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Abstract

Mode selection is normally used in conjunction with Device-to-Device (D2D) millimeter wave (mmWave) communications in

5G networks to overcome the low coverage area, poor reliability and vulnerable to path blocking of mmWave transmissions.

Thus, producing a high-efficient D2D mmWave using mode selection based on select the optimal mode with low complexity

turns to be a big challenge towards ubiquitous D2D mmWave communications. In this paper, low complexity and high-efficient

mode selection in D2D mmWave communications based on deep learning is introduced utilizing the artificial intelligence. In

which, deep learning is used to estimate the optimal mode y in the case of blocking of mmWave transmission or low coverage

area of mmWave communications. Then, the proposed deep learning model is based on training the model with almost

use cases in offline phase to predict the optimal mode for data relaying high-reliability communication in online phase. In

mode selection process, the potential D2D transmitter select the mode to transmit the data either based on dedicated D2D

communication or through the cellular uplink using the base station (BS) as a relay based on several criteria. The proposed deep

learning model is developed to overcome the challenges of selected the optimal mode with low complexity and high efficiency.

The simulation analysis show that the proposed mode selection algorithms outperform the conventional techniques in D2D

mmWave communication in the spectral efficiency, energy efficiency and coverage probability.
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Abstract— Mode selection is normally used in conjunction with 

Device-to-Device (D2D) millimeter wave (mmWave) 

communications in 5G networks to overcome the low coverage 

area, poor reliability and vulnerable to path blocking of mmWave 

transmissions. Thus, producing a high-efficient D2D mmWave 

using mode selection based on select the optimal mode with low 

complexity turns to be a big challenge towards ubiquitous D2D 

mmWave communications. In this paper, low complexity and 

high-efficient mode selection in D2D mmWave communications 

based on deep learning is introduced utilizing the artificial 

intelligence. In which, deep learning is used to estimate the optimal 

mode y in the case of blocking of mmWave transmission or low 

coverage area of mmWave communications. Then, the proposed 

deep learning model is based on training the model with almost 

use cases in offline phase to predict the optimal mode for data 

relaying high-reliability communication in online phase. In mode 

selection process, the potential D2D transmitter select the mode to 

transmit the data either based on dedicated D2D communication 

or through the cellular uplink using the base station (BS) as a relay 

based on several criteria. The proposed deep learning model is 

developed to overcome the challenges of selected the optimal mode 

with low complexity and high efficiency. The simulation analysis 

show that the proposed mode selection algorithms outperform the 

conventional techniques in D2D mmWave communication in the 

spectral efficiency, energy efficiency and coverage probability. 

Keywords: D2D, mmWave, deep learning, mode selection, 5G cellular 
networks. 

I. INTRODUCTION  

Fifth generation (5G) networks are demanded to support 
multi-Gbps data rates to address the incredible demand for 
tremendous user needs in the near future [1]. Immigration to 
millimeter wave (mmWave) band, 30 - 300 GHz band be a 
promising candidate for enhancing the legacy cellular networks 
via support multi-Gbps data rates [2]. Recently, the integration 
between mmWave band and Device-to-Device (D2D) 
communications be strong candidate for enabling multi-Gbps 
data rates for 5G networks [3]. However, there big challenges in 
D2D mmWave communications such as weak link budget, high 
propagation loss and highly affected by rain and oxygen 
absorptions, so mmWave has doubts about the reliability in poor 
channel condition [4]. Analog beamforming (BT) technique 
based on steerable phased antenna array using a predefined 
codebook design with high antenna gains be enabler to 

overcome the poor channel condition in D2D mmWave 
communications [5].  The conventional BT using predefined 
codebooks at both transmitter (TX) and receiver (RX) which 
contains all beams with specific direction and beamwidth value 
using antenna weight vectors (AWVs). The BT is based on 
exhaustive search (EX) by scanning the whole 360∘  around the 
TX/RX to obtain the best beam pair which maximizing the 
received power [3]. MmWave is the optimal candidate for D2D 
proximity services, and multi-Gbps data rates in D2D 
communications can be constructed. However, there are major 
challenges facing the construction of efficient mmWave D2D 
links. Blocking of communications between the devices is one 
of these main challenges due to the sensitivity of mmWave to 
blocking [5-7]. Another major challenges in construction of 
efficient mmWave D2D links is mode selection. Mode selection 
techniques is empowering the reliability of D2D mmWave 
communications. In the mode selection process, the potential 
D2D transmitter (𝐷𝑡𝑥)  select the mode to transmit the data either 
based on dedicated D2D communication or cellular uplink.  

Actually, D2D pairs can select one of the following four modes 

of communication: 1) Pure cellular mode is used in case of high 

interference and low of available resources. 2) The partial 

cellular mode when D2D pairs can communicate through the 

base station (BS) without co-channel spectrum sharing. 3) 

Dedicated mode when the D2D pairs communicate with each 

other using dedicated spectrum resources. 4) Underlay mode in 

case of both D2D pairs and UEs share the uplink and downlink 

resources. However, mode selection proves challenging in 

mode selection processes such as resource management, 

network overloading and the complexity of the network 

management. There are many research efforts to overcome the 

challenges of mode selection in D2D mmWave communication 

while obtaining an acceptable complexity. 

Motivated by the fact that mode selection in D2D 
communications need accurate decisions and predictions to can 
select the optimal mode that can guarantee improve the 
reliability of the system. We proposed a smart mode selection 
system based on deep learning, thanks to the deep learning 
feature as constructing intelligence model leads to accurate 
decisions and predictions will help in mode selection process. 
Deep learning is a part of artificial intelligence based on learning 
from the data referred to as training data, and able to 



independently adapt and classify patterns and make accurate 
decisions with the minimal human intervention [6].  

II. SYSTEM MODEL 

Assuming mmWave transmission between a D2D and the device 

to the base station (D2B) communications and the system model, 

including the BT of mmWave in D2D and D2B connections. 

Considering the BS is equipped with 𝑊𝐵𝑆 Antennas, and each 

device have 𝑊𝐷  antennas, and the coverage disk area 𝒟 with a 

radius as ℛ𝒟 and the BS is located at the origin of 𝒟. Assuming 

that the devices are randomly deployed in the disc, following a 

homogeneous Poisson point process (HPPP). Consequently, the 

number of devices in 𝒟 is Poisson distributed as follows 

𝑃(𝐾 devices in 𝒟) =  
𝜇𝐾𝑒𝜇

𝐾!
, where 𝜇 =  𝜋ℛ𝒟

2𝜆. The BS serves 

UEs and several devices and each device in the system model can 

act as 𝐷𝑡𝑥 
or 𝐷𝑟𝑥 and the potential D2D users 𝐷𝑡𝑥 either 

establishes a mmWave communication through the BS directly 

known as cellular link or a direct D2D communication known as 

dedicated D2D communication based on the mode selection 

methodology.  

A.  BT IN MMWAVE COMMUNICATIONS 

Considering the BT technique in D2D mmWave and D2B 

mmWave. Conventional BT using predefined antenna 

codebooks at TX/RX to obtain the optimal beam pairs for both 

TX/RX, the predefined codebook can be formulated as [8]: 

𝒦(𝑤, m) =  𝒿
𝑓𝑙𝑜𝑜𝑟{

w ×𝑚𝑜𝑑(m+ (
𝑀
2

),   M)

𝑀
4

}

 

 
(1) 

where 𝑤 = 0,   .  .  .  . ,𝑊 − 1, 𝑀 = 0, . . . . ,𝑀 − 1, 𝒿 = √−1, 
𝒦 (𝑤, 𝑚) is the antenna weight corresponding to antenna 
element w to accomplish BT steering in the 𝑚 direction, and 𝑀 
and 𝑊 are the total numbers of steering beams and antenna 
elements respectively. The mmWave channel model consist of 
𝐿 propagation paths between BS and 𝑈𝐸  which can be 
formulated as follows [8]: 

𝐇 =
1

𝛾
 ∑𝜇ℓ𝓻𝑈𝐸𝑚

(𝜙ℓ)𝓻𝐵𝑆
𝐻

𝐿

ℓ=1

(𝜃ℓ) 

 
(2) 

where 𝛾 is the average path-loss, and ( )𝐻 is the Hermitian 
transpose. The complex gain of path ℓ is given by 𝜇ℓ, and the 

array responses of BS and 𝐷𝑡𝑥  are 𝓻𝐵𝑆(𝜃ℓ) and 𝓻𝑈𝐸𝑚
(𝜙ℓ), 

respectively. The azimuth angles AoD and AoA are  𝜃ℓ ∈
 [0,2𝜋] and 𝜙ℓ  ∈  [0,2𝜋], respectively, then [9]: 

𝓻𝐵𝑆(𝜃ℓ) = [1, 𝑒𝑗
2𝜋
𝜆

ℯ sin(𝜃ℓ)
, . . . , 𝑒𝑗(𝑁𝐵𝑆−1)

2𝜋
𝜆

ℯ sin(𝜃ℓ)]
𝑇

(3) 

𝓻𝑈𝐸(𝜙ℓ) = [1, 𝑒𝑗
2𝜋
𝜆

ℯ sin(𝜙ℓ), . . , 𝑒𝑗(𝑁𝑈𝐸−1)
2𝜋
𝜆

ℯ sin(𝜙ℓ)]
𝑇

(4) 

Where the antenna elements spacing and the signal wavelength 
are given by ℯ and 𝜆, respectively. Assuming 2-D BT, in case of 
the AWVs of both BS and 𝑈𝐸𝑚 are directed in the 𝑚𝑡𝑥 and 𝑚𝑟𝑥 
beam pattern, accordingly the 𝐷𝑡𝑥  RX symbol 𝑦 corresponding 

to the BS TX symbol 𝒹, can be stated as follows: 

𝑦 = 𝓚𝑟𝑥[: ,𝑚𝑟𝑥]
𝐻𝐇 𝓚𝑡𝑥[: ,𝑚𝑡𝑥]𝒹 +  𝓚𝑟𝑥[: , 𝑚𝑟𝑥]

𝐻  𝒏, (5) 

A. where 𝑯 represents 𝑊𝐵𝑆  × 𝑊𝐷  channel matrix. 

𝓚𝒕𝒙 ( 𝓚𝒓𝒙) is the TX (RX) codebooks respectively, and 

𝓚𝒕𝒙[: ,𝑚𝑡𝑥] ( 𝓚𝒓𝒙[: , 𝑚𝑟𝑥]) is the [𝑊𝐵𝑆 × 1] ([𝑊𝐷 × 1] ) AWV 

corresponding to 𝑚𝑡𝑥(𝑚𝑟𝑥) column in 

𝓚𝒕𝒙 ( 𝓚𝒓𝒙), respectively. The noise vector is given by 𝒏 with 

length [𝑊𝐷 × 1]. We assume that the BS has perfect channel 

state information (CSI) of all the devices using methodology in 

[8]. 

B.  Link Model in D2D MmWave Communications 

Assuming 𝑑 is the distance between BS and 𝐷𝑟𝑥  , hence, the 

received power at  𝐷𝑟𝑥 can be written in dBm as: 

𝑃𝑟(𝑑) = 𝑃𝑡 + 𝐺𝑇𝑋(𝜃)  + 𝐺𝑅𝑋(𝜙) −  𝑃𝐿(𝑑),           (6) 

𝑃𝐿(𝑑) = 𝑃𝐿𝑜(𝑑𝑜) + 10𝑛log10 (
𝑑

𝑑𝑜

) + 𝜒𝜎 ,              (7) 

where  𝑃𝑡  and 𝑃𝐿(𝑑) are the transmitter (TX) power and the 

potential path loss, respectively. 𝑛 and 𝜒𝜎 indicate the path loss 

exponent and the log-norm shadowing term, i.e., 𝜒𝜎 ∽
𝒩(0, 𝜎𝜒𝜎

) where 𝜎𝜒𝜎
 is the standard deviation of 𝜒𝜎 . 𝐺𝑇𝑋(𝜃) 

and 𝐺𝑅𝑋(𝜙) are the BT gain of the mmWave TX and RX, 

respectively, which can be expressed as [10]: 

𝐺𝑇𝑋(𝜃) = 𝐺𝑜 − 12(
𝜃 − 𝜑𝑇𝑋

𝜃−3𝑑𝐵

)
2

,               (8) 

𝐺𝑜 = 20 log10 (
1.6162

sin(
𝜃−3𝑑𝐵

2 )
),                    (9) 

Where 𝐺𝑜  is the maximum achievable gain of the 

antenna, 𝜃−3𝑑𝐵 and  𝜑𝑇𝑋  are half power beamwidth and the 

angle of the center of the beam, respectively [39]. Additionally, 

broadly, we can compute the signal-to-interference-plus-noise-

ratio (SINR) in mmWave communication between TX 𝑖 and 

receiver (RX) 𝑗 as: 

𝑆𝐼𝑁𝑅𝑖𝑗 =
𝑃𝑡𝑖+ 𝐺𝑇𝑋(𝜃)𝑖𝑗 +𝐺𝑅𝑋(𝜙)𝑖𝑗− 𝑃𝐿(𝑑)𝑖𝑗

∑ 𝑃𝑡𝓏+ 𝐺𝑇𝑋(𝜃)𝓏𝑗 +𝐺𝑅𝑋(𝜙)𝓏𝑗− 𝑃𝐿(𝑑)𝓏𝑗+𝑛 𝑘≠𝑖
,(10) 

Where 𝓏 represents each interfering link in D2D and D2B 

mmWave communication. 

C. Blocking Model in MmWave Communications 

The distance is main parameter of mmWave blocking model, the 
blocking model is based on the distance between the transceivers 
and the shape of the blockers. The probability of LOS be blocked 
can be formulated as follows [10]: 

𝑃(𝐿𝑂𝑆) =  𝑒−𝜖𝑑                                             (11) 

where 𝑑 denotes the distance between the transceivers, and 𝜖 is 

calculated based on the shape and the density of obstacles the 
buildings. 

III. PROBLEM FORMULATION  

In this section, we formulate the optimal RS in D2D mmWave 

communications based on the maximization problem for the 

throughput of the system. The 𝐷𝑡𝑥 measure the link model with 



the target 𝐷𝑟𝑥, and link model with BS, and calculate the 

potential 𝑆𝐼𝑁𝑅 for both 𝐷𝑟𝑥 and BS. Finally, measure 𝑃(𝐿𝑂𝑆) 

between 𝐷𝑡𝑥 and 𝐷𝑟𝑥, and between BS and 𝐷𝑡𝑥 and select the 

optimal mode selection for 𝐷𝑡𝑥 as a direct connection with 𝐷𝑟𝑥 

or connect with 𝐷𝑟𝑥 through the BS. All these metrics should 

be considered to jointly contribute in selecting the optimal 

mode that maximizes ℛ which denotes the average system 

throughput.  

ℛ = 𝛽𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅),                        (12) 

where 𝛽 is the bandwidth of the system, so the ℛ can be 

formulated as: 

ℛ = 𝛽𝑙𝑜𝑔2 (1 +
𝑃𝑟

𝑃𝑖𝑛𝑡+𝑛
),                            (13) 

Where the interference power between the devices can be 

rewritten as: 

𝑃𝑖𝑛𝑡 = ∑ 𝑃𝑡𝓏
+ 𝐺𝑇𝑋(𝜃)𝓏𝑗  + 𝐺𝑅𝑋(𝜙)𝓏𝑗 − 𝑃𝐿(𝑑)𝓏𝑗𝑘≠𝑖 , (14)  

based on (5), the ℛ can be expressed as: 

ℛ = 𝛽𝑙𝑜𝑔2 (1+ |
 𝒦𝑟𝑥[:,𝑚𝑟𝑥]𝐻H 𝒦𝑡𝑥[:,𝑚𝑡𝑥]

𝑛
 |

2

),                     (15) 

Consequently, the chosen mode guarantees the reliability of the 

system and increasing the total rate; finally, the optimal mode 
selection can be formulated as: 

𝑀𝑆∗
𝐷𝑡𝑥

 = arg max
∀ (𝑑,𝑣,𝑃(𝐿𝑂𝑆),𝑏)  

(ℛ),                   (16) 

In this paper, we investigate the scheme that can guarantee 

determine the optimal mode selection in D2D mmWave 

communications with low complexity and high efficiency.  

IV. PROPOSED DEEP LEARNING MODEL 

In this section, we give a detailed explanation of the structure 

of the deep learning model. Then, the detailed procedure of the 

proposed schemes for mode selection is addressed. For 

simplicity, in the following analytical analysis. 

A.  Structure of Proposed Deep Learning Model  

The proposed deep learning scheme is constructed to find the 

optimal mode selection𝑀𝑆∗
𝐷𝑡𝑥

 that optimize the problem in 

(16). The proposed model is composed of several fully 

connected layers as shown in Fig. 1, each neuron in the layer is 

applied the activation function ReLU. In the following, a 
detailed explanation of proposed deep learning model. The data 

inputs are 𝒬 which is composed of 𝑑, 𝑣, 𝑃(𝐿𝑂𝑆) and 𝑏 the 

𝑆𝐼𝑁𝑅 is one of the main points in mode selection to determine 

the best mode, which reduce the interference which guarantee 

maximizing the ℛ as given in (16) for each device is shaped as 

matrix with 5 columns as features and with rows 𝒳 so, the input 

data 𝓢 can be expressed as: 

𝓢 =  [

𝑆𝐼𝑁𝑅1 𝑑1 𝑣1 𝑃(𝐿𝑂𝑆)1 𝑏1

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑆𝐼𝑁𝑅𝑥 𝑑𝒳 𝑣𝒳 𝑃(𝐿𝑂𝑆)𝒳 𝑏𝒳

],                   (17) 

each element of the vector of the labeled data that indicate the 

projection of optimal 𝑀𝑆∗
𝐷𝑡𝑥

 according to the features data 𝓢. 

The actual best 𝑀𝑆∗
𝐷𝑡𝑥

 according to actual measurements 

during the training process and a detailed explanation of 

training phase will be explained later. Consequently, the actual 

best 𝑀𝑆∗
𝐷𝑡𝑥

 which guarantees (16) or labeled data can be 

expressed as: 

𝓽 =  

[
 
 
 
 
𝑀𝑆 

𝐷𝑡𝑥1

⋮
⋮

𝑀𝑆 
𝐷𝑡𝑥𝒳]

 
 
 
 

,        (18) 

Each neuron applied multiplication of the initialize weights 

with each input, then make a summation for each output process 

with the addition of biases and applied ReLU function to the 

output as shown in Fig. 1. Each hidden layer of full connected 

layers has a connection with the hidden nodes of the previous 

and next layers and fed into the ReLU layer, which provides 

non-linearity to extract meaningful features that are used to 

determine the optimal mode selection. Finally, the last layer of 

the deep learning model is determined the optimal 𝑀𝑆∗
𝐷𝑡𝑥

. 

B.  Training Phase of Proposed Deep learning scheme 

To use the proposed deep learning scheme, the deep learning 

model must first be trained, after which the trained model is 

used to determine the 𝑀𝑆∗
𝐷𝑡𝑥

. As such, the training data are 

called features data of 𝑑, 𝑣, 𝑃(𝐿𝑂𝑆), 𝑏 for several use cases of 

the devices under different channel condition, the distance 

between the devices, the mobility of the devices and the residual 

energy of the battery power of the devices in different cases are 

collected in the training and the corresponding best actual 

𝑀𝑆 
𝐷𝑡𝑥

 in each uses case. Consequently, the proposed model 

can learn the general best 𝑀𝑆 
𝐷𝑡𝑥

 which maximizing the 

throughput of the system according to (16). During the training 

phase, we collected the training samples 𝓢 and the label data 𝓽. 

To avoid overfitting of the proposed deep learning model, we 

train only the appropriate number of channel samples and with 

sufficient to achieve accuracy performance as shown later in the 

simulation analysis.  Additionally, the collected data will be  

 
 

Fig. 1. Block diagram of the proposed deep learning model. 



normalized to ignore the effect of initializing the neural network 

weights and the outliers of the training samples. We Estimate 

the accuracy of the model that can be formulated as: 

𝜇 = Mean squared error of (𝑀𝑆∗
𝐷𝑡𝑥

 ,𝑀𝑆 
𝐷𝑡𝑥

),          (19) 

Algorithm: Proposed Mode Selection   

Input: 𝒳 : the number of training samples  
Output: 𝑀𝑆∗

𝐷𝑡𝑥
 

The deep learning model start: 

A. Phase 1: Online learning:  

                  For 𝑖 = 1: 𝒳 
a. Input random values (training 

values): 𝑑 , 𝑣 
, 𝑃(𝐿𝑂𝑆), 𝑆𝐼𝑁𝑅 and 𝐵   

b. Estimate  ℛ𝑖  
 given in (15) 

c. Determine 𝑀𝑆 
𝐷𝑡𝑥 𝑖

 in (16) 

d. Estimated the accuracy as given in 
(19) 

                   End 
1. Construct the training data 𝓢 as in (17) 
2. Construct the labeled data 𝓽 as in (18) 

B. Online phase: Deep learning prediction 

Output: 𝑀𝑆∗
𝐷𝑡𝑥

 

End 

V. SIMULATION ANALYSIS 

In this section, we evaluate the performance of the proposed 

D2D mmWave communications scheme using numerical 

simulations compared to the standard IEEE 802.11ad [5] and in 
[11]. Deep learning model be implemented based on Python 

libraries and TensorFlow backend [12], [13]. For fair 

comparisons, we used the same simulation parameters given in 

[5] and [11] as follows: assuming simulation area equal to 5m 

~ 100m and the number of devices 𝑁𝑑 =  10 ~ 200 with 

equiprobable uniform distribution, both 60GHz and 5GHz 

carrier frequency are considered, Rayleigh fading channel is 

considered with 𝐿=3, AoAs/AoDs are assumed to be continuous 

in [0,2𝜋] and assuming several cases of blockage Probability 

𝑃(𝐿𝑂𝑆) = 0.9, 0.5 and 0.1. The transmit power (𝑃𝑡 ) = 10 dBm 

with Super-frame time (𝑇𝐹) = 200ms. In the conducted 

simulations, we concern in measuring the throughput in bit/sec, 

the energy efficiency and the coverage probability of the 

compared D2D mmWave schemes. The throughput can be 

formulated as [10]:  𝒯 = 
ℛ

𝑁𝑑
, where ℛ is the Spectral efficiency 

as in (15) and the total energy efficiency of the proposed 

scheme can be expressed as follows:  

ℰ =  
𝒯

𝑁𝑑×𝑃𝑡×𝑁𝑓×𝑇𝐹
   (20)                                   

The energy efficiency of the conventional mode selection can 

be formulated as follows: 

ℰ𝑐𝑜𝑛𝑣 = 
𝒯

𝑁𝑑×𝑃𝑡×𝑇𝐹×𝑃(𝐿𝑂𝑆)+𝑁𝑑×𝑃𝑡×𝑇𝐹×(1−𝑃(𝐿𝑂𝑆)) 
             (21) 

The energy efficiency of mode selection can be formulated as 

follows: 

ℰ𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 
𝒯

𝑃𝑡 × 𝑇𝐹

,                                  (22) 

We first evaluate the accuracy of deep learning scheme 

according to (19) by investigated the required size 𝓢 as in (18) 

to get satisfied performance of deep learning model. As shown 

in Fig. 6, as increasing the dataset or training samples, the 
accuracy of deep learning is increased until accuracy of the 

model is approximately saturated. Accordingly, we can reduce 

the complexity of training phase according to the saturated 

point where size 𝓢 = 30 dataset of training data. In this section, 

we investigate the performance of the proposed mode selection 

scheme based on deep learning as shown in Figs.2, 3 and 4. In 

Figs. 2 and 3, we investigate the performance of the proposed 

mode selection scheme based on deep learning compared with 

schemes in [5] and [11].  The proposed mode selection scheme 

always shows a superior performance in the throughput and the 

energy efficiency compared with [5] and [11]. This come from, 
in [11] the mode selection scheme is based on the both distance 

between the devices and the distance to BS without investigate  

 
 

Fig. 2. The accuracy of proposed deep learning. 

the channel condition of the device or the battery status of the 

device. Additionally, in [5] the conventional IEEE 802.11ad is 

based on D2D communications and only all possible 

communications come through the BS which act as relay for all 

devices, this methodology has no guarantee the link between 

the BS and devices is the best link in the case of the blocking of 

the direct path or high interference. 
We study the coverage probability of the proposed scheme 

compared with schemes in [5] and [11]. The coverage 
probability can be defined  as 𝑃(𝜖) = 𝑃(ℛ ≥ 𝜖), and the outage 
happens if the rate of 𝐷𝑟𝑥  falls below a certain threshold 𝜖. As 
shown in Fig. 4, The proposed mode selection scheme always 
shows a superior performance in the coverage probability 
compared with schemes in [5] and [11]. This come from, the 
proposed scheme based on smart system to take the decision on 
mode selection, select the optima mode which guarantee the 
optimal rate. In the other side, in schemes [5] and [11] is only on 
metrices that can’t guarantee the best mode for obtain the high 
performance. 



 

Fig. 3. Throughput efficiency comparisons in mode selection. 

 

Fig. 4. Energy efficiency comparisons in mode selection. 

 
Fig. 5. Coverage probability in mode selection. 

VI. CONCLUSION 

A smart mmWave communication scheme is proposed utilizing 

artificial intelligence. In which, the deep learning model is 

utilized to assist the D2D mmWave communication to 

overcome the challenges of selecting the optimal mode 

selection that guarantee the reliability of connectivity in D2D 

mmWave communication. Thus, we utilized the deep learning 

in mode selection methodology by developing mode selection 

process using deep learning to select the optimal mode to 

increase the high-reliability communication in D2D mmWave. 
We analyze the performance of the proposed scheme in the 

throughput, the energy efficiency and the coverage probability. 

The proposed D2D mmWave communication scheme obtains 

better performance than other schemes. Additionally, it can 

effectively withstand the effect of path blocking. 
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