
P
os
te
d
on

13
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
92
25
9
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Junit framework for unit testing

Praveen Kumar Venkatesan 1, Rikhil Gade Rozario 2, and Jinan Fiaidhi 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

Testing software before deploying is a mandatory task in SDLC. Various types of testing tools are used to test the software.

This research focuses on JUnit framework to perform unit testing for Java applications. We have developed a Banking Inventory

application using spring framework by connecting the application to the MongoDB. The application contains operations such

as Create, Update, Delete and find for the customers and Unit test cases has been developed for all the modules using JUnit

framework and the test cases are discussed and validated.

1



JUnit Framework For Unit Testing
Praveen Kumar Venkatesan

Department of Computer Science
Lakehead University

Thunder Bay, Canada
pvenkat1@lakeheadu.ca

Rikhil Gade Rozario
Department of Computer Science

Lakehead University
Thunder Bay, Canada

gaderozarior@lakeheadu.ca

Dr. Jinan Fiaidhi
Department of Computer Science

Lakehead University
Thunder Bay, Canada
jfiaidhi@lakeheadu.ca

Abstract—Testing software before deploying is a
mandatory task in SDLC. Various types of testing tools
are used to test the software. This research focuses
on JUnit framework to perform unit testing for Java
applications. We have developed a Banking Inventory
application using spring framework by connecting the
application to the MongoDB. The application contains
operations such as Create, Update, Delete and find for
the customers and Unit test cases has been developed
for all the modules using JUnit framework and the test
cases are discussed and validated.

Index Terms—SDLC (Software Development Lifecy-
cle), JUnit, test case, MongoDB (Database)

I. INTRODUCTION

In world of Information Technology, software de-
velopment to satisfy the needs of the stakeholders has
been a keen importance to all the professionals ensuring
that the stakeholder’s requirements are met. Hence
software after development will be tested with specific
parameters to verify the software.

Software testing is the process of validating the
software in order to check whether the functionality
of the developed software is intact and to detect errors
and rectify them to ensure the quality of the software.
Software validation also includes evaluation of the
application and working tests out under various settings
and situations and evaluating the features of the system.

The software may be used in as a whole or in
components. If a product is to be appropriate for
usage, each test must be passed. The program would be
updated after each set of tests. The research department
then completes the next set of experiments until they
have been overcome these errors. This process persists
until the optimal output is reached. The process of
testing a particular software is stopped when Testing
Deadlines, completion of test case execution, comple-
tion of functional and code coverage to a certain point,
bug rate falls below a certain level and no high-priority
bugs are identified, management decision.

The advantages of testing lies in the fact that the time
and cost can be reduced, bugs can be fixed in at an early

stage. Software testing helps in determining following
set of properties of any software such as Functional-
ity,Reliability,Usability,Efficiency,Maintainability and
re-usability.

Testing can be manual as well as automated. Manual
Testing is the process of writing the test cases on our
own and validating the software. Automated Testing is
process of testing that compared the actual result with
the expected result using an automation tool.

Moreover, there are various levels of testing such
as Unit testing, Integration testing, System tests and
Acceptance Testing. Unit testing is dependent on units.
Unit testing is a type of functionality testing. Each
unit/part of the application code is tested individually.
A unit can be a function, module, object etc. In unit
testing multiple units can be tested simultaneously
increasing the speed of the detecting the bugs in the
code. Application code can be refactored based on the
actual output compared to the expected output. As unit
testing is the primary base for testing, it helps in better
understanding of the code. Unit testing is also known
as module testing or component testing. This research
primarily focuses on Unit testing and the tool that has
been used to write unit test cases.

This paper is organized as follows, Section II focus
on brief details and explanation of JUnit framework
tool and the operations that can be done it,Section III
speaks about the environmental setup for developing
a application.Section IV and VI emphasis the appli-
cation development procedure as well the testing the
application.

II. LITERATURE REVIEW

JUnit is a simple unit testing framework used for
testing java language. This is an essential technology
powered by experiments and a set of constructs known
collectively as xUnit. JUnit encourages "first testing
then coding," which stresses the creation of test details
for the initial and then application part of the code has
to be evaluated. This improves programmer efficiency



and system code reliability, which in effect decreases
programmer frustration and debug time. This enhances
the developer’s efficiency. There are mainly two types
of unit testing which are mainly manual testing and
automated testing. In manual testing we can execute
these tests cases manually without any tool support
and this method is time consuming and less reliable.
In automated testing we can implement the test cases
by support tools and it is fast and more reliable.

A. Features of JUnit

JUnit gives an insight of its key test features, which
are Fixtures, Test suites, Test runners and JUnit classes.
Fixtures is basically setting fixed states for objects and
running tests using baseline. Its objective of test fixture
is to provide that there is a well-known and setup
environment in the console to run test, so that it can
replicate the results. Test suites combines some unit test
cases and compiles it together.to run this test suite we
use @RunWith and @Suite annotations before testing
a code. Test runners are used for test case execution
purposes. JUnit classes are used for testing and writing
the JUnits and few important classes are assert, testcase
and testresult. Whereas it contains assert functions, it
can define fixtures for running multiple tests and it’s a
collection of answers from test cases.

B. Annotations

In JUnit we use annotations before writing the test
cases. Annotations are the tags which define which
part of the test needs to executed first and last while
running the java test file. Some of the examples of
annotations are as follows.

1) @Test : it defines the part of code under test is
which needs to be executed to the public void method.

2) @Before: it instructs the public void method that
this annotation needs to be executed before running
the test methods according to the priority.

3) @After: it instructs the public void method that
this annotation needs to be executed after running
the test methods to ensure that if we allocate some
resources in before method it need to be released after
execution of the test case.

4) BeforeClass: Explicitly states that just once
before all the experiments commence the process must
be invoked.

5) @AfterClass: Specifically states the implemented
method just once, after all of the tests have been
performed.

C. Assertions

Another useful methods for writing the test cases
is by using assertions method, over here only failed

methods or tests will be recorded. Some of the few
assert class methods are as follows.

1) void assertEquals(boolean expected,boolean ac-
tual) : Monitors the equality of two specific objects.
It is overloaded.

2) void assertTrue(boolean condition): Verifies
whether it’s condition is true or not.

3) void assertFalse(boolean condition) : Verifies
whether it’s condition is false or not.

4) void assertNull(Object obj) : verifies its subject
tests are zero.

5) void assertNotNull(Object obj): verifies whether
its object is null or not.

D. Types of testing in JUnit

1) Ignore test: It occurs often that our application is
not prepared for the test case. The test case therefore
does not operate. The tag @Ignore aims to make that
possible. Using @Ignore annotation that test case will
not be executed and when we annotate a test class with
@Ignore it can never run either of the test methods.

2) Time test: JUnit delivers a convenient timeout
function. When a test case takes much longer than that
of the defined millisecond number, JUnit immediately
marks that it is not effective. The timeout parameter
@Test annotation can be used.

3) Exception test : JUnit may track the exception
and even verify if the code does or does not cause
an intended error. While testing exception, we need
to make sure that the exception class we provide in
that automatic @test annotation variable is the same.
This is when we are anticipating exception to the test
method we are using Unit Testing, otherwise our JUnit
test would fail. We can specify the exception name that
our test will deliver by using "expected" parameter.

4) Parameterized test: Parameterized testing enables
the developer to perform the same test for different
values over and over again. To build a parametric test
there are five measures you will follow.

• Test object annotation using @Run-
With(Parameterized.xml).

• Create a static public function that returns an
Object Collections (as Array) as a check data
set using @Parameters.

• Develop a public construct that integrates a set of
test data equal to one row.

• For each column we need to create an instance
variable for test data.

• We need to develop the test cases of instance
variable as source of test data.

2



III. ENVIRONMENT SETUP

A. Java Installation

JUnit is a framework for Java, so the very first
requirement is to have JDK installed in your machine.
Set the environment variable JAVA_HOME to JDK file
path. In the system variable ‘Path’, append the file path
of bin in JDK.

B. JUnit and Hamcrest jar

The primary requirement for JUnit is Java.The latest
versions of Junit requires jdk 8 or higher.

1) Download junit jar: https://github.com/
junit-team/junit4/wiki/Download-and-Install

2) Hamcrest-core jar: https://search.maven.org/
artifact/org.hamcrest/hamcrest-core/1.3/jar

Environmental variable set to the the location folder
of JUnit. Download the jar files and add to the test
class path.

C. IntelliJ IDEA Ultimate

IntelliJ IDEA can be downloaded from www.
jetbrains.com/student To add the JUnit jar to a new
project, create a new project from file project structure
and add the dependencies, JUnit jar and hamcrest.

D. MongoDB

MongoDB is a cross-platform, document oriented
database that provides, high performance, high availabil-
ity, and easy scalability. MongoDB works on concept
of collection and document. Mongo DB is a Nosql
Database. Unlike traditional databases, it is not a
relational database. MongoDB can manage unstructured
data also called as a document database. MongoDB
is easy to scale out and doesn’t have complex joins
and eases faster access of data. It is used I the fields
of Big Data, Mobile ad Social Infrastructure etc.install
the setup file from the website, https://www.mongodb.
com/download-center/community

1) Collections: A collection is a group of documents
ad is equal to RDMS table. Collections are present in
single database. Collections does not enforce schema.

2) Document: Each document in the database is a
record equals to a row in relational DB. Each record
is a set of key-value pairs. Documents in the same
schema need not have same data structure and can be
of different data types.

E. Postman

Postman is an interactive and automatic tool for
verifying the APIs of your project. It works on the
backend, and makes sure that each API is working
as intended. Postman can be downloaded from the
following link: https://www.postman.com/downloads/

IV. APPLICATION DEVELOPMENT

A Banking application that governs the customer’s
bank details using spring boot framework using mongo
Database. Operations performed in the applications:

• Creation of Customer account - Inserting a record
of customer in the database that has the following
details such as name, email, contact number, id
and the initial balance.

• Updating of customer details - Modify the cus-
tomer details and store them in the database

• Display the records of the customers - This module
returns all the details and records of the customers
from the repository

• Deletion of a particular customer details - This
module deletes the particular entry of the customer
based on the id of the document specified.

A. Project Setup

Create a new project using spring initializer. cre-
ate a package "com.bank.spring.api". Give in the
details of the group name, package name, inside
the “com.bank.spring.api “ ,create three packages
model,repository and resource.

Figure 1: Create the project.

B. Database Connectivity

To connect to the database we have to create a
new database using command prompt.Move to the
location where mongo db is present.To start up the
mongo database server ,we should type in the command
"mongod" to start the server.

To open the mongo shell,we use "mongo" command
to start the shell and perform the operations of creating
the database and collections to store the records.

we create a database called as "bankappln".To store
the records of the customers we create a collection

3

https://github.com/junit-team/junit4/wiki/Download-and-Install
https://github.com/junit-team/junit4/wiki/Download-and-Install
https://search.maven.org/artifact/org.hamcrest/hamcrest-core/1.3/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest-core/1.3/jar
www.jetbrains.com/student 
www.jetbrains.com/student 
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.postman.com/downloads/


called as "Customers".Figure 2 shows the database
created in mongo shell.

Figure 2: Database creation.

C. Create the application properties file
Connection attributes should be specified in the

applications.properties file.To connect to the database
,configuration details such as localhost and port number
of the database server has to be specified in the file
in order to use the database in the application.The
username and password is also mentioned to access
the database.

application.properties

spring.data.mongodb.host=localhost
spring.data.mongodb.port=27017
spring.data.mongodb.database=bankappln

.

D. Create Model
• MongoDB stores data in collections. Spring Data

MongoDB maps the Customer class into a collec-
tion called customer. If you want to change the
name of the collection, you can use Spring Data
MongoDB’s @Document annotation on the class.

• @ToString is used to print the details of the
customer.

• Getter and Setter methods are used to read the
values from the variable and the setter method is
used to set the values to the variable.

• @Id – used to get document from the database
Student.java

package com.bank.spring.api.model;

import lombok.Getter;
import lombok.Setter;
import lombok.ToString;
import org.springframework.data.

annotation.Id;
import org.springframework.data.

mongodb.core.mapping.Document;

@Getter
@Setter
@ToString
@Document(collection="customers")
public class Customer {

@Id
private int id;
private String name;
private String email;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public long getContact() {
return contact;

}

public void setContact(long contact)
{
this.contact = contact;

}

public int getBalance() {
return balance;

}

public void setBalance(int balance) {
this.balance = balance;

}

private long contact;

4



private int balance;
}

E. Create Repository
We extend the database repository to the mongo

repository.The customer repository is use to store the
records of the customers.

CustomerRepository.java

package com.bank.spring.api.repository;

import
com.bank.spring.api.model.Customer;

import org.springframework.data.mongodb.
repository.MongoRepository;

public interface CustomerRepository
extends MongoRepository<Customer,
Integer> { }

F. Controller
1) @Autowired: Autowiring feature of spring frame-

work enables you to inject the object dependency
implicitly. It requires the less code because we don’t
need to write the code to inject the dependency
explicitly.

2) @RestController: This annotation is applied to a
class to mark it as a request handler.RestController
takes care of mapping request data to the defined
request handler method.

3) @GetMapping: annotation maps HTTP GET
requests onto specific handler methods. It is a composed
annotation that acts as a shortcut for @RequestMap-
ping (method = RequestMethod.GET).They handle
the HTTP GET requests matched with given URI
expression.

4) @PostMapping: is specialized version of @Re-
questMapping annotation that acts as a shortcut for
@RequestMapping(method = RequestMethod.POST).

5) @PostMapping: annotated methods handle the
HTTP POST requests matched with given URI expres-
sion.

6) @DeleteMapping: @DeleteMapping annotation
maps HTTP DELETE requests onto specific handler
methods. It is a composed annotation that acts as
a shortcut for @RequestMapping(method = Request-
Method.DELETE).

CustomerController.java

package com.bank.spring.api.resource;

import
com.bank.spring.api.model.Customer;

import com.bank.spring.api.repository.
CustomerRepository;

import org.springframework.
beans.factory.annotation.Autowired;

import org.springframework.
web.bind.annotation.*;

import java.util.List;
import java.util.Optional;

@RestController
public class CustomerController {

@Autowired
private CustomerRepository

repository;
@PostMapping("/addCustomer")
public String

saveCustomer(@RequestBody
Customer customer){
repository.save(customer);
return "Added Customer with ID "+

customer.getId();

}
@GetMapping("/findallCustomers")
public List<Customer> getCustomers()
{

return repository.findAll();
}
@GetMapping("/findCustomer/{id}")
public Optional<Customer>

getCustomer(@PathVariable int id)
{

return repository.findById(id);
}
@DeleteMapping("/delete/{id}")
public String

deleteCustomer(@PathVariable int
id){
repository.deleteById(id);
return "Customer deleted with

Id"+ id;
}
@DeleteMapping("/delete/")
public String deleteCustomer(){

repository.deleteAll();
return "Customers are deleted";

}

}

G. Create an Application Class

The main()method in this MainApplication class
uses SpringApplication.run()method of the spring boot
to launch the application.Spring Initializer creates a
simple class called ‘MainApplication’ for our Inventory
application.

5



MainApplication.java

package com.bank.spring.api;

import org.springframework.
boot.SpringApplication;

import org.springframework.boot.
autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DemoApplication {

public static void main(String[] args) {
SpringApplication.run(DemoApplication

.class, args);
}

}

V. POSTMAN

A. Add a Customer

POST method /addCustomer is used to
create a new customer with details such as
name,email,phone,balance. A new customer record
with JSON object shown in Fig.3 is added to the
database. Post method is tested using postman as
shown in Fig.3.

Figure 3: Add Customer

B. Get all Customers

GET method /findAllCustomers retrieves all the
records from the database and it is tested using postman
as shown in Fig. 4.

Figure 4: retrieve all the customers

C. Get a customer based on id

GET method /findCustomer/id retrieves the record
based on id.

Figure 5: Customer record based on id

D. Delete a Customer based on id

DELETE method /delete/id deletes the record based
on id. It is shown in Fig. 6.

6



Figure 6: Deletion of a record based on id

VI. JUNIT TEST CASES

JSONAssert is used to compare the actual and
expected result. We can see the test cases for all the
API’s our application.

Mockito is used to mock a method by returning a
specific JSON when it is invoked.
@RunWith(SpringRunner.class) is used to launch the
Spring TestContext Framework.
@WebMvcTest(value = CustomerController.class):
WebMvcTest annotation is used for unit testing Spring
MVC application.

A. Find all customers

In this test case, we are checking whether the API
to find all the customers in the repository has been
retrieving the details of all the customers. We create a
mock object and store the values of the attributes. We
mock the API ad we are invoking the API to check the
status. If the status returns 200, then the API executes
correctly and we get the details of all the customers.

//method to test find all customer
records

@Test
public void getCustomers() throws

Exception {
Customer c1 = new Customer();
c1.setName("emp1");

c1.setEmail("pk@gmail.com");
c1.setId(1);
c1.setBalance(3000);
Mockito.when(

customerRepository.findAll()).then
Return

(Collections.singletonList(c1));
this.mockMvc.
perform(get("/findallCustomers"))

.andExpect(status().isOk())

.andDo(print());

Figure 7: Test Case- findall().

B. Customer record based on id

Here the test case checks whether a single record of
the customer can be retrieved based on the id. The test
case gets passed and a single record corresponding to
id number 5 is retrieved. The HTTP method used here
is GET method.We use JSONAssert to check whether
the json returned matches with the expected json.

//method to test Customer by by id
@Test

public void findCustomersbyId()
throws Exception {
Customer c1 = new Customer();
c1.setName("emp1");
c1.setEmail("pk@gmail.com");
c1.setId(5);
c1.setBalance(3000);
int id=5;
Mockito.when(
customerRepository.findById(id)).
then Return
(java.util.Optional.of(c1));

this.mockMvc.
perform(get("/findCustomer/"+id))

.andExpect(status().isOk())

.andDo(print());
}

7



Figure 8: Test case for-customer by id

C. Delete Customers

This test case checks whether the API called will
actually delete all the customer details from the reposi-
tory. All the test cases are run in the mock environment
making sure that the actual details doesn’t get deleted.
The test retrieves the status and the test case is passed
and API has been checked.

//method to test the deletion of all
customers

@Test
public void deleteCustomer() throws

Exception
{ mockMvc.perform(

MockMvcRequestBuilders.
delete("/delete/") )
.andExpect(status().isOk());

}

Figure 9: Test case-delete all Customers

D. Delete Customer by id

Similar to the previous test case, this API is also
checked and the API is invoked with the mock object
ad the validation result is retrieved.

//method to test the deletion of a
customer based on id

@Test
public void deleteCustomerbyId()

throws Exception
{

mockMvc.perform(
MockMvcRequestBuilders.

delete("/delete/{id}",1) )
.andExpect(status().isOk());

}

Figure 10: Test case-Delete Customer by Id

VII. CONCLUSION

In this paper, we gave a brief description of the
JUnit Framework tool for Unit testing.we developed
a Banking Inventory appication with MongoDB and
wrote various test cases for diferent API and validated
the results.Through this research we came to know
about the JUnit Tool in detail and the tasks that can
be performed with the tool.

REFERENCES

[1] Guru99.com. 2020. Junit Tutorial For Beginners: Learn In 3
Days. [online] Available at: <https://www.guru99.com/junit-
tutorial.html> [Accessed 3 February 2020].

[2] Tutorialspoint.com. 2020. Junit- API-Tutorialspoint. [online]
Available at: https://www.tutorialspoint.com/junit/junit_api.htm
[Accessed 3 March 2020].

[3] Accessing Data with MongoDB. (n.d.). Retrieved 1, 2020, from
https://spring.io/guides/gs/accessing-data-mongodb/

[4] GitHub. 2020. Junit-Team/Junit4. [online] Available at:
<https://github.com/junit-team/junit4/wiki> [Accessed 3 March
2020].

8


	Introduction
	Literature Review
	Features of JUnit
	Annotations
	@Test 
	@Before
	@After
	BeforeClass
	@AfterClass

	Assertions
	void assertEquals(boolean expected,boolean actual) 
	void assertTrue(boolean condition)
	void assertFalse(boolean condition) 
	void assertNull(Object obj) 
	void assertNotNull(Object obj)

	Types of testing in JUnit
	Ignore test
	Time test
	Exception test 
	Parameterized test


	Environment Setup 
	Java Installation
	JUnit and Hamcrest jar 
	Download junit jar
	Hamcrest-core jar

	IntelliJ IDEA Ultimate
	MongoDB
	Collections
	Document

	Postman

	Application Development
	Project Setup
	Database Connectivity
	Create the application properties file
	Create Model
	Create Repository
	Controller
	@Autowired
	@RestController
	@GetMapping
	@PostMapping
	@PostMapping
	@DeleteMapping

	Create an Application Class

	POSTMAN 
	Add a Customer
	Get all Customers
	Get a customer based on id
	Delete a Customer based on id

	JUnit Test Cases
	Find all customers
	Customer record based on id
	Delete Customers 
	Delete Customer by id 

	Conclusion
	References

