public key of the receiver
is fetched from the server and decoded using the Base64
decoder. Once, the actual public key is obtained, the message
is encrypted and saved on the server. The RecyclerView
refresh itself by notifyDataSetChanged() and the encrypted
data is displayed on the chat window. From receiver point
of view, the user sees the encrypted message and when the
user clicks on the message, the onClick event listener of the
view is called and the message is decrypted using the private
key of the receiver, which is stored locally. This private
key is fetched from the local storage and decoded using
Base64 decoder.Then after obtaining the actual private key,
the message is decoded. The process is shown in Fig. 11.

The implementation of login and registration activity is
similar as the most of the application possess. The registration
activity includes the generation of keys, where the private

key is stored on local storage and public key on the server
as shown in Appendix E. The ChatActivity.java involves the
encryption and decryption of messages. For sender’s view,
the message is encrypted using receiver’s public key and then
stored on the server. For receiver’s view, an encrypted message
is fetched and displayed to the user. Each message has an
onClick listener which performs decryption of the message
using the receiver’s private key. The code snippet is shown in
Fig. F.

(a) Users list. (b) Messaging window.

Fig. 10: List of Users and Chat Window.

(a) Sender’s view. (b) Receiver’s view.

Fig. 11: Encryption and Decryption.

IV. ANALYSIS

Public key encryption says that if a message is encrypted
using the public key of receiver, then it can be only decrypted

using private key of the same receiver. However, in this case,
the private key is stored locally, as specified by the most
messaging application. Then how once a message is encrypted
using public key is decrypted just to display in the chat
window. As, none has the access to the private accepts the
owner of the key. This leads to two scenarios in terms of any
application that provides end-to-end encryption:

1. The Private key is also stored on the server. Example:
Gmail, it stores to generate smart replies.

2. The unencrypted message is stored on the local device
first then it is encrypted and stored on the server.

In the case 2, if the device is comprised then the messages
will be in readable format as it is in unencrypted form. Also,
a background task can also be created by the an organization
in Android to fetch the unencrypted message from both users
and sort them according to their timestamps.

V. CONCLUSION

Encryption is all about keeping the user’s content privacy
restricted to oneself. Implementation of web application as
well as an android application provides a brief idea about
the real-life encryption scenario. Storing the public key on
the server and private key locally, preserving the rule of not
providing access to anyone. Hence, the unencrypted message
is needed to be stored locally before encrypting the message.
Hence, once the device is compromised or any organization
can collect the unencrypted texts of users and sorted them
by respective timestamps the user’s privacy will be hindered
or the private key is needed to be stored on the server,
which provides organization an advantage to access the data
whenever required.

REFERENCES

[1] https://javaee.github.io/javamail/#Download JavaMail Release
[2] Zhao Jingling, Zhang Huiyun, Cui Baojiang, ”Sentence Similarity Based

on Semantic Vector Model”, Ninth International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, IEEE, 2014

[3] Xinchen Xu, Feiyue Ye, ”Sentences Similarity Analysis Based on Word
Embedding and Syntax Analysis”, 17th IEEE International Conference
on Communication Technology, IEEE, 2017.

[4] Fu Cheng, An Bo, Han Xianpei & Sun Le, ”ISCAS NLP at SemEval-
2016 Task 1: Sentence Similarity Based on Support Vector Regression
using Multiple Features.”, Association for Computational Linguistics,
2016.

[5] Atish Pawar, Vijay Mago, ”Challenging the Boundaries of Unsupervised
Learning for Semantic Similarity”, IEEE Access, IEEE, 2019.

APPENDIX

A. Setting up the mailer

1 //Setting up Java Mailer.
2 String fromID = "npatel46@lakeheadu.ca";
3 String toMail = request.getParameter("

↪→ receiptEmail");
4 String bodyMessage = request.getParameter("

↪→ message");
5 String password = (new SecurePassword()).

↪→ getPassword();
6

7 //Adding GMAIL properties.
8 Properties props = System.getProperties();

9 props.put("mail.smtp.host", "smtp.gmail.com"
↪→); //SMTP Host

10 props.put("mail.smtp.port", "587"); //TLS
↪→ Port

11 props.put("mail.smtp.auth", "true"); //
↪→ enable authentication

12 props.put("mail.smtp.starttls.enable", "true
↪→ "); //enable STARTTLS

13

14 //Authenticating the connection along with
↪→ username & password.

15 //Also, setting up the session.
16 Session session = Session.getInstance(props,

↪→ new javax.mail.Authenticator() {
17 @Override
18 protected PasswordAuthentication

↪→ getPasswordAuthentication() {
19 return new PasswordAuthentication(

↪→ fromID, password);
20 }
21 });
22

23 //Setting up the Mail. (From, To, Body).
24 MimeMessage msg = new MimeMessage(session);
25 msg.setFrom(new InternetAddress(fromID, "no-

↪→ reply"));
26 msg.setRecipients(Message.RecipientType.TO,

↪→ InternetAddress.parse(toMail, false));
27 msg.setSubject("Secret Message");
28 msg.setContent(encryptedMessage+"
<a href

↪→ =’http://localhost:8080/"
29 + "Email_Encryption/DecryptMessage?id="+

↪→ msgIDGen+"’>Decrypt it.","text/
↪→ html");

30

31 //Sending the Mail.
32 Transport.send(msg);

B. Generating keys

1 public GenerateKeys(int length) throws
↪→ Exception{

2 this.keyPairGen = KeyPairGenerator.
↪→ getInstance("RSA");

3 this.keyPairGen.initialize(length);
4 }
5 public void createKeys(){
6 this.keyPair = keyPairGen.generateKeyPair

↪→ ();
7 this.privateKey = keyPair.getPrivate();
8 this.publicKey = keyPair.getPublic();
9 }

10 public void writeToFile() throws Exception{
11

12 //Writing Public Key to a File
13 File f = new File(Path+"publickey");
14 FileOutputStream fos = new

↪→ FileOutputStream(f);
15 fos.write(this.publicKey.getEncoded());
16 fos.flush();fos.close();
17 //Writing Private Key to a File
18 f = new File(Path+"privatekey");
19 fos = new FileOutputStream(f);
20 fos.write(this.privateKey.getEncoded());
21 fos.flush();fos.close();
22 }

C. Operations of encryption and decryption

1public GenerateKeys(int length) throws
↪→ Exception{

2

3 public PrivateKey getPrivate(String filename
↪→) throws Exception {

4 byte[] keyBytes = Files.readAllBytes(new
↪→ File(filename).toPath());

5 PKCS8EncodedKeySpec spec = new
↪→ PKCS8EncodedKeySpec(keyBytes);

6 KeyFactory kf = KeyFactory.getInstance("
↪→ RSA");

7 return kf.generatePrivate(spec);
8 }
9

10 public PublicKey getPublic(String filename)
↪→ throws Exception {

11 byte[] keyBytes = Files.readAllBytes(new
↪→ File(filename).toPath());

12 X509EncodedKeySpec spec = new
↪→ X509EncodedKeySpec(keyBytes);

13 KeyFactory kf = KeyFactory.getInstance("
↪→ RSA");

14 return kf.generatePublic(spec);
15 }
16

17 public String encryptText(String msg,
↪→ PublicKey key) throws Exception {

18 this.cipher.init(Cipher.ENCRYPT_MODE, key)
↪→ ;

19 return Base64.getEncoder().encodeToString(
↪→ cipher.doFinal(msg.getBytes("UTF-8"
↪→)));

20 }
21

22 public String decryptText(String msg,
↪→ PrivateKey key) throws Exception {

23 this.cipher.init(Cipher.DECRYPT_MODE, key)
↪→ ;

24 return new String(cipher.doFinal(Base64.
↪→ getDecoder().decode(msg)), "UTF-8")
↪→ ;

25 }
26}

D. Encryption and decryption of the message

1 //Encrypting the message
2 PerformEncryptDecrypt edobj = new

↪→ PerformEncryptDecrypt();
3 PublicKey publicKey = edobj.getPublic(gkobj.

↪→ Path+"publickey");
4 String encryptedMessage = edobj.encryptText(

↪→ bodyMessage, publicKey);
5 out.write("
Sending the Encrypted Message

↪→ ..
");
6

7 //Decrypting the message
8 PerformEncryptDecrypt edobj = new

↪→ PerformEncryptDecrypt();
9 PrivateKey privateKey = edobj.getPrivate((

↪→ new GenerateKeys()).Path+"privatekey")
↪→ ;

10 String decryptedMessage = edobj.decryptText(
↪→ encryptedMessage, privateKey);

E. Generation and storing of keys during registration

1 myRef = FirebaseDatabase.getInstance().
↪→ getReference().child("Users");

2 try {
3 keyPairGenerator = KeyPairGenerator.

↪→ getInstance("RSA");
4 keyPairGenerator.initialize(1024);
5 keyPair = keyPairGenerator.generateKeyPair

↪→ ();
6 publicKeyString = Base64.getEncoder().

↪→ encodeToString(keyPair.getPublic().
↪→ getEncoded());

7 } catch (Exception e) {
8 Toast.makeText(RegistrationActivity.this, e.

↪→ toString(), Toast.LENGTH_SHORT).show()
↪→ ;

9 }
10

11 //Storing Private Key to Local Storage
12 File path = RegistrationActivity.this.

↪→ getFilesDir();
13 File file = new File(path, userName + "

↪→ _private");
14 try {
15 FileOutputStream stream = new

↪→ FileOutputStream(file);
16 stream.write(keyPair.getPrivate().

↪→ getEncoded());
17 stream.close();
18 } catch (Exception e) {
19 Toast.makeText(RegistrationActivity.this, "

↪→ File Error: " + e.toString(), Toast.
↪→ LENGTH_SHORT).show();

20 }
21

22 //Simple Encoding the Password
23 String encodedPassword = Base64.getEncoder()

↪→ .encodeToString(password.getBytes());
24 newUser.setPassword(encodedPassword);
25 newUser.setPublicKey(publicKeyString);
26 myRef.child("M" + userID).setValue(newUser);

F. Encrypting and Decrypting of message in Android applica-
tion

1 //Encrypting Message
2 try {
3 byte[] keyBytes = Base64.getDecoder().

↪→ decode(receiverDetails[0].
↪→ getPublicKey());

4 X509EncodedKeySpec spec = new
↪→ X509EncodedKeySpec(keyBytes);

5 KeyFactory kf = KeyFactory.getInstance("
↪→ RSA");

6 Cipher cipher = Cipher.getInstance("RSA");
7 cipher.init(Cipher.ENCRYPT_MODE, kf.

↪→ generatePublic(spec));
8 userMessage = Base64.getEncoder().

↪→ encodeToString(cipher.doFinal(
↪→ userMessage.getBytes("UTF-8")));

9 } catch (Exception e) {
10 Toast.makeText(ChatActivity.this, e.toString

↪→ (), Toast.LENGTH_SHORT).show();
11 }
12

13 //Storing encrypted Message on Server
14 Messages MessagesObject = new Messages(

↪→ user1_id, userMessage);
15 myRef.push().setValue(MessagesObject);
16

17 //Decrypting Message
18 eachItem.setOnClickListener(new View.

↪→ OnClickListener() {
19 @RequiresApi(api = Build.VERSION_CODES.O)
20 @Override
21 public void onClick(View view) {
22 try {
23 String decryptMessage =

↪→ getShowMessage();
24 byte[] keyBytes = new byte[1024];
25 File path = ChatActivity.this.

↪→ getFilesDir();
26 File file = new File(path, current.

↪→ getUserName() + "_private");
27 try {
28 FileInputStream in = new

↪→ FileInputStream(file);
29 in.read(keyBytes);
30 in.close();
31 } catch (Exception e) {
32 Toast.makeText(ChatActivity.this, "

↪→ File Error: " + e.toString(),
↪→ Toast.LENGTH_SHORT).show();

33 }
34 PKCS8EncodedKeySpec spec = new

↪→ PKCS8EncodedKeySpec(keyBytes);
35 KeyFactory kf = KeyFactory.

↪→ getInstance("RSA");
36 Cipher cipher = Cipher.getInstance("

↪→ RSA");
37 cipher.init(Cipher.DECRYPT_MODE, kf.

↪→ generatePrivate(spec));
38 decryptMessage = new String(cipher.

↪→ doFinal(Base64.getDecoder().
↪→ decode(decryptMessage)), "UTF-8
↪→ ");

39 setShowMessage(decryptMessage);
40 } catch (Exception e) {
41 Toast.makeText(ChatActivity.this, e.

↪→ toString(), Toast.LENGTH_SHORT).
↪→ show();

42 }
43 }

