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Abstract

This study presented a new multi-species binary coded algorithm, Mendelian Evolutionary Theory Optimization (METO),

inspired by the plant genetics. This framework mainly consists of three concepts: First, the “denaturation” of DNA’s of two

different species to produce the hybrid “offspring DNA”. Second , the Mendelian evolutionary theory of genetic inheritance,

which explains how the dominant and recessive traits appear in two successive generations. Third, the Epimuation, through

which organism resist for natural mutation. The above concepts are reconfigured in order to design the binary meta-heuristic

evolutionary search technique. Based on this framework, four evolutionary operators – 1) Flipper, 2) Pollination, 3) Breeding,

and 4) Epimutation – are created in the binary domain. In this paper, METO is compared with well-known evolutionary and

swarm optimizers 1) Binary Hybrid GA (BHGA), 2) Bio-geography Based Optimization (BBO), 3) Invasive Weed Optimization

(IWO), 4) Shuffled Frog Leap Algorithm (SFLA), 5) Teaching-Learning Based Optimization (TLBO), 6) Cuckoo Search (CS), 7)

Bat Algorithm (BA), 8) Gravitational Search Algorithm (GSA), 9) Covariance Matrix Adaptation Evolution Strategy(CMAES),

10) Differential Evolution (DE), 11) Firefly Algorithm (FA) and 12) Social Learning PSO (SLPSO). This comparison is evaluated

on 30 and 100 variables benchmark test functions, including noisy, rotated, and hybrid composite functions. Kruskal Wallis

statistical rank-based non-parametric H-test is utilized to determine the statistically significant differences between the output

distributions of the optimizer, which are the result of the 100 independent runs. The statistical analysis shows that METO is

a significantly better algorithm for complex and multi-modal problems with many local extremes.
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Abstract This study presented a new multi-species binary
coded algorithm, Mendelian Evolutionary Theory Optimiza-
tion (METO), inspired by the plant genetics. This frame-
work mainly consists of three concepts: First, the “denat-
uration” of DNA’s of two different species to produce the
hybrid “offspring DNA”. Second , the Mendelian evolution-
ary theory of genetic inheritance, which explains how the
dominant and recessive traits appear in two successive gen-
erations. Third, the Epimuation, through which organism re-
sist for natural mutation. The above concepts are reconfig-
ured in order to design the binary meta-heuristic evolution-
ary search technique. Based on this framework, four evolu-
tionary operators – 1) Flipper, 2) Pollination, 3) Breeding,
and 4) Epimutation – are created in the binary domain. In
this paper, METO is compared with well-known evolution-
ary and swarm optimizers 1) Binary Hybrid GA (BHGA),
2) Bio-geography Based Optimization (BBO), 3) Invasive
Weed Optimization (IWO), 4) Shuffled Frog Leap Algo-
rithm (SFLA), 5) Teaching-Learning Based Optimization
(TLBO), 6) Cuckoo Search (CS), 7) Bat Algorithm (BA), 8)
Gravitational Search Algorithm (GSA), 9) Covariance Ma-
trix Adaptation Evolution Strategy(CMAES), 10) Differen-
tial Evolution (DE), 11) Firefly Algorithm (FA) and 12) So-
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cial Learning PSO (SLPSO). This comparison is evaluated
on 30 and 100 variables benchmark test functions, includ-
ing noisy, rotated, and hybrid composite functions. Kruskal
Wallis statistical rank-based non-parametric H-test is uti-
lized to determine the statistically significant differences be-
tween the output distributions of the optimizer, which are
the result of the 100 independent runs. The statistical anal-
ysis shows that METO is a significantly better algorithm
for complex and multi-modal problems with many local ex-
tremes.

Keywords Mendelian evolutionary theory · rehabilitation ·
binary coded optimizer · pollination · meta-heuristic
optimization · multi species · artificial DNA

1 Introduction

Optimization plays an essential role in achieving accuracy
and increasing efficiency of systems. Under the classes of
real and binary coded schemes, the literature proposes a va-
riety of meta-heuristic population-based Evolutionary Al-
gorithms (EAs) [1–3] i.e. Genetic Algorithm (GA) [4, 5],
Memetic algorithm (MA) [6], PSO [7] etc. Although the
population-based EAs have been being widely accepted by
the researchers and industries from different fields [8]. Lit-
erature revels the limitations of meta-heuristic algorithms,
where it is hard to solve multi modal functions [9–11]. These
limitations invoke the researcher to find the better optimiza-
tion technique, which should be able to offer better results.
In this regard, this paper makes an effort to present a bet-
ter optimization technique to handle multi-modularity of the
objective functions.

Literature shows tremendous effort from nineties where
we can observe many innovations in EAs and Swarm opti-
mization techniques with their variants [12–18]. After ob-
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Table 1: Table of Acronyms, Variables, and notations

AS Anti-Sense Strand BBO Bio-geography

Based Optimization

BHGA Binary Hybrid CMAES Covariance Matrix Adaptation

Genetic Algorithm Evolution Strategy

CS Cuckoo Search DE Differential Evolution

DG Dominant genes DNA Deoxyribonucleic acid

EA Evolutionary Algorithm FA Firefly Algorithm

GSA Gravitational Search IWO Invasive Weed

Algorithm Optimization

MA Memetic algorithm METO Mendelian Evolutionary

RG Recessive genes Theory Optimization

SFLA Shuffled Frog SIA Swarm Intelligence

Leap Algorithm Algorithm

SLPSO Social Learning SS Sense Strand

Particle Swarm TLBO Teaching-Learning

Optimization Based Optimization

α maximum function β current function

evaluations evaluation

δ Flipping probability f Population of DNAs

B Cross-Breeding B best solution

C consistency χ̃2 chi-square value

d Representing DNA E Epimutation

number F Flipper

F0 Current parents’ F1 Next generation

population offspring

F2 Next to Next G Genotype domain

generation offspring g Gene

H0 Null hypothesis H Heredity

l Gene location (locus) lstart First bit of

llast last bit of µ mean

Nv Number of DNA Nb DNA bits number

O Self-Breeding p p-value

P Pollination ψ distribution median

R Phenotype domain r Population of SS

W worst result x Real variable

x̂ Binary vector to v Population of AS

real number conversion

Sub and Super Script:

F11 F1 generation 1st offspring

F12 F1 generation 2nd offspring

i, j,k species

l Lower limit of something

u Upper limit off something

n Number of chromosomes in a population

serving the computational power of population based opti-
mization algorithms in last two decades, variants of swarm
optimization [7,16], Shuffled Frog Leaping Algorithm (SFLA)
[19], Binary Hybrid GA (BHGA) [20], Biogeography-Based
Optimization (BBO) [21], Cuckoo Search (CS) [22], Bat Al-
gorithm (BA) [23], Teaching Learning Based Optimization

(TLBO) [24], and etc. have been proposed, as in survey pa-
pers and recent books [3, 12, 25–28].

Recent papers [29–31] show the comparative evaluations
of the recent meta-heuristic optimizer. To add the state-of-
the-art, we inspired from the evolution theory of plant genet-
ics based on Mendel’s inheritance law to propose a geneti-
cally evolved optimization algorithm. In this algorithm, the
evolution process takes place by interbreeding the plants of
different species [32].To design a novel Evolutionary algo-
rithm (EA), we redefine the biologically inspired metaphors
in the binary domain to implement as computer program.
Due to its binary structure, the proposed five operations:
flipping, pollination, breeding, discriminating and Epimu-
tation [33–36] have encoding and decoding techniques like
the Genetic algorithm (GA) [20], but in a different working
structure wherein the ancestors’ memory is transferred in
two consecutive generations, F1 and F2 offspring as METO
produces two generations offspring in the sequence. This
makes the METO belongs to a different class from the GA.
METO is a gradient-free method that does not require the
function differential, thus best suited for the discontinuous
and multi-modal problems as well.

The evaluative study of METO performs an analytical
comparison with twelve optimizers, including the state of
the art techniques as described briefly in Table-2. For this
several classes of benchmark test functions are considered
including noisy, rotated, and hybrid composite functions [37–
39]. The following distinctive features describe METO algo-
rithm:

(i) It is a binarily coded optimizer and explores the trans-
formed genome search space instead of real.

(ii) Mendel deduced his theory by the experimentation on
the pea plants wherein genetic information exchange
took place by breeding the plants of different species.
Based on his experiments, METO employs multiple
populations, where each population correspond to a
particular species. This is the base of METO algorithm.

(iii) Instead of producing one generation offspring in an
epoch through crossover/breeding, which is usual in
GA and evolutionary optimizers, METO produces two
consecutive generations offspring in an evolution epoch.
Inspired from Mendel’s experiments, first generation
offspring, F1, is produced by cross-breeding of F0 gen-
eration parents, and the second generation offspring,
F2, by self-breeding of the F1 generation parents.

(iv) An organism1 in the population is represented by the
complementary double strands artificial DNA.

(v) DNA of F1 generation offspring, as a result of cross-
breading, is formed by combining the opposite strands
of DNA of two parents [33]. Based on Mendel ex-
periments, breeder parents belong to the two different

1 In this paper, we interchangeably use the organism for the plant,
where a plant is biologically represented by the chromosome.
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Table 2: Optimizers for the comparison

Covariance Matrix Year: 2003 Type: EA Single population

Adaptation Evolutionary Inspiration: Covariance matrix (CM) is used to define the pairwise dependencies between the variables. Here, adaption of this matrix belongs to CMA.

Strategy (CMAES) [48,
49]

Parameter values: Number of parents(λ ) = PopulationSize/2; Parent Weights (w) =(log(λ +0.5)-log(1: λ ))/sum(log(λ +0.5)-log(1: λ ));Number of

Effective Solutions (eff)= 1/sum(w2); Step Size Control Parameters (c sigma and d sigma): sigma0= 0.3× ( xU - xL); cs=(eff+2)/(nVar+ eff + 5);

ds=1+cs+2×max(sqrt((eff-1)/(nVar + 1))-1,0); ENN=sqrt(nVar)×(1-1/(4×nVar)+1/(21×nVar2)); Here, nVar stands for number of Variables Covariance

Update Parameters: cc=(4+ nP eff/nVar)/(4+nVar+2×eff/nVar); c1=2/((nVar+1.3)2+eff); alpha nP= 2; cmu=min(1-c1, αλ×(eff-2+1/eff)/((nVar+2)2+αλ

× eff/2)); threshold for updating covariance matrix = (1.4+2/(nVar+1))×ENN;

DE with Year: 2005 Type: EA Single population

Dither technique Variant: DE/rand/1/bin, Parameters: weighting factor =interval [0.5,1.0], crossover constant = 0.9

(DED) [50] Parameter values: Lower Bound of Scaling Factor = 0.2; Upper Bound of Scaling Factor = 0.8; Crossover Probability= 0.2;

Invasive Weed Year: 2006 Type: EA Single population

colonization Inspiration: Inspired by dynamic growth of weeds

(IWO) [41] Parameter values: Maximum population size = (1+0.2)× Population Size; Minimum Number of Seeds = 0; Maximum Number of Seeds= 5;

Variance Reduction Exponent= 2; Initial Value of Standard Deviation = 0.5; Final Value of Standard Deviation = 0.001

Shuffled Frog Year: 2006 Type: MA Multiple population

Leap Algorithm Inspiration: Frog foraging behavior with mimetic algorithm concept

(SFLA) [19] Parameters: memeplex size, parents number, offspring number, step size, iteration number

Biography Based Year: 2008 Type: EA Single population

Optimization Inspiration: Biogeography; the study of the distribution of biological species through time and space

(BBO) [21]
Parameter values: Keep rate = 0.2; Emmigration Rates = linspace(1,0,PopulationSize); Immigration Rates= 1- Emmigration Rates; alpha = 0.9;
mutation probability = 0.1; sigma = 0.02×(xU - xL);

Cuckoo Search Year: 2009 Type: SIA Single population

(CS) [22, 42] Inspiration: Obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds [2]

Parameter values:Discovery rate of alien eggs/solutions = 0.25; Number of nests = Population Size; Levy exponent and coefficient β = 3/2;

σ = (γ(1+β )× sin(π×β/2)/(γ((1+β )/2)×β ×2((β −1)/2)))(1/β );

Firefly Year: 2009 Type: SIA Single population

Algorithm Inspiration: Flashing behavior of fireflies

(FA) [47] Parameter values: Light Absorption Coefficient = 1; Attraction Coefficient Base Value = 0.2; Mutation Coefficient = 0.2; Mutation Coefficient Damping

Ratio = 0.98; Uniform Mutation Range = 0.05×(VarMax-VarMin); m = 2;

Gravitational Year: 2009 Type: Metaheuristic Single population

Search Inspiration: Based on the law of gravity and the notion of mass, interactions and information exchange by gravitational force.

Algorithm (GSA) [45] Parameter values: Elitist check rate = 1; R-power = 1 (R-power in Equ. (7) in [45]) ; R-norm= 2 (R-norm in Equ. (8) in [45])

Teaching Learning Year: 2011 Type: SIA Single population

Based Optimization Inspiration: Simulates the teaching-learning process of the class room

(TLBO) [24] Parameters: Parameters free algorithm

Bat Year: 2015 Type: SIA Single population

Algorithm Inspiration: Echolocation behavior of simulated micro-bats, where automatic balance in

(BA) [23, 43, 44] exploration and exploitation of search space is by varying loudness and pulse emission rates.

Parameter values: Maximal and minimal pulse rates = 1, 0; Maximal and minimal frequencies = 1.5, 0; Maximal and minimal loudnesses = 2,1; Gamma

= 0.2+(0.9−0.2)×rand; Alpha = 0.2+(0.9−0.2)×rand; Frequency of updating the loudness and pulse emission rate = 10; Maximal and minimal

probability of habitat selection = 0.9,0.6; Maximal and minimal compensation rate for Doppler effect in echoes = 0.9,0.1; Maximal and minimal

contraction expansion coefficient = 0.9,0.1; Maximal and minimal inertia weight = 0.9,0.5. ‘rand’ is random number between 0 and 1.

Social Year: 2015 Type: SIA Single population

Learning PSO Inspiration: Social learning of particle swarms

(SLPSO) [46] Parameters values: c3 = nVar/PopulationSize×0.01

Binary Parallel Year: 2018 Type: EA Multiple population

Population Hybrid Inspiration: Extension of GA – in each evolution epoch sampling of one crossover and selection strategy is carried out from three different methods.

GA (BBHGA) [20] Parameter values: RX = randomly chosen from 1, 2, and 3 in each iteration epoch. If RX = 1 then Single point crossover, elseif RX = 2, then two-points

cross over, else for RX = 3 then Uniform crossover. RS = randomly chosen from 1,2, and 3 in each iteration epoch. If RX = 1 then Roulette Wheel

selection, elseif RX = 2 then Tournament selection, elseif RX = 3 then random selection. Mutation probability = 0.2, b = 20; crossover percentage = 0.8;

Mutation percentage = 0.9; Mutation rate = 0.02; Tournament size = 3.
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species. That is why at least two species are required
to see the Mendelian evolution in plants.

(vi) In an evolution cycle of METO, parallel transmission
of genes takes place in consecutive two generations.
First genes transmission take place from F0 to F1 and
then F1 to F2. These genes appear in the next gener-
ation or descendents and are called Dominant Genes
(DG). The second genes transmission is in alternative
generations, instead of next. These genes are recessive
genes (RG) and transmit from F0 to F2 generation.

(vii) Because recessive genes are transmitting in alternative
generations (F0 to F2, without appearing in F1), thus
subjected to the mutation multiple times over an evo-
lution cycle. It resembles the rehabilitation process of
nature in self organizing.

In the presented manuscript, Section 2 gives the biolog-
ical phenomena behind the development of the optimizer.
Section 3 presents the modeling of the biological metaphors
as operators and illustrates the proposed METO algorithm in
steps. Section 4 shows how points move in phenotype due to
operation in its genotype search space. Experimental evalua-
tion and simulation results with limitations unveiled in Sec-
tion 5. Moreover, the effect of parameters on METO perfor-
mance is discussed in the same section. Section 6 exhibits
future research scope for further advancement of METO. Fi-
nally, the conclusion is derived based on comparative results
and statistical analysis of the METO with other optimizers.

Chromosome

3’3’ 5’

5’ 3’

5’3’ 5’ 3’ 5’

5’ 3’ 5’ 3’5’ 3’

DNA(x1)DNA(x2)

DNA(xn)

DNA(x3)DNA(x4)

3’ 5’

5’ 3’

Denatured DNA strands

SS

Binary encoded SS

Binary encoded AS

Fig. 1: Each of DNAs in a chromosome corresponds to a
variable: x1,x2, . . .

2 METO: the biological inspiration

Three concepts from genetics are adopted and redefined in
order to design a meta-heuristic evolutionary search tech-
nique. It would be worth to mention here that the chromo-
some is typically the end to end lined up construction of
many DNAs, which would run millions of miles long, as
shown in Fig. 1. Following this structure of the chromo-
some, the first concept is the “denaturation and annealing
of DNA” of two breeder species2 to produce the hybrid off-

2 we interchangeably use population for species

spring as shown in Fig. 2 [33]. As a result of natural breeding
of anti-parallel strands of DNA of breeder parents are first
denatured in Sense strand (SS) and Antisense strand (AS).
Thereafter, SS of one breeder parent is annealed with the
AS of the other to form DNA of new offspring. This con-
cept can equally be applied on chromosomes for extracting
the two strands of lined up DNAs, moreover, in Fig. 1, we
can observe that 5́ the end of one DNA is connected to 3́ the
end of other DNA. In this way, multiple lined up SS DNAs
are considered as 3́− 5́ SS chromosome strand. Similarly,
lined up AS DNAs are considered as 5́− 3́ AS chromosome
strand. In the context of METO, the length of chromosome
strand depends on the number of variables Nv in the problem
space, which is equal to the number of DNAs in a chromo-
some.

Second concept is the evolutionary theory of Mendel
[54], which revels the transmission of heredity characteris-
tics from generation to generation as a result of breeding
the parents of different species. He traced the transmission
of heredity characteristics by sequential cross-breeding and
self-breeding to produce F1 and F2 offspring generations,
respectively. He came-up with the phenomena that (1) the
dominance genes appear in the successive generations off-
spring such as from F0 to F1 generation offspring and from
F1 to F2 generation offspring, and (2) the recessive genes
appear in the second generation offspring such as from F0
to F2 generation offspring. This genetic heredity transmis-
sion from generation to generation is thought the ”selfies
microbes”, coined by Dowkins in 1976 [51].

Third concept is biological Epimutation which guides
the evolution in the organism by following the cycles of
nature self-organizing behavior of sequential mutation and
rehabilitation [36, 55]. This phenomena is cemented by the
Joseph Heitman statement [55] that the Epimutation is a re-
versible phenomenon, and due to this, it results in the flex-
ibility of the organism by giving the abilities of maintains,
self-improvement, and recovery of physical strength, cogni-
tion, and mobility. In one word, it leads to the ‘rehabilita-
tion’.

A long time heredity characteristics are subjected to change
due to environmental factors, which may appear as either
good or bad. Good mutation3 is acceptable by the organism
as evolved traits, however, for bad mutation4 organism re-
sponds to recover himself. Nature has blessed the organism
by this self-healing capability through which an organism
tries to rehabilitate itself to some extent. Moreover, pollina-
tion resembles the selection of breeder plants from different
species for fertilization.

Here, we briefly explain the biological terminology and
the technical inspired equivalent tools for the sake of clarity.

3 Represented in METO by improved fitness of the heredity charac-
teristics.

4 As fitness of heredity degrades from current state.



Mendelian Evolutionary Theory Optimization Algorithm? 5

3’ 5’

5’ 3’

3’ 5’

5’ 3’

SS

AS

SS

AS

Lined up DNA of Parent j
3’ 5’

5’ 3’

AS of Parent k

SS from Parent j

Offspring j

Offspring k

SS from Parent k

AS from Parent j

5’ 3’

3’ 5’

Lined up DNA of Parent k

Annealed DNA of offspring j

Annealed DNA of offspring k

Fig. 2: Denaturing and annealing of breeder DNAs to produce the offspring

As mentioned earlier, the Mendel evolution theory came up
by breeding the parents from different species. This is the
base of METO to have multiple populations corresponding
to distinct species. Biologically, an organism or plant can
be represented by a chromosome. Each population/species
contains multiple chromosomes. A chromosome structure is
composed of multiple DNAs. In our implementation, each
DNA is made by two binary strings which together corre-
spond to an optimization variable. Each binary bit in this
string corresponds to a genes. Each chromosome is an alter-
native solution which contains all the variables of the prob-
lem under-work as DNAs.

3 METO: the implementation

In this manuscript, we have established METO algorithm
based on binary bit compositions being benefited from their
hardware-friendly operations as searches the solution in Genome
space. To implement the above described biologically in-
spired phenomena METO deploys four operators as (i) the
Flipper [33], (ii) the Pollination [34], (iii) the Breeding [52],
and (iv) the Epimutation [35, 36]. This section illustrates
the implementation of above operators. Before describing
the operators, encoding and decoding schemes are presented
here to implement the strands of the chromosome. This is the
base of METO on which all operators work.

3.1 Binary representation of the chromosome strand

In the genotype, G, representation of the plant5, each gene in
the particular strand of the chromosome, considered as lined

5 We use plant interchangeably for organism which is a more general
term.

up DNAs, corresponds to the visible appearances, for exam-
ple, height, type, size and color of the flower etc. Change
in the gene value changes the above characteristics and thus
results the movement in genome search space.

Implementation of the genotype G representation of both
lined-up DNA strands is a sequence of binary bits g[l] ∈
{0,1}, Fig. 3, where each bit is entitled for a genes and its
value for alleles. Here, l is the bit “locus” equivalent to the
position of the corresponding gene g[l] in the chromosome.
Decoded value of G refers to the genetic contribution to the
phenotype, R = f (G). A certain pattern of binary bits g[l]
in the chromosome string encompasses specific information
and decoded vale of it represents a particular point in pheno-
type space. Thus, METO requires a coding-decoding system
to represent a binary-coded string in corresponding state in
real space as shown in Fig. 3. This Figure illustrates the re-
lations of genotype representation for a particular point in
phenotype space.

In Fig. 3, the one strand of chromosome is shown to
represent variables, where each ten bits (genes) code one
variable. This figure shows the corresponding phenotype ap-
pearance of the genotype representation of two variables x1
and x2. It would be worth mentioning here that the number
of genes representing a variable in the chromosome strand is
determined according to the desired solution accuracy. For
example, in the case of two variables x1 and x2 with lower
and upper bounds, represented by subscript L and super-
script U respectively, if each contains ten genes, the lower
and upper bound of the variables are illustrated by the chro-
mosomes (0000000000,0000000000) and (1111111111,
1111111111) which respectively map to (xL

1 ,x
L
2) and (xU

1 ,x
U
2 )

in real space bounds. Between the above specified limits, all
intermediate chromosomes in G to represent points in R can
be produced by changing one or more respective bits at any
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0 1

{gi,n[l] | l = 1 to b}

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Phenotype

x1

x 2

x1,x2

Decoding and normalizing

between [0, 1]

Mapping between 

the lower and upper 

variable bounds: xL and xU

x1
Ux1

L
x2

L

x2
U

1 0 1 0 1

Genotype representation of one strand of chromosome:

DNA(x1) DNA(x2) DNA(xNv
)

1      2    3     4     5          … 9   10 …         b-1    b 

DNA corresponding to x2 variableDNA corresponding to x1 variable DNA corresponding

to Nv variable

Fig. 3: Genotype and phenotype representation of a point

locus using the mapping rule xd = xL
d +

xU
d −xL

d
2ld−1

x̂d . Where x̂d

is the decoded value of binary string and is calculated as

x̂d = ∑
ld
end

d=ld
start

2dg[d] and ld is equal to ld
end− ld

start. In the lined
up DNA strands (chromosome), the first and last bits/genes
location of each DNA strand are as:

ld
start = (d−1)×Nb +1

ld
end = (d×Nb)

(1)

For the l number of bits to represent a variable in the chro-
mosome, there are 2l possible distinct sub-strings. Thus the
accuracy error in the real search space is 1

2l [20]. However,
the usual number of bits Nb to represent a variable is calcu-
lated as Nb = min[10, round(0.1× (xU − xL))].

3.2 Population structure

R1.1∗,R1.3∗ As Mendelian theory of evolution is based on the
breeding of two species parents, the proposed algorithm is
a multi-population optimizer wherein each ith population fi
is defined as

fi =

fSS
i

fAS
i

 (2)

Following the denaturing of DNA for breeding, population
or organisms/plants fi can be represented by two sub-populations
of all sense strand (SS) and anti-sense strand (AS) respec-
tively as fSS and fAS. Each sub-population has n number or
individuals, which we interchangeability call as organisms,
plants, and chromosome (lined up DNAs) as follows:

fSS
i = {ri,n}

fAS
i = {vi,n}

(3)

Each ri,n and vi,n chromosomes strands are defined by the
lined up DNA strands as shown in Figure 1.

ri,n = [r1
i,n||r2

i,n|| · · · ||rd
i,n]

vi,n = [v1
i,n||v2

i,n|| · · · ||vd
i,n]

(4)

S
ub

 p
op

ul
at

io
n 

of
 S

S
 (
r)

 

S
ub

 p
op

ul
at

io
n 

of
 A

S
 (
v)

 

Sense strand (SS)

Antisense strand (AS)

3’ 5’

5’ 3’

0 1

SS
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0

AS

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

3’ 5’

5’ 3’

lstart lend

Denatured Lined up Strands

Encoded binary strands of chromosome

Population of a species

lstart lend

Fig. 4: Breeder Population of denatured SS and AS strands

Here || is the concatenation operator, which joins the two
DNA strands to form a lined up DNA or a chromosome, as
shown in Fig. 1 and d ∈ {1,2, · · · ,Nv}. Thus, in our binary
formulation, ri,n and vi,n chromosome strands are the com-
position of binary bits of length b = Nb×Nv and defined as:

ri,n = {gr
i,n[l] = {0,1} | l = 1,2, ...,b}

vi,n = {gv
i,n[l] = {0,1} | l = 1,2, ...,b}

(5)

Here Nv and Nb represent the number of variables/DNAs and
number of bits to represent a variable, respectively. The bi-
nary value of each gene gr

i,n[l] is randomly initialized either
0 or 1 and then evolved by the proposed algorithm. First and
last bits of the strands are respectively represented by lstart
and lend and are assigned as per the the double strand struc-
ture of DNA in Fig. 1 and 4 as follows:

gr
i,n[lstart]←− 3́ gr

i,n[lend]←− 5́

gv
i,n[lstart]←− 5́ gv

i,n[lend]←− 3́
(6)

In above formulation, dth anti-sense strand (AS) is op-
posite composition of corresponding SS. It is defined by the
Flipper operator F as shown in Fig. 4. Section-3.4.1 defines
F operator in detail.

vNv
i,n = F (rNv

i,n) (7)

In the experiment, Mendel traced the heredity transmission
in two successive generations, which are F1 and F2, where
current parent population is F0. Produced offspring in F1
generation are the result of cross-breeding of F0 genera-
tion parents , where two parents breeder are from differ-
ent species. F2 generation offspring are produced by the
self-breeding, where one parent breeds by itself and reces-
sive heredity H appears in offspring. The nth strand of fSS

k
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F1-generation 
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F2-generation 
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Heredity
Transmission

Fig. 5: Illustration of production of F1 and F2 generation
offspring and new population

breeds with nth strand of fAS
j to produce F1 generation off-

spring strand rF1
k,n for kth species (see Fig. 5). The populations

in an evolution epoch are defined as

fF0
j → fF1

j → fF2
j → fnew

j

fF0
k → fF1

k → fF2
k → fnew

k

(8)

Here, |fF1
j | ≤ |fF0

j | and |fF2
j | ≤ |fF1

j | where |.| indicates
the size of population. Due to following the elitism, best in-
dividuals are selected to breed the offspring, thus, new off-
spring contains the less number of genes but from the best
characteristic of parents. Note besides the above inequality,
the resultant population size of the epoch fnew

j is acquired
in a way to be same size as fF0

j size by acquiring the SS
strands of fnew

j and fnew
k population as follows

rnew
j,n = best{rF0

j,n ∈ fF0
j , rF1

j,n ∈ fF1
j , rF2

j,n ∈ fF2
j }

rnew
k,n = best{rF0

k,n ∈ fF0
k , rF1

k,n ∈ fF1
k , rF2

k,n ∈ fF2
k }

(9)

where rnew
j,n and rnew

k,n ∈ fnew
j . Note that the developed algo-

rithm is based on heredity transfer from one generation to
the next. This heredity can only be transferred through the
parents to the successive offspring. Thus the parents are sub-
jected to change by evolved offspring of the same location.
In other words, nth location parent is changed only by the nth

location offspring. In this manner, the heredity of nth parent
transmits to the corresponding offspring properly. The re-
sulting new parent population for ith species fnew

i is as fol-
lows:

fnew
i =

 rnew
i

F (rnew
i )

 (10)

3.3 Construction of heredity

This section illustrates the construction of recessive genes
(RG), which is an important part of the algorithm. Accord-
ing to the Mendelian evolution theory, heredity transmits

5’

3’

AS

3’

SS

AS

RG3’

5’

5’

Fig. 6: Heredity evolution by elite selection

from generation to the next. According to his theory, two
types of heredity exist; Dominant Genes (DG) and Reces-
sive Genes (RG). DG appear in the F1 generation offspring,
and RG are intended to appear in the F2 generation off-
spring. Thus, we retain RG as the heredity R, to be available
for F2 generation offspring. Fig. 6 shows the construction
of heredity genes, H by the elit selection of genes from one
generation to next.

After cross-breeding, two breeder parents r j,n and vk,n
have their own recessive heredity information. Since we are
developing an evolutionary algorithm, thus always best fit-
ness genes are intended to pass to the next generation – im-
plicit elitism property [53]. This process is a elite selection
of heredity and accomplished by three comparators C j, C j,k, and C
as shown in Fig. 6. C j selects the best from [r j,n,v j,n] based
on their fitness. The output is then compared with vk,n using
the comparator C j, which provides the best heredity from
[r j,n,v j,n,vk,n]. The output goes to the comparator C for com-
parison with the reference old heredity H old

j,n . Then the final
selected heredity H j,n is available for the nth F2 generation
offspring of jth species. Similarly, Hk,n is produced for the
nth F2 generation offspring of kth species.

H j,n← best[r j,n,v j,n,vk,n,H
old
j,n ]

Hk,n← best[rk,n,vk,n,v j,n,H old
k,n ]

(11)

3.4 Basic operators

METO ensembles biologically inspired phenomena in the
form of four operators to accomplish the four different tasks
as described in this section.

3.4.1 Flipper operator (F )

In the way of creating AS from SS, Flipper operator, vi,n =

F (ri,n), is introduced which reverse the order of bits in SS,
see Fig. 4. It is inspired from the natural representation of
double strand DNA structure, where, AS strand and SS strand
are opposite in nature and respectively represented by 5́–3́



8 N. Gupta, M. Khosravy, N. Patel, N. Dey, O.P. Mahela

Algorithm 1 Producing AS using Flipper Operator

Require: ri, SS offspring sub-population of ith species, Nv and Nb are
respectively number of variables and associated number of bits to
form a DNA, N is number of individuals in i-th species, δNb , δNv

are the bits flipping rate and DNAs selection rate for flipping, re-
spectively.

1: function FLIPPER(ri,Nv,Nb,δNb ,δNv )
2: vi← ri . Copy template from heredity
3: Fi← zeros(size(vi)) . Initialize the flipped strands
4: δNv ← drand∗Nve . Number of DNAs for flipping
5: d← Randomly choose δNv DNAs from Nv DNAs
6: for n← 1 to size of sub-population ri do
7: for ∀ i ∈ d do
8: ld ← (i−1)Nb +1 to i∗Nb) . DNA bits
9: for ∀ l ∈ ld do

10: δNb ←random number between 0 and 1
11: if δNb ≤ δ then . δ is from equation (14)
12: vi(n, l)←F (ri(n, l))) . equation(12)
13: end if
14: end for
15: end for
16: end for
17: return vi
18: end function

and 3́–5́, as in Fig. 2 and 4: Gene gv
i,n[l] ∈ vi,n at location l is

obtained by Flipper operator F (.) and is defined to reverses
the order of gr

i,n[l] bits as:

gv
i,n[l] = F (gr

i,n[l]) = gr
i,n[l̂] (12)

To introduce the stochastic nature in the Flipper operator,
a Binary variable X ∈ {0,1} is defined, based on which the
equation (12) puts the l̂ = |lend×(1−X)− l+1−X | location
bit to l position, where |.| denotes absolute value. If X = 1,
the bits do not flip due to |l̂|= l, while X = 0, l̂ = lend− l +
1 which results in flipping the bits. Thus, in equation (12),
only those bits of F (ri,n) will be flipped, for which |l̂| 6= l.

Flipper operator is essential in initial evolution epochs
of the algorithm since it tries to explore the maximum prob-
lem space and reduces the risk of being trapped at premature
convergence or local extremes. In the long run, this affects
the solution accuracy and oppose the exploitation concept,
thus need to control as evolution epochs grow. Thus, flipping
probability δ is introduced as a control mechanism which
controls the binary variable X as in equation (12):

X =

{
0 : if δNb ≤ δ

1 : otherwise,
(13)

δNb is a randomly generated number, and δ is the function
of maximum number of maximum function evaluations (α)
and the current function evaluation (β ). It is defined as an
exponentially decreasing function:

δ =max[0.1, min[0.7, (1.1− 0.1
Nb

)×exp(−(3+ 1
Nb

)× β

α
)]]

(14)

Moreover, inspired from the error in DNA replication,
we introduced the mechanism where Flipper operator ap-
plied on the selected DNA from Nv DNAs as per equation
(15). Candidate DNSs are selected randomly by the factor
δNb .

δNb = Nv×dNv ∗ rande (15)

where d.e is the ceiling operation. To control the search
strategy, Flipper operator is applied on selected DNAs δNv

out of Nv in the chromosome strand, based on the random
number rand ∈ [0,1]. Pseudocode for producing AS by Flip-
per operation is given in Algorithm 1.

3.4.2 Pollination operator

In the METO algorithm, two pollination schemes are used
in sequence as called here random and sequential. First, the
random pollination randomly picks the two breeder species/population
from multiple even number of species as f j and fk. Then,
in sequential pollination, each individual of f j is paired in
bijection with an individual of fk at the same order.

[f j,fk] j 6=k = P(f) f= {fi | i = 1,2, · · · ,M} (16)

where, f is set of all populations, P(.) is pollination op-
erator, and M is the number of species. One can notice that
two selected populations j and k are not equal. Sequential
pollination is the simplistic one, which can be extended to
the other pollination schemes such as Roulette Wheel, Tour-
nament and etc. [16].

3.4.3 Breeding operators

To implement the Mendelian theory, two breeding operators
Cross-breeding and Self-breeding are defined to produce the
two successive generations, F1 and F2, offspring, respec-
tively. The definition of both breeding operators are as fol-
lows:

Cross-breeding

To produce the n-th F1 generation offspring, breeder parents
chromosome strands r j,n and vk,n are selected from different
species j and k, using pollination operator. Cross-breeding
operator B(.) produces the SS for the species correspond-
ing to r j,n, where the corresponding AS for the same species
is constructed by F (.) operator. AS is treated as a support-
ing strand to produce SS, because in genetics, SS is coding
strand. Operator B(.) produces twin SS offspring[

rF11
j,n ,rF12

j,n
]
= B(r j,n,vk,n) (17)[

vF11
j,n , vF12

j,n
]
=
[
F (rF11

j,n ),F (rF12
j,n )
]

(18)

fF11
j,n =

[
rF11

j,n ,vF11
j,n
]T

: fF12
j,n =

[
rF12

j,n ,vF12
j,n
]T

(19)
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Algorithm 2 F1 generation offspring

Require: r j and vk are the set of Sense and Anti-sense strands of different species jth and kth, respectively; Nv and Nb are respectively number of
variable and number of bits to represent each variable

1: function F1-OFFSPRING(r j,vk,Nv,Nb)
2: p← size of sub-population r j . number of plants available for cross-breeding, where size of r j = size of vk
3: r11← r j . initializing first offspring with the genes of r j
4: r12← r j . initializing second offspring with the genes of r j
5: f 1← false Boolean matrix of dimension p× (Nv×Nb)
6: for j← p do
7: d← randomly select dNv× rande variables from Nv
8: for ∀i ∈ d do . for all elements in vector d
9: ld ← (i−1)Nb +1 to i∗Nb . Nb bits corresponding to ith variable or DNA strand in biological term

10: f 1( j, ld)← true . Change all Nb bits associated with ith variable to 0
11:
12: end for
13: end for
14: f 2←¬ f 1 . Boolean matrix f 2 and f 1 have opposite bits at the same place
15: r11( f 1)← vk( f 1) . transferring genes of vk to 1st offspring
16: r12( f 2)← vk( f 2) . transferring genes of vk to 2nd offspring
17: return r11,r12 . Twin offspring
18: end function

Algorithm 3 F2 generation offspring

Require: F1, F1 generation offspring; H , heredity; fH , fitness of H ; fF1 , fitness of F1 ; ρL, and ρU , lower and upper limit of Mendelian
probability ρ , respectively

1: function F2-OFFSPRING(F1, H , fH , fF1 ρL, ρU )
2: [s1,s2]← size of F1 . Subscript ’1’ and ’2’ represents respectively for dimension 1 and dimension 2
3: F2← false(s1,s2) . Initialization of the F2 generation offspring of size F1
4: for i← s1 do
5: F ← chromosomes from F1, for which IH = 1
6: H← all chromosomes from H , for which IH = 1
7: I← false(1,s1) . Initialization of another logical index to represent genes/bits
8: B← (F 6= H) . True value ‘1’ in B represents that corresponding bits in chromosome F and H, which are not equal
9: s← sum of all true values in B

10: r← generate random numbers between [0,1]1×s
11: ρ ← generate random numbers between[ρL,ρU ]1×s
12: I(Bn)← [r < ρ]
13: r← (sum of “true” in all rows of I)> 0 . 1 in r Boolean vector is representing updated individual
14: if fH (i)< fF1 (i) then . Heredity is dominating on the current F1 generation genes
15: F(I)← H(I) . Transfer heredity Because they are better than the F1 generation offspring genes
16: F2(i, :)← F . Place new offspring in F2 population
17: end if
18: if fF1 (i)< fH (i) then
19: H(I)← F(I) . Heredity genes are not dominating well due to weaker fitness than F1 offspring genes
20: F2(i, :)← H . Place new offspring in F2 population
21: end if
22: if fH (i) == fF1 (i) then
23: production of F2 generation offspring is void for ith F1 generation offspring, because of same fitness of genes.
24: end if
25: end forF2← remove all chromosomes from F2 population which have all bits = ‘0’
26: return F2
27: end function

Following the stochastic approach for selecting the domi-
nant genes from two breeder parents r j,n and vk,n, natural se-
lection is adopted. A variable y is defined for cross-breeding,
where it has d elements. Each element in y may have either
1 or 0 as per the generated random number γ in the range of
[0,1]:

y[d] =

{
1 γ ≥ 0.5
0 otherwise,

(20)

Twin offspring SS chromosomes are then generated by the
following equations:
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rF11
j,n [ld

start : ld
end] =

{
r j,n[ld

start : ld
end] y[d] = 1

vk,n[ld
start : ld

end] otherwise,
(21)

rF12
j,n [ld

start : ld
end] =

{
vk,n[ld

start : ld
end] y[d] = 1

r j,n[ld
start : ld

end] otherwise,
(22)

From the twin offspring, we select best of them, based
on their fitness, as the resulting F1 generation offspring SS.

rF1
j,n = best[rF11

j,n ,rF12
j,n ] (23)

However, multiple offspring sense strands can be produced
as shown in Fig. 7. Both twin SS offspring [rF11

j,n , rF12
j,n ] is

composed of dominant genes either from r j,n or vk,n based
on natural selection.

In a similar manner, the offspring are produced for Sk
species where sense and anti-sense parents chromosomes
are respectively rk,n and v j,n. For generating multiple twin
offspring, the common genes can be obtained in advance us-
ing XNOR logical process, and for the remaining locus of
the genes, the above equation is used. In the case of very
long chromosomes, this can help to decrease the time com-
plexity for producing multiple offspring.

XNOR(r j,n,vk,n) = r j,n[l]∧ vk,n[l]+ r̄ j,n[l]∧ v̄k,n[l], (24)

where .̄ indicates the complement of the bit. Transfer of
common characteristics has been shown in Fig. 7, where
gray genes show the common ones at 3rd and 4th locus as a
result of XNOR operator, where others are undefined genes
and represented by allele value X .

Self-breeding

The self-breeding operator O breeds the SS strands of off-
spring generated in F1 generation with itself to produce the
F2 offspring SS for jth species. This is the process which

1 0 0 0 1 0

0 1 0 0 0 1

X=1 X=1 0 0 X=0 X=1

nth offspring of F1

Generation 

SS of Parent j

Dominated Allele at 3rd and 4th Locus

X=? X=? 0 0 X=? X=? 1st offspring of F1 Generation 

2nd offspring of F1 Generation 

Nth offspring of F1 Generation 

pP2
cp > 0.5

0

1

X=?

X=? X=? 0 0 X=? X=? X=?

X=? X=? 0 0 X=? X=? X=?

X=0

pP1
cp > 0.5

Assignment of other alleles except 3rd and 4th locus

X = f(    )

If f(     ) = Head
then 
select Parent j gene
else
Select Parent k gene

AS of Parent k

Production of Multiple offspring

Fig. 7: Illustration of production of F1 generation offspring

1 0 0 0 1 1 0 1 1 0 1 0

pT = f(ρ)

Global Best Until the current Generation

1 0 0 0 1 1

F1 Generation Offspring

pF = 1 - pT

F2 Generation Offspring

T

T

T

T

T

T

F

F

F

F
F

F

S1

S2

S3

S4

S5

S6

Recessive genes

X = Si(    ) =
F
T

Fig. 8: Illustration of production of F2 generation offspring

makes dominant the recessive heredity H j,n with Mendelian
probability ρ in the offspring.

rF2
j,n = O(rF1

j,n,r
F1
j,n) (25)

RG dominates in F2 offspring by replacing the same lo-
cus genes of F1 generation offspring If the fitness of RG is
better than F1 generation offspring, which is parent for F2
generation offspring. On the other hand if fitness of RG is
not better than F1 generation offspring, then genes of F1
generation offspring will be dominating in F2 generation
offspring. It is controlled by the random number ρ in the
range of [ρL,ρU ]. Generally, ρL = 0.9 and ρU = 0.97 are
selected. The effect of different values of ρ on the search
strategy is discussed in the Section 11 and in Fig. 4.

O(rF1
j,n,r

F1
j,n) =

{
rF2

j,n[l]←R j,n[l] : if ρL ≤ ρ ≤ ρU

rF2
j,n[l]← rF1

j,n[l] : otherwise
(26)

Similarly, rF2
k,n[l] for k species are produced by O(rF1

k,n,r
F1
k,n)

as in equation 26. Offspring in F2 generation is denoted as
fF2, where AS strand is generated by the Flipper operator
F . Thus, the population of F2 generation offspring for j
and k species are as

fF12
j =

[
rF2

j ,vF2
j

]T
fF12

k =
[
rF2

k ,vF2
k

]T
(27)

Pseudocode for producing F2 generation offspring is given
in Algorithm-3. It would be interesting to observe that in
line number 14 and 18 of Algorithm-3 that if heredity fit-
ness of the F1 generation offspring is better then heredity is
transferred to produce F2 generation offspring. On the other
hand, If fitness of F1 generation offspring is better than its
heredity, then F1 offspring genes dominated to produce F2
generation offspring. This transfer of genes to the F2 gener-
ation offspring is based on the ρ , the Mendelian probability.
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Algorithm 4 Epimutation in Heredity

Require: H , the set of heredity of all N organism in a species; τL,τU , Lower and Upper Limits of the mutation probability; ζ , the mutation rate
for selecting individuals for mutation from the population, τNv , DNAs mutation rate, Nv, Nb

1: function EPIMUTATION(H ,τL,τU ,τNv ,ζ ,Nv,Nb)
2: s←H . Copy binary heredity H vector of dimension N× (NvNb) to the variable s
3: ξ ← 0 . initializing counter for rehabilitation attempts
4: index← 0 . This contains indexes of all organisms who have evolved after going through the mutation attempt
5: while (¬empty(ζ ) && ξ < 1) do index =[]; . index for evolved hereditary from all due to mutation
6: for i← ξ do . Do the process inside the loop for i = each element of ζ

7: m← dτNv ×Nve . Number of heredity DNA strands for evolution
8: u← Selected m DNAs form Nn . Each element of u is an index and represents a selected DNA strand
9: for j← u do . Do the process inside the loop for j =each element of u

10: b← ( j−1)Nb +1 to j ∗Nb) . DNA strand bits from a chromosome, it selects Nb bits according to j value
11: d← generate a random vector of length 1×Nb between [τL,τU ]
12: r1← generate a random vector of length 1×Nb between 0 and 1
13: d← (r1 < d) . 1 in left side Logic vector d, shows that associated bit should mutate: 0⇐⇒ 1
14: s(i,b)← XOR(s(i,b),d) . XOR mutates the bits of heredity DNA strand as per the 1s in d
15: end for
16: Fs← Calculate Fitness of s̄(i) . Element of s̄(i) are the binary-to-decimal conversion of binary DNA strand of s(i)
17: if Fs ≤ FR(i) then . FR(i) is the fitness of H (i) heredity strands
18: H (i)← s(i) . Replace existing heredity by evolved heredity
19: index = [index, i] . Store the index of all evolved heredity strands
20: end if
21: end for
22: D← remove(D, index) . remove evolved organism from the D
23: if isempty(index) then
24: ξ ← ξ +1 . increase the termination counter by 1, if no organism is evolved
25: end if
26: end while
27: return H . Output is the evolved heredity
28: end function

Fig. 9: The Epimutation process

3.4.4 Epimutation operator

Fig. 9 shows the Epimutation process of the heredity of an
organism where the five states of the organism are shown
as p1 p2, p3, p4 and p5. Here p1 is the current state of the
organism, and others are the results of Epimutation. p2, p3,
and p4 states are not better than the current state; thus organ-
ism returns back to its original state p1 by a rehabilitation
process. But, mutated state p5 is better than the current state;
thus, in this case, the organism accepts it as evolution. This
mechanism is Epimutation and tries to find the better state
of the pseudo-global optima, and we call it – fine-tuning –

of the global best point by iterative mutations followed by
rehabilitation. We define Epimutation factor ξ , which gives
the number of chances to the organism to go through the
mutation in their life cycle. Here, the organism took four at-
tempts to get a better solution, thus ξ = 4.

H ← E (H ) = E (gH [l]) (28)

E operator changes the genes value of heredity gH [l] based
on the randomly generated Epimutation factor τ . For each
gene, if τ lies between the lower and upper limits then the
corresponding gene will be changed according to the equa-
tion below

gH [l] =

{
1−gH [l] : if τL ≤ τ ≤ τU

gH [l] : otherwise,
(29)

The lower and upper limits of τ is calculated as follows:

τL = max
[

1
N2

b
,min

(
0.2, (0.3− 1

Nb
)exp(−

(
4+ 1

Nb
) β

α

))]
τU = max

[
1

Nb
,min

(
0.3, (0.5− 2

Nb
)exp(−

(
2+ 3

Nb
) β

α

))] (30)

It is worth to note that heredity is used to produce the F2
generation offspring from self-breeding of F1 generation
parent. Thus only those heredity are subjected to Epimutaion
which are associated with F1 generation parents, intended to
self-breed.
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Algorithm 5 METO Algorithm
Require: M is the number of species, Nv, Nb, N is the number of individuals, TerminationCriteria, CostFunction

. Iter, feval, solution accuracy are the general TerminationCriteria and Fitness if calculated based on CostFunction
for j← 1 to M do . p←M×d N

M e, each M species contains p organism/plants/individuals/DNAs
f( j).r← Initialize SS population randomly
f( j).v← FLIPPER

(
f( j).r(n),Nv,Nb,N,δNb ,δNv

)
. F operator to produce AS strand with δNb = δNv = 1

f( j).H ← best of [f( j).r,f( j).v] . Heredity formation, taking best of SS and AS strands based on fitness
Sbest( j)← best off( j).H . Taking best heredity of all species, Species best (Sbest )
end for
Gbest(1)← best of Sbest . Taking best heredity from all species, Global best (Gbest )

i← 2,ρL← 0.9, ρU ← 0.97 . i is evolution epoch counter for while loop
while until termination criteria met do

for j← 1 to M do
k← select another species based on random pollination

δNb ,τ
U and τL← based on equation (14) and (30), respectively

δNv andτNv ← generate a random number between [0,1]
∇F1←max[0.3,rand] . Initialize cross-breeding rate that how many organisms/plants are ready for cross-breeding
∇F2←max[0.6,rand] . Self-breeding rate: It is to select the parents organisms/plants from F1 generation for self-breeding
EF1← index of best pF1 strands from population f( j).r . Implicit Elitism: organisms for cross-breeding: pF1← dp×∇F1e
f( j).H (EF1)← best[f(k).v(EF1), f( j).H (EF1)] . Due to cross-breeding heredity of two species are evolving
ξ ← EF2← index of best (pF2) strands from the F1 population . For self-breeding and Epimutation, EF2 ⊆ EF1 : pF2← d|pF1|×∇F2e rF1←
Select ∇F1 SS strands from f( j).r(EF1)
vF1← Select ∇F1 AS strands from f(k).v(EF1)
[f1F1,f2F1]← F1-OFFSPRING(rF1,vF1,Nv,Nb)
F1← best[f1F1, f2F1] . Best of two offspring from the same parents are selected based on their fitness
[f( j).r(EF1)← F1] and [f( j).H (EF1)← F1] . Replace SS strands and heredity at positions EF1 in main population
Iv← d|pF1|× rande . rand is the randomly generated number: Iv ⊆ EF1
vF1← FLIPPER(F1(Iv),Nv,Nb,δNb ,δNv ) . producing AS strands of F1 generation SS on Iv position
f( j).H (Iv)← best[f( j).H (Iv), vF1] . Replace Iv positioned heredity
sH ← Select ξ organism’s heredity from f( j).H for Epimutation before self-breeding
f( j).H (ξ )←EPIMUTATION(sH ,τL,τU ,τNv ,ξ ,Nv,Nb) . This process evolve the heredity of organisms on place ξ

rF2← Select ∇F2 strands from rF1
fF2← F2-OFFSPRING(rF2,f( j).H (ξ ),ρL,ρU )
f( j).r(EF2)← best[f( j).r(EF2), fF2] . replace parents in main population, if F2 generation offspring fitness is better
Iv← d|pF2|× rande . rand is the randomly generated number: Iv ⊆ EF2
vF2← FLIPPER(F2(Iv),Nv,Nb,δNb ,δNv ) . Produce AS strands of F2 generation offspring on Iv position
f( j).H (Iv)← best[f( j).H (Iv), vF1] . Replace Iv positioned heredity
v← sort([f( j).v; vF1; vF2]) . Concatenate and sort the AS strands based on their Fitness
f( j).v← First best p AS strands of v
Sbest( j)← best[f( j).H ] . Taking best heredity of all species, Species best (Sbest )

end for
Gbest(i)← best[Sbest ] . Taking best heredity from all species, Global best (Gbest )

if (Gbest(i))≥ (Gbest(i−1)) then . Comparison is based on the Fitness
Gbest(i)← Gbest(i−1)

end if
Terminate if one of the termination criteria met

i← i+1
end while
return Gbest . In this algorithm, Fitness is calculated for each new strand for the given CostFunction(x)

. Each sub-segment of binary strand in Genotype representation G, representing a variable, is converted in its equivalent real domain (R)
before placing in CostFunction(x); G(r)−→ R(x)

Epimutation is the self-organization mechanism, in which
an organism self-adjust them-self against the environmental
mutation via a rehabilitation process. Selfies microbes pre-
serve the recessive genes and carry them from generation to
generation. Here, we assumed that heredity RG undergoes
the mutation process multiple times over the plant life cycle.
If it gains a better mutation, adapts it as evolution process;
otherwise, the organism rehabilitate them-self to the former
situation. Epimutation – rehabilitation against mutation pro-
cess – is shown in Algorithm 4 as a function.

3.5 METO algorithm

A block diagram of the processes in one evolution of the
METO is presented in Fig. 10. Here, we can observe two
parallel processes of evolution, the inner and the outer. The
inner process ensembles the interactions of pollination, cross-
breeding, self-breeding, and flipper operators to produce two
successive generation offspring. Although, outer process deals
with the heredity formation and its Epimutation operation,
which is used to produce F2 generation offspring by self-
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Fig. 10: Block diagram of the processes in an evolution

breeding. Flipped strands are resembling v population. The
best solution acquired by each individual forms the corre-
sponding heredity. In each evolution epoch, each species has
its own best solution, which is Sbest. At the last of evolution
epoch, best of all species is extracted to form the “Global
Pseudo-best (Gbest)”. The term “pseudo” comes from the
fact that the solutions improve their merit in being closer
to the global optimal solution at each evolution. Algorithm
5 presents the pseudocode of METO as it deploys the above
described four operations in the sequence. It would be worth
to mention again that the current heredity is replaced with
strands of F1 and F2, if they are better than current RG.
METO concludes the solution, once, one of the following
termination criteria met: 1) Maximum number of iterations,
2) Individuals of all species have the same heredity and not
changing in N iterations, 3) The same answer is coming in
each successive iteration for m times, and 4) If the error is
below 10−5 or a desired value.

4 Movement of points

This section presents the role of different operators for move-
ment of the points in hyperspace as a result of evolution.
Flipper operation provides a stochastic search strategy which
eliminates the effect of biases and prevents the optimizer
from premature convergence or trapping at local minima.
Effect of this operation can be seen in Fig. 11(a), where flip-
ping the SS of DNA results in AS which spreads the points
represented by S far in the search space. This operation re-
sults in an unbiased search strategy, which is very impor-
tant for multi-modal problems as the global search strategy.
It prevents the search to be trapped at local extremes. Dis-
tracted search from the above process is again aligned in
F1 and F2 generation offspring. Due to cross-breeding F1
generation offspring explores the hyperspace surrounded by
the two parents. As a result of F1 generation operation, the
movement of points can be observed in Fig. 11(b). We can
see that the new offspring are produced between two parents
or the region specified by them. It shows that F1 generation

offspring are influenced by their parents only and not influ-
enced by ancestor characteristics. Here, it is worth to notice
that the number of multiple offspring productions is a con-
trol variable which may vary based on the complexity of the
problem to be solved.

Although self-breeding use heredity memory based on
the Mendelian probability, this is the second operation, which
makes the METO different from the GA procedures, where
GA does not utilize heredity memory. However, few pa-
pers suggest the GA with implicit memory [58] to save the
chromosome efficiently in the computer memory. This can
be used with METO as well for improving computational
power for large variables. Self-breeding operation pulls back
the points towards the region of interest in search space.
In the successive generation, heredity memory provides a
biasing mechanism to produce the F2 generation offspring
as a neighbor of already found best solution. This is the
pull mechanism which attracts the points towards pseudo
best solution acquired by this organism. The quantity of re-
cessive heredity to transmit in F2 generation offspring de-
pends on Mendelian probability ρ , which ranges from τL to
τU . This provides local exploitation of the neighbor points
of the pseudo-global solution, which can be seen in Fig.
11(c)–(f) for different values of ρ . We can observe that for
higher ρ most of the points converge to the pseudo best
point, where low value provides random location selection
strategy. Thus the optimal selection of ρ can make the pro-
posed optimizer better. This mechanism is backed by the
Epi-mutation, which is in the result of the organism’s sur-
vival instincts.

5 Experimental Evaluation: Benchmarking METO

In this section, experimental evaluation has been portraited
to benchmark the METO. For this, we utilize some com-
plex test functions which belong to the different categories
of complexity. Details of experimental benchmark test func-
tions are given in many publications, books, and online [37–
39]. These benchmark functions belong to the different cate-
gories such as continuous, discrete, analytical, non-analytical,
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Fig. 11: Movement of points in an evolution

separable, non-separable, rotated-shifted, composite, and hy-
brid functions as in Table - 3 and 4. Simulation outcomes
and statistical results are collected over 100 independent runs
on the 30 and 100 variables problems. Simulation results
also assist us in setting the limitations of METO algorithm
and its parameters to get better performance. Functions F1–
F20, F81 are multi-modal with many extremes test func-
tions. F21 is deceptive function, F21–F23, and F70 are in-
tegrated functions, F19 is with many global solutions, F58–
F67, F83 are Noisy functions, F68 is a constrained function,
F34-F37 is rotated-shifted functions, F39–40 are the non-
continuous functions, F41–F49 are the Hybrid and compos-
ite functions as described in [38].

According to the literature, many local minima functions
with single global optima are hard to solve in more than
twenty dimensions, where the present algorithms show some
limitations. It gives motivation to the researchers for design-
ing a better optimizer. Following the motivation, here, we
focus on solving the above class of functions regarding im-
proving the consistency with better results.

We simulate the thirty and hundred variables bench-marking
test problems with twelve different prominent class of evo-
lutionary and swarm optimizers, as shown in Table - 2. Al-
though we have tested it with more algorithms and on more

bench-mark functions, which we can provide on the demand
of readers. In the limited version of the manuscript, we present
some useful results to support the METO’s outperformance
over other algorithms. The parameters of all the optimizer
are also given in Table-2. Optimal parameters of all opti-
mizer are adopted from their corresponding papers. [19–24,
45–50] Each optimizer had a population size of 100 and
run for 100000 function evaluations. 100 individual runs of
each optimizer are carried out on each benchmark function
to get comparative performance. Based on the output in 100
runs, three statistical measures are calculated to show the ef-
ficiency of all above optimizers. First one is the average µ of
best values, which is the sum of all the final values divided
by the number of runs. Second is the standard deviation σ of
the achieved solution in all iterations to show the spread of
the obtained results. The last attribute gives the robustness
and consistency C of the algorithms, which is in percentage
and represents the number of times the optimizer provides
solution below a particular threshold value, here we selected
mean of the METO is as the threshold for all optimizers.
Moreover best B and worst W value highlights the best and
worst possible performance of all optimizer. For compari-
son, the METO has the following parameters configuration,
i.e., number of species equal to 2 with 50 number of individ-
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Table 3: Test Benchmark Functions

. Test Functions Equations Range

F1 Inverted Cosine Wave f (X) =−∑
n−1
i=1 e

(
−
(
x2

i + x2
i+1 +0.5xixi+1

)
8

)
cos
(

4×
√

x2
i + x2

i+1 +0.5xixi+1

)
± 5

F2 Rastrigin f (x,y) = 10n+∑
n
i=1(x

2
i −10cos(2πxi)) ±-5.125

F3 Gen. Schwefel 226 f (x) =−∑
n
i=1

[
xi sin

(√
|xi|
)]

± 500

F4 Wavy f (x) = 1
n ∑

n
i=1 1− cos(10xi)e−

1
2 x2

i ± \pi

F5 Dropwave f (X) =−∑
n−1
i=1

1+cos

(
12
√

x2
i + x2

i+1

)
1
2
(
x2

i + x2
i+1
)
+2

± 5.125

F6 LangMann f (X) = ∑
m
i=1 ci exp

(
− 1

π ∑
n
j=1
(
x j−Ai j

)2

)
cos
(

π ∑
n
j=1
(
x j−Ai j

)2
)

[0, 10]

F7 Luniacek Bi Rastrigin

f (X) = min

[
∑

n
i=1 (xi−µ1)

2 , d ·n+ s ·∑n
i=1 (xi−µ2)

2

]
+10∑

n
i=1

{
1− cos [2π (xi−µ1)]

}

µ1 = 2.5, µ2 =−

√
µ

2
1 −d

s
d ∈ {1,2,3,4} and s is any value between 0.2 and 1.4 as described in [1***]

± 5.125

F8 Suharev-Zilinskas f (x) = ∑
n
i=1 ∑

5
j=1 jsin(( j+1)xi + j) ± 10

F9 Shubert4 f (x) = ∑
n
i=1 ∑

5
j=1 jcos(( j+1)xi + j) ± 10

F10 Ext. Bird f (x,y) = ∑
n−1
i=1

(
sin(xi)e(1−cos(xi+1))

2
+ cos(xi+1)e(1−sin(xi))

2
+(xi− xi+1)

2

)
± 10

F11 Periodic f (x) = f (x1...xn) = 1+∑
n
i=1 sin2(xi)−0.1e(∑

n
i=1 x2

i ) [-5, 10]

F12 Ext. Gramacy Lee f (X) = ∑
n
i=1

(
sin(10πxi)

2xi
+(xi−1)4

)
[-0.5, 2.5]

F13 Schaffer6 f (X) = 0.5+∑
n−1
i=1

(
sin2

(√
x2

i + x2
i+1

)
−0.5

[1+0.001(x2
i +x2

i+1)]
2

)
± 100

F14 Schaffer2 f (X) = 0.5+∑
n−1
i=1

(
sin2

(
x2

i − x2
i+1

)
−0.5

[1+0.001(x2
i +x2

i+1)]
2

)
± 100

F15 Schaffer4 f (X) = 0.5+∑
n−1
i=1

(
cos
(

sin
(
|x2

i − x2
i+1|

))
−0.5

[1+0.001(x2
i +x2

i+1)]
2

)
± 100

F16 Deb01 f (X) =− 1
n ∑

n
i=1 sin6 (5πxi) [-1, 1]

F17 Eggholder f (X) = ∑
n−1
i=1

[
−xi sin

(√
|xi− xi+1−47|

)
− (xi+1 +47)sin

(√
|0.5xi + xi+1 +47|

)]
± 512

F18 Deceptive

f (X) =

[
1
n ∑

n
i=1 gi(xi)

]β

[0, 1]

gi(xi) =



− xi
αi

+ 4
5 if 0≤ xi <

4
5 αi

5xi
αi
−4 if 4

5 αi ≤ xi < αi

5(xi−αi)
αi−1 +1 if αi ≤ xi <

1+4αi
5

xi−1
1−αi

+ 4
5 otherwise

\\

β is a non-linearity factor. It is considered equal to 1 in [3] 0 < αi < 1

F19 Michalewicz
f (X) = ∑

n
j=1 sin(x j)

[
sin

(
jx2

j

π

)]2m

m=10

[0,π]

F20 LorF2
f (X) =−∏

n
i=1 sink (l1πxi + l2) · e

−l3

(
xi− l4

l5

)2

[0, 1]
k = 6, l1 = 5.1, l2 = 0.5, l3 = 4ln(2), l4 = 0.066832364099628, l5 = 0.64

F21 Deformed Schaffer2 f (X) = 0.5+∑
n−1
i=1

(
sin2

(
x2

i − x2
i+1

)
−0.5

[1+0.01(x2
i +x2

i+1)]
2

)
± 100

F22 Keane Bump f (x) =−|∑
n
i=1 cos4(xi)−2∏

n
i=1 cos2(xi)(

∑
n
i=1 ix2

i

)0.5 | subject to: [0, 10]

Constraints g1(x) = 0.75−∏
n
i=1 xi < 0, and g2(x) = ∑

n
i=1 xi−7.5n < 0
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Table 4: Test Benchmark Functions

. Test Functions Equations Range

F23 IntegratedFunc1 f(x) = F4(x) + F5(x) ± \pi

F24 IntegratedFunc2 f (x) = schaffer6+0.5+∑
n−1
1=1

sin(x2
i −x2

i+1)
2−0.5

1+0.01(x2
i +x2

i+1)
2 ± 10

F25 IntegratedFunc3 f (x) = ∑
n
i=1d|xi +0.5|e2 + 30*F1(x); ± 5

F26 Noisy Schaffer2 Schaffer2 + gaussianNoise[µ,σ ] ± 100

F27 Eggholder Noisy Eggholder + gaussianNoise[µ,σ ] ± 512

F28 LangMann Noisy LangMann + gaussianNoise[µ,σ ] [0, 10]

F29
Noisy Hybrid

Composition Function 1

Hybrid function 1 + gaussianNoise[µ,σ ]
± 5

See reference CEC 2005 Benchmark functions [ [38]]

F30
Noisy Rotated Hybrid

Composition Function 3

Hybrid rot func3 + gaussianNoise[µ,σ ]
± 5

See reference CEC 2005 Benchmark functions [ [38]]

F31

Expanded Extended

Griewank’s plus

Rosenbrock

f1(X) = 100(x2
i − xi+1)

2 +(1− xi)
2

f (X) = ∑
n−1
i=1

(
1+ f1(X)2

4000 − cos( f1(X))
) [-3, 1]

F32 Sin envelope sin wave f (X) = ∑
n−1
i=1

( sin(
√

(x2
i +x2

i+1))
2−0.5

(1+0.01∗(x2
i +x2

i+1))
2 +0.5

)
± 100

F33 Noisy Sinusoidal
f (X) =− [A∏

n
i=1 sin(xi−Z)+∏

n
i=1 sin(B(xi−Z))]+gaussianNoise[\mu,\sigma]

A = 2.5,B = 5,Z = 30
± 100

F34 Ackley Rot Please see reference [ [38]] ± 32

F35 Rastrigin Rot Please see reference [ [38]] ± 5.125

F36 ScafferF6 Rot Please see reference [ [38]] ± 100

F37 Rastrigin Noncont
Rastrigin function with modified input variables as:

xi = (|xi|< 0.5)xi +(|x| ≥ 0.5) [xi.∗2]
2 )

± 5.125

F38 fE ScafferF6 noncont
Schaffer no 6 function with modified input variables as:

xi = (|xi|< 0.5)xi +(|x| ≥ 0.5) [xi.∗2]
2 )

± 100

F39
Hybrid Composition

Function 1

fbias = 120, two times composition of 5 functions See reference [ [38]]

Rastrigin, Weierstrass, Griewank, Ackley, Sphere
± 5

F40
Hybrid Rotated

Composition Function 1
Hybrid Composition Function 1 is Rotated by M matrix, See reference [ [38]] ± 5

F41
Noisy Hybrid Rotated

Composition Function 1
Hybrid Rotated Composition Function + gaussianNoise[µ,σ ] ± 5

F42
Hybrid Rotated

Composition Function 3

fbias = 360, two times composition of 5 functions See reference [ [38]]

Scaffer6, Rastrigin, EF8F2, Weierstrass, Griewank
± 5

F43

Non-Continuous

Hybrid Rotated Composition

Function 3

fbias = 360, x variable is modified for hybrid Rotated Composite Function 3 as

x = |x−o|< 0.5)∗ x+(|x−o| ≥ 0.5)∗ [x∗2]
2 ) See reference [ [38]]

± 5

uals in each species, ρL and ρU are respectively 0.9 to 0.97.
The cross-breeding and self-breeding rates are respectively
max(0.3,rand) and max(0.5,rand). For producing the off-
spring, always elites parents are taken from the population.
Good selection of the parameters δNb ,τ

L, and τU can im-
prove the computation power of the algorithm. Kruskal Wal-

lis non-parametric H–test is used to analyze the results [56].
This test is an extension of the Wilcoxon rank sum test to
more than two groups, where we have distributions of 13
optimizers (groups). It is also a version of classical one-way
ANOVA and compares the medians of the distributions to
differentiate them. It gives an idea that the results of two
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Table 5: Results of 30 variables test functions
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F1

µ -23.6 -22.1 -18.9 -14.9 -17.1 -6.2 -15.8 -16.2 -20.6 -12.2 -11.7 -21.7 -15.9

σ 1.2 1.1 1.6 1.5 0.6 0.7 1.9 1.2 1.5 0.5 2.0 0.8 1.7

B -26.0 -25.3 -21.2 -18.1 -18.6 -8.0 -20.1 -18.8 -22.8 -13.1 -16.9 -22.9 -19.4

W -21.4 -20.2 -12.5 -11.7 -16.1 -4.8 -12.0 -13.3 -14.9 -11.2 -7.1 -19.8 -12.5

C 46% 12% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F2

µ 6.1 34.3 21.8 45.5 60.0 152.6 66.2 74.5 7.6 110.7 107.1 6.5 15.3

σ 2.2 8.7 6.3 9.5 4.9 37.7 18.5 12.2 3.4 9.7 58.3 2.2 4.4

B 1.0 16.7 13.1 20.7 45.4 4.0 24.9 52.6 0.0 89.7 0.0 1.0 5.0

W 11.4 62.5 44.9 65.4 71.4 173.6 117.4 104.6 16.9 130.3 254.5 11.9 23.9

C 54% 0% 0% 0% 0% 4% 0% 0% 32% 0% 6% 46% 2%

F3

µ 24.8 799.5 3185.0 5264.2 118.6 OB 4298.3 3657.6 5223.7 4131.6 5227.3 9657.2 1515.0

σ 37.2 297.0 629.5 595.0 235.2 OB 1414.8 537.5 1321.5 167.5 1719.8 366.8 368.6

B 1.0 204.3 2153.0 4167.0 0.0 OB 2546.5 2445.8 2546.6 3820.7 1.2 8865.3 829.1

W 166.5 2083.5 4797.8 7287.4 1245.0 OB 8280.9 4675.6 7970.2 4452.0 6913.4 10270.2 2309.6

C 60% 0% 0% 0% 48% 0% 0% 0% 0% 0% 2% 0% 0%

F4

µ 1.5E-2 1.2E-1 2.6E-1 4.0E-1 2.2E-1 7.3E-1 3.1E-1 4.1E-1 3.2E-1 4.5E-1 4.8E-1 9.5E-2 5.7E-1

σ 9.5E-3 2.4E-2 7.7E-2 4.8E-2 1.8E-2 2.1E-2 5.4E-2 4.6E-2 1.1E-1 2.5E-2 8.5E-2 2.3E-2 7.3E-2

B 5.6E-12 6.6E-2 1.1E-1 2.4E-1 1.8E-1 6.8E-1 1.8E-1 3.2E-1 9.3E-2 3.8E-1 2.8E-1 4.1E-2 2.7E-1

W 4.4E-2 1.7E-1 4.5E-1 4.9E-1 2.6E-1 7.8E-1 4.3E-1 5.2E-1 4.8E-1 5.0E-1 6.4E-1 1.5E-1 6.7E-1

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F5

µ -28.4 -25.2 -26.7 -22.1 -23.9 -21.2 -21.7 -20.8 -26.8 -15.0 -19.2 -26.9 -27.1

σ 0.4 0.8 0.4 1.7 0.3 2.1 1.6 0.9 0.6 0.9 2.7 0.3 0.2

B -28.9 -26.7 -27.6 -24.8 -24.7 -27.2 -25.1 -22.9 -27.5 -17.1 -25.9 -27.4 -27.5

W -26.9 -23.3 -25.7 -18.1 -23.2 -19.6 -18.0 -19.2 -24.3 -13.4 -14.1 -25.9 -26.6

C 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F6

µ -229.8 -213.2 -161.6 -150.7 -162.2 -93.9 -171.2 -170.5 -201.1 -108.8 -107.7 -50.5 -195.6

σ 11.5 11.0 20.1 14.2 7.9 44.4 25.0 11.2 15.1 4.7 19.7 8.8 16.6

B -250.1 -236.8 -203.4 -175.7 -180.5 -218.3 -224.8 -192.6 -233.8 -124.6 -165.9 -72.3 -233.4

W -197.3 -183.5 -118.6 -116.7 -147.7 -53.7 -81.1 -142.4 -156.5 -99.3 -72.7 -36.7 -150.0

C 52% 4% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 2%

F7

µ 33.6 56.2 57.4 56.0 114.9 171.7 94.8 93.3 62.5 133.0 185.7 54.0 41.6

σ 13.1 14.7 17.2 17.0 7.7 34.2 25.9 15.8 20.2 16.2 48.7 10.9 12.7

B 7.0 18.8 24.0 23.5 96.6 5.0 44.8 62.0 19.9 93.1 99.9 23.9 7.0

W 49.2 75.6 109.7 93.1 129.2 201.9 155.1 123.7 103.8 166.0 296.4 70.5 59.6

C 26% 14% 14% 12% 0% 2% 0% 0% 6% 0% 0% 12% 16%

F8

µ -443.8 -415.6 -408.0 -300.6 -312.8 -134.1 -315.2 -230.4 -152.6 -238.4 -207.1 -245.9 -386.8

σ 1.1 12.5 16.3 16.7 7.9 10.9 33.2 21.9 9.9 8.0 24.4 30.1 40.7

B -444.9 -438.2 -441.6 -340.7 -330.3 -182.1 -393.9 -285.2 -175.0 -257.4 -266.2 -324.3 -433.4

W -439.9 -382.8 -375.8 -257.2 -295.3 -119.5 -228.6 -174.1 -137.8 -216.5 -159.3 -192.1 -185.9

C 64% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F9

µ -385.2 -359.9 -353.5 -274.6 -271.1 -124.2 -271.9 -191.1 -131.9 -216.6 -195.7 -212.7 -269.7

σ 1.0 10.3 12.3 16.7 5.5 8.1 24.0 22.5 10.0 7.3 26.2 20.7 53.1

B -386.0 -377.1 -379.1 -309.3 -282.9 -142.3 -332.6 -238.1 -174.2 -238.8 -252.6 -268.5 -348.0

W -381.4 -336.9 -328.3 -238.9 -261.5 -113.3 -210.8 -132.6 -117.4 -197.7 -119.4 -173.8 -136.8

C 84% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F1
0

µ -1.3E+3 -1.2E+3 -1.3E+3 -1.1E+3 -7.6E+2 -1.4E+3 -1.2E+3 -1.1E+3 -1.2E+3 -8.3E+2 -7.6E+2 -1.2E+3 -1.3E+3

σ 73.7 71.1 90.6 111.9 73.1 54.8 96.3 77.1 111.6 37.9 123.8 250.1 68.0

B -1.5E+3 -1.3E+3 -1.4E+3 -1.3E+3 -9.5E+2 -1.5E+3 -1.4E+3 -1.3E+3 -1.4E+3 -9.1E+2 -1.2E+3 -1.5E+3 -1.4E+3

W -1.1E+3 -1.0E+3 -1.0E+3 -6.6E+2 -5.8E+2 -1.3E+3 -9.3E+2 -8.9E+2 -9.7E+2 -7.4E+2 -4.4E+2 -4.9E+2 -1.1E+3

C 50% 0% 16% 0% 0% 90% 6% 0% 10% 0% 0% 28% 32%

F1
1

µ 1.0 1.1 1.0 1.1 2.6 7.8 1.0 1.3 2.2 1.2 1.1 1.0 1.0

σ 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.1 1.4 0.0 0.1 0.0 0.0

B 1.0 1.0 1.0 1.0 2.2 6.8 1.0 1.1 1.0 1.1 1.0 1.0 1.0

W 1.0 1.2 1.0 1.1 3.0 8.6 1.0 1.7 5.9 1.2 1.7 1.0 1.0

C 64% 0% 100% 0% 0% 0% 100% 0% 6% 0% 18% 100% 100%
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Table 6: Results of 30 variables test functions
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F1
2

µ -84.8 -59.6 -38.5 -26.5 -59.0 -13.3 -38.2 -23.3 -21.4 -27.0 -24.4 -12.1 -22.3

σ 5.5 4.1 4.0 5.4 3.1 1.0 6.7 2.9 3.3 1.5 5.2 0.9 6.1

B -99.6 -68.9 -49.7 -39.5 -65.9 -16.3 -54.2 -31.7 -30.1 -30.7 -36.7 -13.3 -49.0

W -59.6 -49.3 -31.2 -17.4 -51.6 -11.0 -24.7 -16.7 -15.9 -24.2 -14.7 -9.6 -12.8

C 56% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F1
3

µ -12.5 -10.5 -7.8 -1.8 -7.2 -1.7 -5.7 -3.1 -5.0 -2.5 -4.2 -11.5 -2.3

σ 0.5 0.9 1.0 0.5 0.3 0.3 1.5 0.4 0.6 0.3 1.5 0.6 0.2

B -13.4 -12.2 -10.0 -3.3 -7.9 -2.3 -8.6 -4.6 -6.7 -3.4 -7.7 -12.7 -2.9

W -11.1 -8.1 -5.4 -0.9 -6.4 -1.2 -1.8 -2.5 -4.1 -2.1 -1.9 -10.0 -1.6

C 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0%

F1
4

µ -12.3 -8.6 -7.4 -1.5 -7.2 -1.7 -3.1 -3.0 -4.7 -2.0 -4.8 -11.8 -2.3

σ 0.6 0.8 1.1 0.4 0.3 0.3 0.7 0.3 0.4 0.2 1.2 0.5 0.2

B -13.4 -10.4 -10.2 -2.5 -8.0 -2.5 -6.0 -4.0 -5.7 -2.7 -8.1 -13.0 -2.8

W -11.0 -7.0 -4.8 -0.7 -6.6 -1.2 -2.0 -2.3 -4.0 -1.6 -2.4 -10.1 -1.8

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 18% 0%

F1
5

µ -4.0 -2.3 -1.7 0.1 -1.5 0.2 -0.2 -0.2 -0.1 -0.1 -0.7 -0.1 0.1

σ 0.3 0.4 0.3 0.1 0.1 0.1 0.4 0.1 0.1 0.0 0.3 0.2 0.0

B -4.8 -3.1 -2.3 -0.3 -1.8 0.0 -1.8 -0.4 -0.3 -0.2 -1.5 -0.5 -0.1

W -3.3 -1.7 -0.9 0.3 -1.3 0.3 0.1 -0.1 0.0 -0.1 -0.3 0.1 0.1

C 54% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F1
6

µ -1.00 -0.99 -1.00 -0.81 -0.88 -0.61 -1.00 -0.88 -0.66 -0.95 -0.94 -1.00 -0.97

σ 0.00 0.01 0.00 0.12 0.01 0.02 0.00 0.02 0.03 0.01 0.05 0.00 0.04

B -1.00 -1.00 -1.00 -1.00 -0.91 -0.66 -1.00 -0.92 -0.77 -0.96 -1.00 -1.00 -1.00

W -1.00 -0.98 -1.00 -0.55 -0.85 -0.58 -1.00 -0.82 -0.62 -0.93 -0.83 -1.00 -0.86

C 58% 0% 20% 0% 0% 0% 100% 0% 0% 0% 4% 100% 32%

F1
7

µ -2.2E+4 -1.8E+4 -1.4E+4 -1.2E+4 -1.4E+4 OB -1.1E+4 -1.5E+4 -1.0E+4 -1.4E+4 -1.3E+4 -4.4E+3 -1.8E+4

σ 1.6E+3 1.3E+3 1.1E+3 1.3E+3 5.3E+2 OB 2.5E+3 1.2E+3 1.8E+3 3.4E+2 2.5E+3 6.0E+2 1.1E+3

B -2.6E+4 -2.2E+4 -1.7E+4 -1.4E+4 -1.6E+4 OB -1.5E+4 -1.8E+4 -1.8E+4 -1.5E+4 -2.0E+4 -6.3E+3 -2.0E+4

W -1.8E+4 -1.6E+4 -1.2E+4 -9.2E+3 -1.3E+4 OB -5.5E+3 -1.3E+4 -8.3E+3 -1.3E+4 -9.6E+3 -3.3E+3 -1.5E+4

C 54% 2% 0% 0% 0% OB 0% 0% 0% 0% 0% 0% 0%

F1
8

µ -0.96 -0.83 -0.82 -0.63 -0.98 OB -0.49 -0.70 -0.68 -0.63 -0.65 -0.77 -0.69

σ 0.02 0.03 0.03 0.03 0.01 OB 0.20 0.02 0.02 0.01 0.01 0.02 0.02

B -0.99 -0.88 -0.88 -0.70 -1.00 OB -0.83 -0.75 -0.76 -0.66 -0.66 -0.80 -0.77

W -0.92 -0.79 -0.75 -0.58 -0.96 OB -0.32 -0.64 -0.61 -0.61 -0.63 -0.72 -0.65

C 56% 0% 0% 0% 84% OB 0% 0% 0% 0% 0% 0% 0%

F1
9

µ -29.0 -26.6 -26.0 -20.1 -23.6 -12.9 -25.1 -16.0 -26.4 -16.7 -15.7 -28.8 -16.4

σ 0.2 0.7 0.9 2.6 0.4 0.6 0.9 0.9 3.2 0.5 1.9 0.3 1.3

B -29.5 -27.8 -27.5 -24.7 -24.6 -14.8 -27.4 -17.9 -28.7 -17.8 -20.6 -29.2 -19.6

W -28.4 -25.0 -23.8 -14.2 -22.7 -11.9 -22.8 -14.1 -16.2 -15.6 -13.1 -27.3 -14.1

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 26% 0%

F2
0

µ -0.72 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 0.00 0.00 0.00 -0.03

σ 0.15 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.04

B -0.93 -0.33 0.00 0.00 -0.01 0.00 0.00 0.00 -0.36 0.00 0.00 0.00 -0.16

W -0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

C 40% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F2
1

µ -12.5 -7.9 -6.9 -1.1 -6.5 -0.7 -11.6 -2.4 -2.9 -1.4 -12.6 -5.9 -5.4

σ 0.8 0.9 1.1 0.4 0.4 0.2 4.3 0.3 0.5 0.1 3.0 1.5 1.5

B -13.8 -9.9 -9.3 -2.0 -7.3 -1.3 -14.0 -3.0 -4.7 -1.8 -14.0 -9.1 -8.0

W -10.5 -6.1 -4.5 -0.5 -5.9 -0.3 -0.9 -1.7 -1.8 -1.1 -3.8 -3.3 -1.3

C 52% 0% 0% 0% 0% 0% 70% 0% 0% 0% 78% 0% 0%

F2
2

µ -0.80 -0.76 -0.48 -0.47 -0.44 -0.46 -0.63 -0.45 -0.44 -0.44 -0.44 -0.42 -0.51

σ 0.01 0.02 0.04 0.09 0.00 0.02 0.12 0.03 0.00 0.00 0.00 0.01 0.13

B -0.81 -0.80 -0.57 -0.75 -0.44 -0.56 -0.79 -0.65 -0.44 -0.46 -0.44 -0.44 -0.80

W -0.77 -0.69 -0.41 -0.33 -0.44 -0.44 -0.34 -0.44 -0.44 -0.44 -0.44 -0.38 -0.44

C 56% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%
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Table 7: Results of 30 variables test functions
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F2
3

µ -28.0 -24.8 -25.3 -23.3 -23.0 -20.5 -21.8 -21.7 -26.1 -17.4 -19.0 -26.6 -26.7

σ 0.7 0.6 0.8 1.0 0.3 2.5 1.1 0.9 0.6 0.7 2.5 0.4 0.4

B -29.0 -26.4 -27.4 -25.5 -24.1 -26.9 -24.6 -23.8 -27.4 -18.9 -24.5 -27.4 -27.2

W -26.2 -23.2 -22.9 -21.1 -22.4 -18.7 -19.7 -19.1 -24.9 -16.1 -13.4 -25.3 -25.5

C 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F2
4

µ -26.1 -21.0 -19.0 -17.1 -14.2 -6.1 -18.2 -14.4 -11.8 -13.0 -12.9 -25.5 -19.0

σ 1.2 1.4 1.4 1.2 0.6 0.7 1.3 1.2 1.5 0.5 1.6 0.8 1.0

B -28.0 -24.2 -22.0 -19.1 -15.9 -8.9 -21.0 -17.0 -16.9 -14.2 -17.1 -27.1 -22.4

W -23.1 -17.9 -16.1 -14.4 -12.8 -4.9 -15.2 -11.4 -9.4 -12.1 -9.3 -23.8 -17.0

C 56% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 30% 0%

F2
5

µ -694.3 -643.0 -627.5 -539.1 -528.8 -600.7 -504.8 -531.5 -640.0 -383.5 -348.3 -652.4 -620.1

σ 38.6 35.0 25.3 46.6 15.5 87.7 50.4 44.7 22.2 29.2 95.4 25.5 18.2

B -791.9 -713.7 -674.1 -623.2 -571.9 -646.9 -594.6 -636.5 -688.0 -453.8 -589.2 -714.5 -646.3

W -619.2 -551.7 -561.5 -427.1 -501.2 -271.4 -389.0 -431.9 -583.4 -313.6 -129.8 -605.4 -569.8

C 50% 6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8% 0%

F2
6

µ -11.2 -8.2 -6.0 -2.8 -3.4 -2.1 -3.0 -3.2 -3.7 -2.7 -4.1 -13.7 -2.8

σ 1.1 1.0 0.8 0.3 0.3 0.2 0.4 0.3 0.5 0.3 1.2 0.7 0.3

B -13.0 -10.0 -8.4 -3.6 -4.1 -2.5 -4.9 -4.3 -5.2 -3.6 -7.5 -15.1 -3.7

W -8.8 -6.1 -4.3 -2.3 -2.8 -1.8 -2.5 -2.8 -3.0 -2.2 -2.7 -11.8 -2.3

C 48% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

F2
7

µ -1.9E+4 -1.8E+4 -1.4E+4 -1.1E+4 -1.4E+4 OB -1.1E+4 -1.5E+4 -1.1E+4 -1.4E+4 -1.2E+4 -4.3E+3 -1.8E+4

σ 1.3E+3 9.3E+2 1.3E+3 1.6E+3 4.4E+2 OB 2.4E+3 1.0E+3 1.8E+3 3.6E+2 1.9E+3 6.2E+2 1.2E+3

B -2.2E+4 -2.0E+4 -1.7E+4 -1.5E+4 -1.5E+4 OB -1.5E+4 -1.8E+4 -1.7E+4 -1.5E+4 -1.9E+4 -6.1E+3 -2.0E+4

W -1.7E+4 -1.6E+4 -1.1E+4 -6.9E+3 -1.4E+4 OB -5.6E+3 -1.3E+4 -8.1E+3 -1.3E+4 -9.5E+3 -3.2E+3 -1.5E+4

C 52% 12% 0% 0% 0% OB 0% 0% 0% 0% 0% 0% 10%

F2
8

µ -227.4 -215.7 -153.1 -149.4 -160.3 -82.7 -169.0 -171.1 -194.0 -106.2 -95.9 -53.0 -195.5

σ 8.9 11.5 21.8 12.9 4.8 29.4 19.4 13.5 16.6 5.3 21.6 9.8 14.5

B -250.4 -235.4 -188.8 -179.0 -170.9 -213.7 -197.3 -200.8 -224.7 -118.7 -153.0 -77.5 -225.9

W -205.2 -190.4 -109.0 -122.3 -150.4 -54.2 -114.6 -146.1 -157.3 -94.6 -52.2 -37.9 -158.1

C 48% 18% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F2
9

µ 618.9 675.1 638.2 654.1 736.9 738.7 617.9 669.1 693.6 735.9 940.8 601.1 680.5

σ 21.4 56.7 73.0 138.2 11.6 89.9 28.0 28.6 121.5 21.9 88.7 76.4 82.4

B 579.8 624.0 575.2 558.6 708.2 667.5 567.1 612.8 574.5 688.9 729.4 564.3 549.3

W 695.6 912.1 899.6 901.3 761.8 896.0 759.1 723.5 974.5 789.0 1169.4 898.7 898.1

C 52% 0% 54% 74% 0% 0% 58% 6% 36% 0% 0% 94% 16%

F3
0

µ 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 8.5E+2 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.4E+3 1.3E+3

σ 55.7 55.9 47.9 63.3 62.5 160.1 47.2 56.1 54.8 62.1 69.7 50.8 75.8

B 1.1E+3 1.1E+3 1.2E+3 1.1E+3 1.2E+3 6.0E+2 1.2E+3 1.2E+3 1.1E+3 1.1E+3 1.1E+3 1.3E+3 1.0E+3

W 1.5E+3 1.4E+3 1.4E+3 1.4E+3 1.4E+3 1.3E+3 1.4E+3 1.4E+3 1.4E+3 1.5E+3 1.4E+3 1.5E+3 1.4E+3

C 54% 52% 26% 74% 42% 100% 24% 48% 46% 52% 54% 4% 56%

F3
1

µ 3.0 5.9 2.7 14.4 9.2 11.7 4.5 15.5 5.6 13.3 35.4 8.5 4.2

σ 0.6 1.5 0.4 2.2 0.7 2.7 1.2 1.7 3.5 1.3 26.8 1.2 1.5

B 1.8 2.3 1.8 7.5 7.3 6.8 2.3 11.5 2.0 10.7 9.6 5.7 2.4

W 4.5 9.5 3.5 18.2 10.5 15.0 7.9 18.7 14.4 16.6 150.0 11.4 8.9

C 50% 4% 78% 0% 0% 0% 6% 0% 12% 0% 0% 0% 8%

F3
2

µ 1.7 3.5 6.2 12.2 6.7 12.3 8.5 10.9 9.0 11.5 9.6 2.5 11.6

σ 0.6 0.8 0.9 0.5 0.4 0.3 1.0 0.4 0.5 0.3 1.1 0.5 0.3

B 0.8 1.9 4.0 10.9 5.3 11.5 5.6 9.7 8.0 10.4 6.8 1.4 10.9

W 3.0 5.3 8.3 12.9 7.4 13.0 10.6 11.4 9.8 11.9 12.2 3.6 12.1

C 48% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0%

F3
3

µ -1.39 -1.40 -1.40 -1.38 -1.39 -1.40 -1.37 -1.39 -1.39 -1.40 -1.53 -1.38 -1.39

σ 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.08 0.07 0.20 0.08 0.08

B -1.61 -1.63 -1.63 -1.57 -1.62 -1.62 -1.60 -1.55 -1.58 -1.59 -2.29 -1.60 -1.73

W -1.23 -1.22 -1.21 -1.23 -1.19 -1.27 -1.26 -1.24 -1.23 -1.27 -1.21 -1.25 -1.25

C 48% 46% 54% 30% 44% 46% 32% 40% 44% 44% 72% 38% 40%
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Table 8: Results of 30 variables test functions
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F3
4

µ 20.9 20.9 20.9 20.6 21.0 21.0 21.0 21.0 21.0 21.0 20.9 20.2 21.0

σ 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0

B 20.7 20.7 20.7 20.1 20.8 20.8 20.8 20.9 20.8 20.8 20.7 20.1 20.9

W 21.0 21.0 21.0 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 20.4 21.1

C 46% 26% 66% 60% 4% 18% 4% 4% 6% 6% 42% 100% 4%

F3
5

µ 9.5 35.5 29.9 42.7 51.9 153.7 78.3 80.3 77.3 132.7 227.9 42.5 16.0

σ 2.6 7.6 8.6 8.2 4.6 38.1 20.0 13.1 16.6 15.2 47.5 6.3 5.8

B 3.7 21.3 17.4 22.8 42.7 6.0 48.8 55.1 40.8 95.5 138.0 26.9 5.0

W 16.1 50.9 63.8 63.4 63.2 179.4 142.3 105.3 106.5 169.8 374.9 55.7 30.8

C 52% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 8%

F3
6

µ 12.8 13.0 12.8 13.8 13.5 13.6 13.1 13.4 13.2 13.3 13.2 14.1 13.1

σ 0.4 0.4 0.4 0.3 0.2 0.2 0.4 0.2 0.2 0.1 0.4 0.1 0.2

B 11.8 11.6 11.6 12.7 13.0 13.2 11.8 12.9 12.8 12.9 12.1 13.5 12.6

W 13.3 13.6 13.5 14.2 13.8 14.0 13.7 13.6 13.6 13.6 14.0 14.3 13.6

C 48% 28% 40% 2% 0% 0% 16% 0% 4% 0% 16% 0% 6%

F3
7

µ 4.36 24.84 24.40 63.69 37.33 132.01 85.76 63.49 17.97 112.50 106.34 8.20 24.39

σ 1.55 4.03 3.75 15.42 2.70 11.56 20.41 15.38 9.23 15.73 58.57 2.43 4.51

B 0.23 17.01 17.01 39.07 29.82 93.07 52.00 37.46 9.16 69.24 12.00 4.00 13.00

W 8.19 35.00 34.00 95.21 43.51 153.69 137.00 94.87 61.86 141.12 229.44 14.00 34.37

C 62% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0%

F3
8

µ 2.04 3.92 6.78 12.78 7.20 12.69 8.99 11.33 9.46 12.06 10.62 3.19 12.13

σ 0.61 0.83 0.78 0.35 0.38 0.37 1.33 0.26 0.50 0.25 0.94 0.55 0.28

B 0.89 2.26 5.32 11.76 5.64 11.77 5.27 10.53 8.21 11.31 8.44 2.22 11.49

W 3.67 5.84 8.54 13.44 7.68 13.38 12.18 11.80 10.17 12.51 12.70 4.41 12.61

C 54% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F3
9

µ 586.1 712.4 726.8 713.3 489.0 720.6 834.6 591.7 794.0 811.4 1047.6 900.0 715.3

σ 99.2 125.0 97.1 103.1 24.2 287.4 110.3 64.1 124.1 13.7 78.6 0.0 136.6

B 497.9 554.8 588.0 563.1 481.2 200.0 561.7 566.6 573.0 787.0 796.1 900.0 486.6

W 900.4 973.2 900.0 900.2 600.8 908.3 968.8 900.2 981.2 842.0 1168.1 900.0 900.0

C 54% 18% 0% 4% 96% 24% 2% 74% 2% 0% 0% 0% 4%

F4
0

µ 619.0 675.1 636.7 652.4 741.1 752.0 654.6 669.0 646.5 734.5 924.2 597.6 688.7

σ 15.8 74.9 60.8 138.1 13.2 129.1 102.6 27.0 91.1 20.0 91.4 77.5 82.6

B 585.1 604.7 580.0 557.8 703.7 201.0 583.9 602.6 573.2 699.7 722.9 565.1 546.2

W 668.5 909.7 900.3 901.7 776.8 900.0 900.9 716.1 975.7 788.4 1085.1 900.0 900.0

C 50% 10% 44% 72% 0% 4% 62% 4% 56% 0% 0% 94% 14%

F4
1

µ 624.8 677.5 628.0 652.8 734.4 769.6 638.2 670.5 718.7 736.0 923.0 585.3 684.4

σ 22.5 80.6 56.3 138.4 13.7 202.1 91.6 27.1 132.6 21.2 74.4 46.0 70.3

B 572.3 608.0 584.3 556.1 701.3 540.2 561.7 594.7 584.4 700.3 756.3 565.6 548.3

W 679.2 914.4 899.0 901.7 770.1 1504.4 899.9 715.2 903.9 797.8 1045.7 898.7 898.2

C 56% 16% 66% 72% 0% 2% 78% 6% 42% 0% 0% 98% 10%

F4
2

µ 1.2E+3 1.2E+3 1.2E+3 1.2E+3 1.3E+3 1.2E+3 1.2E+3 1.2E+3 1.2E+3 1.3E+3 1.2E+3 1.3E+3 1.2E+3

σ 32.8 27.3 20.5 26.1 26.7 19.8 28.4 27.9 23.6 30.4 42.7 37.9 28.6

B 1.1E+3 1.2E+3 1.2E+3 1.1E+3 1.2E+3 1.2E+3 1.2E+3 1.1E+3 1.2E+3 1.2E+3 1.1E+3 1.2E+3 1.1E+3

W 1.3E+3 1.3E+3 1.2E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3

C 46% 48% 74% 62% 18% 64% 78% 50% 76% 16% 40% 18% 72%

F4
3

µ 1.3E+3 1.3E+3 1.4E+3 1.3E+3 1.3E+3 7.9E+2 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.3E+3 1.4E+3 1.3E+3

σ 61.1 53.3 43.3 57.5 60.1 137.4 52.1 50.6 54.0 66.8 60.4 57.7 51.6

B 1.1E+3 1.2E+3 1.2E+3 1.2E+3 1.2E+3 5.4E+2 1.2E+3 1.2E+3 1.1E+3 1.1E+3 1.2E+3 1.3E+3 1.2E+3

W 1.4E+3 1.4E+3 1.4E+3 1.4E+3 1.4E+3 1.1E+3 1.4E+3 1.4E+3 1.4E+3 1.5E+3 1.4E+3 1.5E+3 1.4E+3

C 50% 54% 12% 58% 42% 100% 20% 48% 44% 42% 50% 4% 56%
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optimizers in 100 runs are similar or different. To compute
the test statistics accumulated by 100 individual runs, the
Kruskal-Wallis test (KWT) uses the ranks of the distribu-
tions instead of their numeric values. This rank goes from
smallest to largest values across the distribution of all opti-
mizers. Thereafter, from the ordered data set, KWT consid-
ers the associated numeric index for the calculations. KWT
utilizes “chi-square statistic” instead of F-statistic used as
in the classical one-way ANOVA. The measured “p-value”
reveals the significance of the calculated chi-square statis-
tic [57]. It tests the Hypothesis that results of all optimizers
are the same where the calculated results are coming from
the mutually independent runs.

5.1 Observations and discussion on thirty variables
problems

Associated results for thirty variables test problems are shown
in Table-5 to 8 and explained below. OB in the Table asso-
ciated with CMAES algorithm represents the out-of-bound
solution provided by the corresponding algorithm.

F1 F1 function is best solved by the METO with B=−26.037,
µ = −23.6 and median ψ = −23.5. Here, we can ob-
serve that approximately equal µ and ψ drives sym-
metrical distribution with spread σ = 1.2. To get the
above mean, METO achieves high consistency which is
C = 46%. On this function, METO’s worst value W is
the best amongst the other optimizers.

F2 On this function, METO outperforms the other optimiz-
ers, where it ends up with the best solution of B = 1,
µ = 6.1, ψ = 5.7 and σ = 2.2. The distribution of fi-
nal values in 100 individual runs is left skewed where
ψ < µ , which is best for getting high consistency of
C = 54%. Also, the worst performance of METO, W ,
is better than other optimizers.

F3 On Schwefel function No 226, obtained distribution from
METO is left skewed due to ψ = 1.6 < µ = 24.8, thus
achieved consistency is the highest as C = 60%. Also,
the best obtained solution B = 1 is achieved by METO
with minimum uncertainty, σ = 37.2. In the case of the
worst solution, it is better than the other optimizers.

F4 On this function, METO also outperforms with C =

52% ψ = µ = 1.5E−02, B= 5.6E−12 with very low un-
certainty σ = 9.5E−03.

F5 On Langermann function, METO give the solution with
uncertainty σ = 0.4 lower than others and µ = −28.4.
Left skewed distribution of the solutions provides 60%
consistency for getting solution below −28.4 where the
other algorithms fail to achieve.

F6 Luniacek–Bi–Rastrigin function is solved best by METO
with highest consistency which is more than 52% and
approximately similar ψ = −230.3 and µ = −229.8.
The Worst performance METO is better than others too.

F7 On this function, METO is again best with µ = 33.6
and ψ = 40.3, higher median than mean, which indi-
cates that the distribution is right-skewed. Due to this,
consistency is lower, but higher than other optimizers as
can be seen in Table-5. The worst performance is also
better than others.

F8 On this function, METO is the winner optimizer with
comparatively low uncertainty of σ = 1.1 and ψ =−444.3,µ =

−443.8. The lower median is always preferable as indi-
cates the better optimizer. The worst result by METO is
better than others.

F9 METO is the best optimizer for this function with the
normal distribution in the results, where ψ = µ , as can
be seen in Table-5. Moreover, METO has the least un-
certainty and the highest consistency level over −385.2
value. Its worst performance is also better than others.

F10 Bird function is extended to the multiple variables, on
which METO performance is comparitive to other opti-
mizers. CMAES is giving best solution on this function.

F11 On Periodic function, four optimizer METO, BBO, GSA,
and SLPSO are showing the equivalent performance, which
can be seen in Table 5.

F12 Gramacy Lee function is extended to the multiple vari-
ables as shown in Tanble 3. The results of all optimizers
are given in Tbale 6, where we can observe that the (ψ =

−85.5)< (µ = 84.8) with better consistency C = 56%.
METO has the best performance, also the worst perfor-
mance of METO is comparatively better than others.

F13 As usual performance of METO on multimodal func-
tions, on Schaffer6, F16 funciton, it has best response
with the minimum µ = ψ = −12.5, and the best worst
performance. METO is able to achieve B=−13.4 with
low distribution spread and highest C = 50%.

F14 METO is the winner on this function in all aspects shown
in Table-6. For this function, ψ is slightly lower than the
µ , which is good sign for getting high consistency lower
than the threshold value of 12.3.

F15 As shown in Table-6, with the equal ψ = −4 and µ =

−4, METO has the highest consistency and the best so-
lution B=−4.8 comparing to the others.

F16 Algorithms METO, GA, BBO, SFLA, GSA and SLPSO
are giving comparatively similar with very consistent
noise free solution. Deb01 function is multimodal with
many minima. However, we can observe that METO
outperforms on multimodal with single or very few global
solutions.

F17 METO outperforms others on this function. Also its worst
performance is better than others, however, the uncer-
tainty in the distribution is high with σ = 1.2e+3. Also,
ψ =−1.95e+4 is greater than the µ =−2e+4.

F18 On Deceptive function, only DE competes with METO,
where both algorithms are very consistent and giving a
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Table 9: Kruskal Wallis ANOVA Table
Sr SS df MS χ̃2 prob > χ̃2 Sr SS df MS χ̃2 prob > χ̃2

F1 Cl 2.06E+7 1.20E+1 1.72E+6 5.84E+2 2.77E-117 F20 Cl 2.06E+7 1.20E+1 1.71E+6 5.84E+2 3.49E-117

e 2.29E+6 6.37E+2 3.60E+3 e 2.31E+6 6.37E+2 3.62E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F2 Cl 1.97E+7 1.20E+1 1.64E+6 5.59E+2 5.58E-112 F21 Cl 1.99E+7 1.20E+1 1.66E+6 5.64E+2 5.65E-113

e 3.17E+6 6.37E+2 4.97E+3 e 3.00E+6 6.37E+2 4.72E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F3 Cl 1.99E+7 1.20E+1 1.66E+6 5.65E+2 3.09E-113 F34 Cl 1.09E+7 1.20E+1 9.11E+5 3.10E+2 3.81E-59

e 2.96E+6 6.37E+2 4.65E+3 e 1.20E+7 6.37E+2 1.88E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F4 Cl 2.07E+7 1.20E+1 1.72E+6 5.86E+2 9.34E-118 F35 Cl 2.08E+7 1.20E+1 1.73E+6 5.89E+2 1.94E-118

e 2.21E+6 6.37E+2 3.48E+3 e 2.10E+6 6.37E+2 3.30E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F5 Cl 1.96E+7 1.20E+1 1.63E+6 5.56E+2 3.04E-111 F36 Cl 1.39E+7 1.20E+1 1.16E+6 3.94E+2 5.74E-77

e 3.29E+6 6.37E+2 5.17E+3 e 8.98E+6 6.37E+2 1.41E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F6 Cl 1.95E+7 1.20E+1 1.63E+6 5.54E+2 7.61E-111 F37 Cl 2.04E+7 1.20E+1 1.70E+6 5.79E+2 3.63E-116

e 3.36E+6 6.37E+2 5.27E+3 e 2.48E+6 6.37E+2 3.89E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F7 Cl 1.84E+7 1.20E+1 1.53E+6 5.20E+2 9.88E-104 F38 Cl 2.19E+7 1.20E+1 1.82E+6 6.20E+2 6.09E-125

e 4.53E+6 6.37E+2 7.12E+3 e 1.03E+6 6.37E+2 1.61E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F8 Cl 2.15E+7 1.20E+1 1.79E+6 6.09E+2 1.00E-122 F39 Cl 1.41E+7 1.20E+1 1.18E+6 4.01E+2 2.28E-78

e 1.39E+6 6.37E+2 2.19E+3 e 8.74E+6 6.37E+2 1.37E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F9 Cl 2.09E+7 1.20E+1 1.74E+6 5.92E+2 4.54E-119 F40 Cl 1.28E+7 1.20E+1 1.07E+6 3.63E+2 2.50E-70

e 2.00E+6 6.37E+2 3.14E+3 e 1.01E+7 6.37E+2 1.58E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F10 Cl 1.65E+7 1.20E+1 1.37E+6 4.68E+2 1.79E-92 F41 Cl 1.31E+7 1.20E+1 1.10E+6 3.73E+2 2.12E-72

e 6.40E+6 6.37E+2 1.00E+4 e 9.74E+6 6.37E+2 1.53E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F11 Cl 2.12E+7 1.20E+1 1.77E+6 6.02E+2 4.17E-121 F42 Cl 6.86E+6 1.20E+1 5.71E+5 1.94E+2 4.55E-35

e 1.66E+6 6.37E+2 2.61E+3 e 1.60E+7 6.37E+2 2.52E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F13 Cl 2.15E+7 1.20E+1 1.79E+6 6.10E+2 7.32E-123 F43 Cl 9.53E+6 1.20E+1 7.95E+5 2.70E+2 7.52E-51

e 1.37E+6 6.37E+2 2.15E+3 e 1.34E+7 6.37E+2 2.10E+4

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F14 Cl 2.19E+7 1.20E+1 1.82E+6 6.20E+2 5.48E-125 F22 Cl 1.96E+7 1.20E+1 1.63E+6 5.56E+2 2.86E-111

e 1.02E+6 6.37E+2 1.60E+3 e 3.29E+6 6.37E+2 5.16E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F15 Cl 2.06E+7 1.20E+1 1.72E+6 5.85E+2 1.40E-117 F23 Cl 2.12E+7 1.20E+1 1.77E+6 6.02E+2 3.68E-121

e 2.24E+6 6.37E+2 3.52E+3 e 1.65E+6 6.37E+2 2.59E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F16 Cl 2.07E+7 1.20E+1 1.73E+6 5.88E+2 4.17E-118 F24 Cl 1.89E+7 1.20E+1 1.58E+6 5.36E+2 4.45E-107

e 2.16E+6 6.37E+2 3.38E+3 e 3.98E+6 6.37E+2 6.25E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F17 Cl 1.90E+7 1.20E+1 1.58E+6 5.39E+2 9.20E-108 F25 Cl 2.03E+7 1.20E+1 1.69E+6 5.75E+2 1.83E-115

e 3.87E+6 6.37E+2 6.07E+3 e 2.59E+6 6.37E+2 4.07E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F18 Cl 2.02E+7 1.20E+1 1.69E+6 5.74E+2 4.60E-115 F26 Cl 1.94E+7 1.20E+1 1.62E+6 5.51E+2 3.10E-110

e 2.66E+6 6.37E+2 4.17E+3 e 3.46E+6 6.37E+2 5.43E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2

F19 Cl 2.11E+7 1.20E+1 1.75E+6 5.97E+2 4.40E-120 F27 Cl 2.04E+7 1.20E+1 1.70E+6 5.79E+2 2.93E-116

e 1.83E+6 6.37E+2 2.87E+3 e 2.46E+6 6.37E+2 3.86E+3

T 2.29E+7 6.49E+2 T 2.29E+7 6.49E+2
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Fig. 12: Statistical Analysis of the Results based on KWT for 30 variables test functions.
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Fig. 13: Statistical Analysis of the Results based on KWT for 100 variables test functions.

noise-free solution. On this function, CMAES provides
unfeasible out of bound solution.

F19 On this function, METO appears as the best optimizer.
Equal ψ and µ show symmetric distribution of the so-
lution with low uncertainty and high consistency below
−29.0. Its worst performance is also better than others.

F20 For this function solution distribution is also symmetric
due to equal µ and ψ with low uncertainty σ = 0.2. The
best value of the function is achieved by METO as well,
which is −0.93. As usual, consistency below −0.72 is
the highest as can be seen in Table-6.

F21 Deformed Schaffer2 is the deformed version of F14 with
higher complexity. METO performs best in all perfor-

mance measures with uncertainty level of σ = 0.8. Smaller
ψ = −13.8 than µ = −12.5 shows a left-skewed distri-
bution which is good to achieve high accuracy below
−12.5 as shown in Table-6.

F22 We also tested on Keane Bump function, which is a con-
strained function. No other algorithm can compete with
METO for this function except BHGA to some extent.
We can observe that METO is very consistent with zero
noise σ = 0.1 on this function. This is one of the very
hard functions to solve, where METO shows its impor-
tance to adopt as better Evolutionary Algorithm. Com-
parative results on this function are given in Table-6.
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Table 10: Kruskal Wallis ANOVA Table

Sr SS df MS χ̃2 prob¿ χ̃2

F28 Cl 1.35E+7 1.20E+1 1.12E+6 3.82E+2 2.94E-74

e 9.43E+6 6.37E+2 1.48E+4

T 2.29E+7 6.49E+2

F12 Cl 2.06E+7 1.20E+1 1.72E+6 5.85E+2 1.33E-117

e 2.24E+6 6.37E+2 3.52E+3

T 2.29E+7 6.49E+2

F29 Cl 9.08E+6 1.20E+1 7.57E+5 2.58E+2 3.56E-48

e 1.38E+7 6.37E+2 2.17E+4

T 2.29E+7 6.49E+2

F30 Cl 1.61E+7 1.20E+1 1.35E+6 4.58E+2 1.90E-90

e 6.74E+6 6.37E+2 1.06E+4

T 2.29E+7 6.49E+2

F31 Cl 1.99E+7 1.20E+1 1.66E+6 5.66E+2 2.27E-113

e 2.94E+6 6.37E+2 4.61E+3

T 2.29E+7 6.49E+2

F32 Cl 2.19E+7 1.20E+1 1.83E+6 6.22E+2 2.66E-125

e 9.68E+5 6.37E+2 1.52E+3

T 2.29E+7 6.49E+2

F33 Cl 1.34E+6 1.20E+1 1.12E+5 3.81E+1 0.000146335

e 2.15E+7 6.37E+2 3.38E+4

T 2.29E+7 6.49E+2

F23 This function is complicated to solve due to its multi-
modality. Best solution for this function is achieved by
METO as B = −29.0 with best µ = −28.0as shown in
Table-7.

F24 For this function, again METO gives better average per-
formance with high consistency. The best solution is also
achieved by METO.

F25 On this function, METO performs the best whis no other
optimizer can compete it. Due to its left-skewed distri-
bution achieved consistency is very high as shown in
Table-7.

F26 We also tested the Noisy functions, one of them is Schaf-
fer2, on this function METO achieved the second posi-
tion after GSA.

F27 On the second Noisy function, METO outperforms in
all statistical parameters. Here, with best average per-
formance, it is achieving highest consistency below the
threshold value of −19297 due to left-skewed distribu-
tion where (ψ =−19371)< (µ =−19297).

F28 On LangerMann Noisy function METO yet performs
better than other optimizers with very high consistency.
The best solution is also achieved by METO as shown
in Table-7.

F29 Noisy version of Hybrid Composition Functions of F39
is also tested. Where, METO secures 4th position after
CMAES, GSA and SFLA. No other algorithm can com-
pete with CMAES algorithm for this function.

F30 On the noisy version of Rotated Hybrid Composition
Function F42, METO secures 3rd position again after
SLPSO and BA algorithms.

F31 On Expanded Extended Griewank’s plus Rosenbrock func-
tion, METO is backed by CMAES and BBO algorithms,
where the best value of this function achieved by METO
and BBO are same as 1.8.

F32 On this function, METO is best as usual and with low
uncertainty, σ = 0.6. On this function best solution is
also achieved by METO which is B = 0.8. No other al-
gorithm are can find even a near solution, even average
performance of METO µ = 1.7 is better than the best
performance of the other optimizers on this function.

F33 All optimizers gives a similar performance on this func-
tion.

F34 On Rotated Ackley function performance of the METO
is after GSA. However, METO, GA, BBO, and BA are
giving similar performance.

F35 METO provides a better solution for the Rotated Rastri-
gin function with best average performance of µ = 9.5
with high consistency. Also, uncertainty σ = 2.6 is min-
imum.

F36 On Rotated ScafferF6 function, BBO and METO are
giving similar results.

F37 METO performance on the non-continuous functions is
outstanding. On this function, METO has good perfor-
mance backed by GSA where the achieved best solution
by both optimizers are same.

F38 On fE-ScafferF6 non-continuous function, no other opti-
mizer can compete the METO. Left-skewed distribution
of solution gives the best consistency level.

F39 On this function, which is the composition of 5 func-
tions, DE perform better than METO.

F40 GSA performs the best on this function, which is ro-
tated version of the previous function. METO secures
the second position for this function with lower uncer-
tainty level σ = 15.8 than other optimizers.

F41 On Noisy version of the previous function, METO per-
sists the second position after GSA with comparatively
low σ = 22.5. The worst performance of the METO is
best among all optimizers.

F42 Hybrid Rotated Composition Function 3 is solved best
by SLPSO optimizer. Performance of METO is average
on this function.

F43 Non-Continuous Hybrid Rotated Composition Function
3 is solved best by CMAES algorithm, where the perfor-
mance of METO is average on this function.

Overall, the results shown in Tables 5 to 8 prove the
dominance of METO over other optimizers for multi-modal
problems with single or few global extremes.
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5.2 Kruskal Wallis statistical analysis of the results

We tested distributions of all optimizers for their significant
difference using KWT one way ANOVA rank test. It is an
extended version of the Mann-Whitney test. For the test, we
consider the Null hypothesis, H0, as “distribution of METO
is same as the distribution of other optimizers”, where distri-
butions of all optimizers are coming from independent ex-
periments. It discriminates the distribution of all optimizer
based on the calculated “critical chi-square value χ̃2” and
KWT value. If the value of KWT is smaller than the χ̃2, the
H0 cannot be rejected. Thus, to reject the H0, KWT value
should be greater than χ̃2. For this procedure, p-value is uti-
lized to test the significant difference between distributions
with 1% significance level.

ANOVA Tables- 9 and 10 provide additional test results.
ANOVA results for each function has six attributes. Sr repre-
sents the source of the variability. Based on the different type
of variability here, three types of sources are given. First is
Cl, representing groups, it is due to the variability that exists
due to the differences among the distribution means. Second
is e, which is error, and the variability exists due to the differ-
ences between the data set within the group and the group
mean. This is also called variability within the group. The
third is the T Total, which represents total variability. SS is
the sum of square due to each Sr, df is the degree of freedom,
df associated with each Sr is calculated. For Cl, df is the
degree of freedom (DoF) between the distributions/groups
and calculated as df =K−1; here K = 13 the number of the
optimizers. For e, the df is the DoF within the distribution
groups and defined as df = N−K, here N = 650, the number
of observations. The total DoF is calculated as df = N− 1,
which is equal to (N−K)+ (K− 1). Next attribute, MS is
the mean squares for each source and calculated as SS

df . F-
statistics, which is ζ , represented for the Sr and the ratio of
the MS. The last column of this table is p-value, which is the
probability that the χ̃2can take a value larger than the com-
puted test-statistic value. ANOVA1 derives this probability
from the cdf of F-distribution [57]. In the ANOVA table, χ̃2

and p-value are important, where other above-described pa-
rameters value support to calculate them.

Moreover, to show the significant difference between the
distributions of solutions achieved by each optimizer, notched
box-plot is shown in Fig 12. The notched box is associ-
ated with an optimizer which has two sections divided by
a centerline, and this is the median. Two end edges of each
notched box, the bottom and the top, indicates the qi = 25th

and q3 = 75th percentiles, respectively. Outliers O in the dis-
tribution are plotted individually using the ’+’ symbol. In
Fig. 12, we can observe that METO results are free of any
outlier. Also, therer is a significant difference between the
METO and other optimizers. We can observe that notches
of METO box plot do not overlap the others, which shows

that true medians do differ with others with 95% confidence
level. Beyond the whiskers length, the ith solution in the so-
lution distribution are displayed as outliers Oi: if Oi > q3 +

w(q3–q1) or Oi < q1–w(q3–q1), where w is the maximum
whisker length. Horizontal axes numbers in each sub-plot
represent optimizer number, where from 1 to 13 it are re-
spectively METO, BHGA, BBO, IWO, DE, CMAES, SFLA,
FA, TLBO, CUCKOO, BA, GSA, SLPSO, respectively.

5.3 Statistical ranking

In this manuscript, significant results are presented due to
the limitation of pages. It is worth to discuss the features
and limitation of the METO in this section based on the ex-
perimental results and associated Kruskal Wallis statistical
test. The rank-sum scores of optimizers for all functions are
given in Table 11. Based on the score in the table, we can
point out that for how many functions METO secures based
rank score. Accordingly, we can rank all the optimizer from
the best rank to the worst rank. In Table 12, we can see that
on 24 functions METO secured the first position (P1), on 7
functions it is on the second position (P2), as so on. The rank
count is based on the Table-11.

For getting a numerical value, we adopted the scoring
algorithm based on the average performance. We assign 13
points to the best optimizer and reduces it by 1 for each de-
graded performer, sequentially. This is because we have K =

13 optimizers in this manuscript. This scoring is averaged
after applying for all benchmark functions. Optimizer with
the highest score is best ranked. In this paper, we show the
results only for the functions presented in Tables 3 AND 4.
The ω =∑

K
i=1(Pi×(14− i))) is the aggregated score to show

overall performance of all optimizers, for example, METO
has 502 score which is at 1st position, similarly, BHGA is at
2nd position with 419 scores as so on. Finaly, average score
is calculated by Average−ω = ω/K. The optimizer with
the highest Average is considered as winner.

For the Table-12, we can see on-average METO is flagged
as one of the best optimizers by achieved high average score.
Ranking of optimizers for 30 variable problems can be ob-
served from high to low score as: METO, BHGA, BBO,
TLBO, FA, SLPSO, CMAES, CUCKOO, SFLA, GSA, BA,
DE and IWO in the sequence.

5.4 Observation and discussion on 100 variables problems

We motivated to test the performance of the METO for more
variables problems to see its persistent goodness. We solved
the 100 variables benchmark problems and statistically tested
as well using the Kruskal Wallis test. Tables 13, and 14
show the results on selected benchmark functions from the
Table-3 and 4 on which METO performance is significantly
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Table 11: Kruskal Wallis Rank sum score

METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F1 41 98 238 428 311 625 382 368 168 541 543 113 376

F2 70 290 230 340 410 586 430 469 99 553 492 79 183

F3 40 129 289 512 66 289 392 340 479 405 489 626 177

F4 26 118 248 390 206 626 290 407 314 471 489 89 558

F5 155 283 169 425 337 458 442 484 137 623 526 123 70

F6 38 94 336 388 338 517 280 290 145 505 506 624 170

F7 68 220 218 211 473 576 394 398 245 521 587 202 119

F8 26 103 123 300 267 621 264 448 579 429 498 411 162

F9 26 94 109 246 259 610 256 482 586 402 467 422 273

F10 173 329 217 402 586 63 271 353 301 537 583 275 141

F11 223 357 191 328 560 626 40 487 464 439 329 125 62

F12 26 98 203 355 102 582 213 416 457 330 395 617 436

F13 32 117 195 578 225 600 294 415 324 489 369 78 514

F14 39 137 193 601 203 575 402 401 301 529 302 62 486

F15 26 80 135 534 165 609 415 324 389 386 228 401 541

F16 160 257 180 477 463 619 28 453 573 350 347 84 242

F17 53 86 322 476 252 322 490 241 523 325 414 625 103

F18 66 171 184 539 35 184 517 382 429 562 504 280 380

F19 40 181 213 391 316 623 256 506 171 465 518 63 488

F20 26 146 297 499 219 612 453 337 91 454 485 466 148

F21 100 186 246 570 271 613 135 461 425 538 72 295 321

F22 100 270 226 360 376 483 452 457 156 611 549 102 89

F23 86 132 216 304 421 626 254 415 544 498 493 31 212

F24 57 173 217 423 446 264 475 436 168 590 596 137 252

F25 88 116 179 492 324 624 439 377 281 513 294 26 479

F26 50 77 324 493 262 324 485 217 511 328 426 625 108

F27 39 79 346 379 332 547 278 271 165 495 523 620 158

F28 192 338 219 185 494 433 185 339 311 493 610 99 335

F29 331 315 421 245 353 31 416 325 313 325 283 585 288

F30 30 83 250 421 475 239 202 489 399 370 364 610 301

F31 84 247 54 518 365 432 183 553 214 480 602 333 165

F32 33 118 193 586 213 597 298 425 327 493 357 76 516

F33 325 324 318 358 338 313 384 334 340 304 186 365 343

F34 220 327 186 241 419 335 476 455 446 413 237 30 448

F35 34 190 153 246 318 544 421 433 420 531 622 244 76

F36 114 215 135 526 454 456 262 366 273 331 273 619 209

F37 75 228 224 424 330 597 485 424 143 551 494 37 219

F38 31 112 192 597 213 586 300 412 316 497 381 84 509

F39 159 313 333 312 43 342 404 142 379 373 619 529 284

F40 202 327 233 189 494 442 240 339 234 480 605 95 351

F41 213 323 204 187 485 417 202 341 346 483 603 73 353

F42 327 306 230 265 495 272 227 309 242 503 342 501 213

F43 321 279 454 255 336 26 404 334 323 332 319 584 267
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Table 12: Rank of all optimizer based on Kruskal Wallis Rank Sum scores: 30 variables

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Sum ω Average-ω Winner

METO 23 7 5 2 2 2 0 0 2 0 0 0 0 43 502 38.6 1st

BHGA 0 10 10 6 1 11 2 3 0 0 0 0 0 43 419 32.2 2nd

BBO 1 2 5 13 14 3 2 1 0 0 0 2 0 43 396 30.5 3rd

IWO 0 5 0 2 3 2 5 5 2 4 6 7 2 43 248 19.1 13th

DE 2 1 1 2 7 4 6 5 2 6 2 4 1 43 285 21.9 12th

CMAES 3 0 1 1 1 2 4 1 1 4 2 7 16 43 176 13.5 7th

SFLA 2 1 4 1 6 8 0 3 7 3 6 0 2 43 295 22.7 9th

FA 0 1 0 2 1 2 5 7 13 5 4 3 0 43 237 18.2 5th

TLBO 0 1 6 4 4 2 8 3 4 4 1 6 0 43 295 22.7 4th

CUCKOO 0 1 0 0 0 1 2 8 6 7 10 4 4 43 182 14.0 8th

BA 2 0 1 1 2 2 4 4 2 4 8 5 8 43 201 15.5 11th

GSA 7 10 4 0 1 2 2 1 2 1 0 3 10 43 330 25.4 10th

SLPSO 3 4 6 9 1 2 3 2 2 5 4 2 0 43 347 26.7 6th

Sum 43 43 43 43 43 43 43 43 43 43 43 43 43

MF 13 12 11 10 9 8 7 6 5 4 3 2 1

outstanding. All algorithms run a hundred times with the
same parameters as above for all optimizers. Based on the
output distribution of all algorithms, a comparison table is
formed based on their mean µ , standard deviation σ , best
value achieved B, worst performance W and consistency C .
Consistency in percentage shows how many time a specific
algorithm achieves solution better than a threshold, which is
the mean value of METO. From the results, we can observe
that METO is best in all measures for functions F1, F3, F4,
F6, F8, F9, F15, F44, and F45. On these functions, no other
algorithm competes with METO. Moreover, for F7 METO
is giving the best average performance but CMAES achieves
the best performance and higher consistency. GSA is best for
F13, F14, F24, and F26. On F18 and F22 CMAES is best.
For other functions, results are mix where METO appears as
a second-best performer.

Based on the output distribution by several independent
runs of all algorithms, the results of Kruskal Wallis test are
presented in Table-15. In this table, chi-square value χ̃2 and
calculated p-value is presented. The smaller p-value than
χ̃2 shows that the solution distribution of METO is signif-
icantly different from other optimizers. To see the perfor-
mance of METO on multiple objective problem we includes
100 variables Kursawe funciton as mentioned F446, with
linear sum of all objectives. On this problem, we can see
that METO is giving best performance in all matrices, high-
lighted in Table-14. Moreover, METO performance is sig-
nificantly observable on two more functions, noisy langer-
man, F45= noisy(F6) and Xinshe Yangn function number-

6 F44= f1 + f2 in the range xi = [−5,5]

f1 = ∑
n
i=1

[
−10exp

(
−0.2

√
x2

i + x2
i+1

)]
and f2 =

∑
n
i=1

[
|xi|0.8 +5sin

(
x3

i
)]

4, F467. Table-16 shows the Kruskal Wallis rank sum score
for the selected functions. Table-17 is the output of this ta-
ble. Rows of Table-17 represents the algorithms, where each
column is position PK , where K = 1,2, . . . ,13. We can ob-
serve that METO is on P1 position 11 times and on P2 po-
sition 11 times. It shows that METO performance is good
comparative to other optimizers. Overall, METO has ω =

275 the average of it is Average-ω = 21.2, which is maxi-
mum of all. Thus METO is placed at 1st position, similarly,
BBO is at 2nd position with ω = 208 and so on. For the Table
17, we can observe that METO is flagged as one of the best
optimizers with 11 best and 11 good performances. Ranking
of the optimizers from high to low average-ω score is as:
METO, BBO, IWO, FA, CUCKOO, TLBO, SLPSO, GSA,
SFLA, BA, CMAES, BHGA, and DE in the sequence. We
can observe that for higher variables problems BHGA de-
grades its performance.

It is observed from Table 13 and 14 that METO may
be an alternative optimizer to solve the undertaken func-
tions with good average performance. On Functions F3, F6,
F9, F10 and F28, METO is the best in all aspects, where it
achieves higher accuracy, best value , minimum worst value
with low uncertainty in the results compared to other al-
gorithms. METO shows reasonable and comparable consis-
tency.

We have also tested with many variants of GA as given
in Ref. [40], and deduce the observation based on the simu-
lation results that, METO is a good replacement of GA for
highly complex problems. It works best on single global so-
lution problems with multiple local solutions.

7 F46 =
[
∑

n
i=1

2(xi)− e−∑
n
i=1 x2

i

]
e−∑

n
i=1 sin2

√
|xi|, where,

xi = [−10,10]
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Table 13: Statistical results on 100 variables problems
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F1

µ -77.08 -49.50 -47.05 -34.59 -22.37 -8.50 -12.16 -27.84 -41.70 -27.88 -28.72 -77.01 -37.79

σ 6.87 2.96 4.94 2.46 0.73 0.86 0.96 2.08 12.76 1.23 3.92 1.95 4.02

B -83.80 -56.14 -57.76 -40.05 -24.88 -10.68 -14.89 -31.80 -63.22 -30.92 -37.76 -82.78 -49.96

W -54.98 -41.47 -37.71 -30.08 -21.15 -7.10 -10.18 -23.22 -23.77 -25.22 -20.45 -72.66 -30.54

C 86% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0%

F3

µ 1720.4 11455.6 17387.8 22048.8 23704.7 17387.8 33096.4 23269.8 25113.4 21655.3 19813.0 36404.8 6286.4

σ 386.50 1027.09 1117.72 1264.52 460.43 1117.72 696.34 1079.96 5134.97 352.44 6564.18 789.35 873.22

B 606.89 8480.95 14658.78 19872.87 22479.04 14658.78 30217.77 20855.21 17685.32 20846.91 1527.86 33467.22 4503.69

W 2537.6 13778.4 19739.5 24381.6 24524.5 19739.5 34141.3 25982.5 33071.0 22420.5 23839.4 37639.4 8239.1

C 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0%

F4

µ 0.0361 0.3992 0.4403 0.5676 0.6428 0.8676 0.8302 0.6533 0.6728 0.6152 0.5233 0.0923 0.7917

σ 0.0140 0.0225 0.0453 0.0405 0.0113 0.0127 0.0105 0.0194 0.0535 0.0096 0.1174 0.0135 0.0469

B 0.0074 0.3426 0.3337 0.4863 0.6004 0.8171 0.8034 0.6073 0.3841 0.5912 0.0996 0.0657 0.5073

W 0.0717 0.4406 0.5150 0.6440 0.6629 0.8866 0.8483 0.7086 0.7317 0.6373 0.6436 0.1231 0.8361

C 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F5

µ -92.24 -59.70 -76.31 -51.71 -48.09 -86.11 -24.62 -40.90 -87.95 -40.57 -57.27 -88.95 -48.54

σ 2.17 2.02 2.37 2.96 0.87 6.34 0.85 1.53 2.34 1.94 13.71 1.21 2.62

B -95.86 -64.96 -82.06 -59.29 -50.24 -90.99 -27.40 -46.10 -91.04 -44.95 -98.44 -91.63 -55.65

W -84.75 -55.75 -71.55 -44.09 -46.22 -59.38 -23.40 -37.33 -78.46 -36.18 -37.72 -84.48 -42.20

C 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8% 0% 0%

F6

µ -638.82 -497.98 -339.99 -352.75 -208.05 -226.29 -122.37 -267.95 -512.78 -223.89 -217.70 -95.52 -585.58

σ 47.84 23.86 29.78 29.27 8.11 105.95 7.44 22.63 56.46 8.65 42.73 15.25 39.09

B -725.63 -560.16 -418.89 -408.32 -227.56 -451.05 -141.70 -321.89 -619.18 -251.68 -327.88 -134.55 -681.76

W -522.55 -444.29 -274.33 -290.76 -193.94 -90.23 -110.69 -212.78 -345.07 -205.02 -142.00 -70.70 -525.62

C 58% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10%

F7

µ 183.9 501.0 311.0 427.3 876.7 200.2 1635.1 889.7 449.7 1062.7 681.0 265.8 191.2

σ 33.1 57.4 40.3 63.9 25.8 192.4 31.0 67.5 53.1 44.7 142.9 41.4 50.7

B 76.4 380.2 215.7 314.9 769.6 34.9 1547.2 782.7 315.0 967.1 356.7 181.1 97.5

W 226.8 617.8 406.0 556.5 924.3 836.6 1682.9 1051.7 541.4 1161.9 950.3 328.8 272.0

C 32% 0% 0% 0% 0% 76% 0% 0% 0% 0% 0% 4% 30%

F8

µ -1444.6 -884.8 -842.7 -745.3 -456.6 -232.2 -236.9 -345.1 -254.4 -482.8 -533.6 -795.7 -553.0

σ 11.4 46.6 49.8 47.0 15.3 15.1 15.1 60.6 13.9 16.7 48.6 48.7 111.6

B -1472.2 -970.2 -978.3 -870.5 -499.1 -284.8 -288.0 -460.8 -288.8 -534.5 -678.8 -930.8 -874.5

W -1420.7 -748.7 -741.7 -683.6 -427.6 -210.4 -210.9 -208.5 -227.1 -450.2 -405.7 -703.9 -375.7

C 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F9

µ -1253.2 -779.6 -758.3 -676.1 -486.2 -228.1 -226.9 -319.8 -265.5 -429.3 -465.7 -709.6 -409.1

σ 9.1 36.2 39.5 34.7 11.0 12.0 13.5 50.4 10.8 16.9 196.4 40.4 87.9

B -1275.0 -847.1 -839.6 -756.2 -510.6 -265.3 -263.7 -414.6 -295.9 -476.8 -1156.3 -784.3 -578.9

W -1225.8 -699.4 -691.2 -561.5 -465.8 -200.0 -203.5 -238.5 -243.9 -401.0 -334.3 -622.0 -246.5

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F13

µ -31.06 -15.92 -9.40 -4.74 -7.03 -2.30 -2.56 -3.90 -8.26 -3.96 -7.54 -40.51 -3.42

σ 3.81 1.17 1.10 0.70 0.36 0.30 0.17 0.30 0.71 0.39 2.14 1.27 0.37

B -37.00 -18.23 -11.66 -6.32 -8.25 -3.03 -3.01 -4.81 -9.72 -4.94 -12.89 -43.29 -4.48

W -24.08 -13.47 -6.53 -3.44 -6.40 -1.81 -2.17 -3.42 -6.63 -3.33 -4.31 -37.59 -2.64

C 58% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

F14

µ -26.91 -12.72 -8.33 -3.47 -6.92 -2.31 -2.62 -3.97 -8.17 -2.91 -8.18 -41.50 -3.32

σ 3.55 1.27 1.30 1.24 0.30 0.44 0.23 0.40 0.71 0.24 3.20 1.29 0.31

B -33.15 -15.45 -12.06 -7.83 -7.71 -3.45 -3.10 -5.14 -9.56 -3.42 -16.95 -43.99 -3.92

W -20.02 -9.89 -6.06 -1.99 -6.34 -1.53 -2.21 -3.32 -6.74 -2.41 -3.86 -38.73 -2.72

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

F15

µ -7.720 -2.743 -2.130 -0.063 -1.219 0.120 -0.013 -0.165 -0.141 -0.192 -0.717 -6.418 -0.012

σ 0.627 0.349 0.296 0.103 0.091 0.044 0.057 0.069 0.076 0.052 0.297 0.597 0.068

B -8.890 -3.715 -2.740 -0.301 -1.468 -0.006 -0.199 -0.474 -0.441 -0.331 -1.392 -7.804 -0.247

W -6.331 -2.100 -1.516 0.093 -1.074 0.183 0.062 -0.075 -0.039 -0.088 -0.276 -5.211 0.108

C 46% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0%
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Table 14: Statistical results on 100 variables problems
METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F16

µ -0.997 -0.876 -0.942 -0.708 -0.605 -0.472 -0.485 -0.631 -0.497 -0.707 -0.769 -0.998 -0.886

σ 0.000 0.018 0.004 0.156 0.008 0.007 0.014 0.023 0.011 0.009 0.036 0.005 0.044

B -0.998 -0.920 -0.952 -0.968 -0.628 -0.495 -0.551 -0.672 -0.517 -0.727 -0.834 -1.000 -0.995

W -0.996 -0.827 -0.932 -0.473 -0.591 -0.457 -0.464 -0.552 -0.475 -0.690 -0.670 -0.980 -0.787

C 58% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 82% 0%

F18

µ -0.863 -0.652 -0.693 -0.505 -0.685 #NAME? -0.260 -0.528 -0.670 -0.429 -0.643 -0.579 -0.707

σ 0.016 0.012 0.017 0.051 0.004 NaN 0.007 0.020 0.021 0.010 0.002 0.015 0.014

B -0.899 -0.681 -0.726 -0.618 -0.701 #NAME? -0.278 -0.572 -0.705 -0.457 -0.646 -0.611 -0.733

W -0.824 -0.617 -0.649 -0.413 -0.678 #NAME? -0.248 -0.486 -0.621 -0.404 -0.640 -0.542 -0.676

C 44% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

F21

µ -27.11 -9.31 -7.96 -1.54 -4.53 -0.84 -0.97 -1.98 -4.15 -1.62 -15.16 -23.22 -2.36

σ 2.06 0.99 0.99 0.38 0.27 0.16 0.16 0.36 0.69 0.17 12.41 2.25 1.17

B -32.88 -11.34 -10.47 -2.42 -5.43 -1.18 -1.54 -2.82 -5.82 -2.29 -49.00 -28.09 -5.06

W -22.70 -7.46 -6.05 -0.68 -3.97 -0.47 -0.72 -1.34 -2.45 -1.33 -2.96 -17.34 -1.16

C 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.06 0.00

F23

µ -89.97 -66.60 -78.97 -61.21 -52.02 -86.72 -34.74 -51.38 -86.76 -50.80 -57.73 -90.43 -50.87

σ 1.97 2.41 3.16 2.65 0.81 6.43 0.84 1.88 2.62 1.43 8.20 0.87 2.13

B -93.69 -72.34 -83.74 -69.87 -53.72 -90.96 -36.59 -55.55 -89.71 -54.60 -97.53 -92.13 -57.57

W -84.56 -61.54 -70.15 -54.26 -50.23 -56.98 -33.54 -46.73 -71.30 -47.53 -40.48 -87.56 -47.19

C 58% 0% 0% 0% 0% 6% 0% 0% 0% 0% 2% 72% 0%

F24

µ -56.64 -47.76 -51.22 -46.94 -23.92 -11.37 -16.11 -28.52 -21.45 -28.51 -30.03 -89.53 -49.35

σ 4.98 1.97 2.54 2.58 1.01 1.07 0.90 2.78 1.50 0.83 3.86 2.54 3.79

B -69.35 -52.43 -56.91 -53.17 -26.60 -15.55 -18.76 -33.67 -25.86 -30.68 -38.98 -94.97 -55.69

W -49.41 -43.20 -45.92 -41.59 -22.24 -9.74 -14.42 -18.85 -18.35 -26.66 -21.71 -82.98 -37.40

C 34% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

F25

µ -2254.4 -1405.5 -1860.9 -1149.2 -606.0 -1983.4 -13.0 -712.1 -1854.1 -809.5 -806.2 -2281.0 -1756.9

σ 108.4 89.5 94.8 110.9 40.0 54.9 38.9 77.0 215.7 53.0 245.5 59.0 147.3

B -2498.9 -1597.1 -2040.1 -1421.8 -714.5 -2081.2 -106.3 -884.4 -2127.4 -946.2 -1408.4 -2474.2 -2016.0

W -1970.4 -1225.2 -1670.3 -892.7 -544.7 -1856.6 47.1 -519.2 -1028.1 -714.6 -342.5 -2161.1 -1330.5

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 68% 0%

F44

µ -3862.4 -3598.9 -3654.5 -3321.9 -2669.5 -3710.9 -2303.7 -2718.7 -3268.8 -2802.3 -2737.5 -3722.7 -3579.5

σ 9.9 34.4 49.6 78.1 58.4 36.2 38.9 81.4 98.8 21.3 132.4 47.3 67.0

B -3879.0 -3692.0 -3812.7 -3509.8 -2814.7 -3777.1 -2462.0 -2886.7 -3436.5 -2857.1 -3060.4 -3803.1 -3705.3

W -3843.7 -3493.5 -3544.7 -3148.7 -2525.7 -3635.9 -2248.9 -2520.7 -2804.3 -2765.1 -2450.0 -3621.2 -3422.5

C 52% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F26

µ -19.58 -12.96 -8.29 -4.45 -5.09 -2.48 -3.35 -4.31 -7.30 -4.07 -8.09 -41.56 -3.89

σ 2.69 1.55 1.16 0.88 0.41 0.27 0.28 0.29 0.74 0.45 3.07 1.18 0.32

B -25.93 -17.96 -11.68 -6.62 -6.16 -3.52 -4.09 -5.10 -9.37 -5.14 -23.95 -44.11 -4.74

W -12.52 -9.14 -5.07 -3.06 -4.38 -2.09 -2.88 -3.74 -6.13 -3.17 -4.39 -38.55 -3.45

C 56% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 100% 0%

F45

µ -655.9 -499.0 -343.3 -352.4 -208.7 -193.5 -123.1 -268.4 -507.0 -222.7 -209.7 -95.4 -585.3

σ 46.2 24.4 41.8 30.3 8.6 98.3 8.0 23.2 48.0 8.5 55.3 13.4 34.1

B -746.2 -559.2 -423.7 -414.7 -239.2 -441.2 -143.7 -317.3 -621.0 -240.6 -369.3 -128.6 -673.0

W -539.6 -424.2 -235.1 -283.6 -196.4 -86.6 -106.6 -224.8 -406.5 -205.3 -103.6 -69.8 -458.5

C 56% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%

F22

µ -0.737 -0.556 -0.404 -0.335 -0.444 -0.793 -0.144 -0.438 -0.444 -0.365 -0.444 -0.370 -0.444

σ 0.021 0.027 0.018 0.039 0.000 0.012 0.004 0.009 0.000 0.084 0.000 0.022 0.000

B -0.788 -0.613 -0.445 -0.421 -0.444 -0.814 -0.155 -0.444 -0.444 -0.444 -0.444 -0.404 -0.444

W -0.697 -0.490 -0.363 -0.271 -0.444 -0.758 -0.138 -0.413 -0.444 -0.235 -0.444 -0.316 -0.444

C 54% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

F46

µ 9.3E-43 1.3E-39 4.5E-42 1.0E-39 1.1E-31 1.1E-27 1.5E-27 2.6E-32 1.6E-29 1.4E-35 4.2E-39 3.0E-41 6.8E-44

σ 4.1E-43 1.4E-39 1.1E-42 1.8E-39 7.1E-32 1.8E-27 1.3E-27 5.3E-32 3.8E-29 8.3E-36 1.1E-38 6.3E-41 1.9E-43

B 2.8E-43 2.1E-40 2.9E-42 2.5E-42 4.8E-33 1.6E-42 7.6E-29 1.6E-34 4.6E-41 2.4E-36 4.3E-42 1.1E-42 3.6E-53

W 2.4E-42 6.3E-39 8.8E-42 9.6E-39 3.1E-31 9.0E-27 5.8E-27 2.4E-31 2.4E-28 4.3E-35 5.6E-38 3.6E-40 1.2E-42

C 48% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 98%
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Table 15: Kruskal Wallis Test Table

χ̃2 p-value χ̃2 p-value

F1 600.3185322 9.06E-121 F16 609.9777441 7.84E-123

F3 586.9128153 6.60E-118 F18 627.0513478 1.76E-126

F4 618.7111078 1.07E-124 F21 609.9917873 7.79E-123

F5 602.046269 3.88E-121 F23 599.8078185 1.17E-120

F6 597.9813895 2.86E-120 F24 620.2379775 5.04E-125

F7 598.7280879 1.98E-120 F25 617.8855294 1.60E-124

F8 616.4663436 3.22E-124 F44 619.976097 5.73E-125

F9 600.7256889 7.42E-121 F26 609.5763896 9.55E-123

F13 624.8521268 5.21E-126 F45 602.0403012 3.89E-121

F14 605.2327044 8.09E-122 F22 601.765704 4.45E-121

F15 614.0220801 1.07E-123 F46 562.0099834 1.36E-112

Moreover, we can observe the significant difference in
Table- 17. GSA algorithm win on twelve functions, how-
ever, METO secures second place on sixteen functions. From
all algorithms, we can observe that on average METO is the
best algorithm. CMSA algorithm gives the best solution on
six functions but no other functions, and it has the worst per-
formance on eleven functions as it is on the 13th position.
We highlight all good results in bold in the tables. We can
observe that on most of the funcitons METO secures second
position where METO is not very good but better than the
others. It motivates us to improve it by tuning its parame-
ters, which we left open for future research. C of METO is
significant comparatively.

We can observe that where METO is not best on func-
tions, the average performance is comparative to validate the
ability of METO to be a substitute optimizer for most of the
functions. Significance difference between the distribution
of METO and other optimizers can be observed in the box-
plot of Fig. 15. First box-plot belongs to the METO.

5.5 Limitation of METO

As ”No free lunch” theorem [9] suggest that elevated perfor-
mance of any optimizer over one class of problem costs on
the performance over another type, METO holds the same.
From the observation, we can draw the limitations of METO,
where it underperform on plate-shaped and bowl-shaped func-
tions on the higher dimension. We observed that plate-shaped
functions such as Zakharov function, Perm0db, etc. , cannot
be solved by METO. Performance of METO is not very ef-
ficient for the class of functions where more than one global
points exits, such as Griewank, Weierstrass, etc. functions.
From the experimentation on the vast set of problems, we
observed that best performance from METO could not be
expected for all class of problems. By following the results,
we found that for few functions such as Ackley, Rosenbrock
Leon, Dixon price, CF-3, HCF-1 optimizer CMAES, GSA,
SLPSO, BBO, and TLBO give the better solution than METO.

In the case of these function by tuning the parameters of
METO near solution can be found. By observing the re-
sults, one can conclude that METO surpasses other optimiz-
ers on multi-modal with a single global solution, non-linear,
steep/ridge, flat surface/step integer problems, and discrete
problems. However, for the bowl-shaped like sphere func-
tion, it gives comparative results but requires the number of
function evaluations.

5.6 Parameter optimization

Parameters of the METO are problem-specific. Using the
sensitivity analysis by utilizing multiple Monte Carlo runs
on a particular problem, we can define a range of all pa-
rameters for better performance. The proposed algorithm is
sensitive to the following parameters, tuning of which can
improve the solution accuracy.

1 - Number of bits in the DNA to represent the variable.
As we have discussed in Section 3.1 that the accuracy
of the solution can be increased by higher number of
Nb. But it increases the size of chromosome, thus extra
computational burden for higher number of variables.
Based on the required computational accuracy, it can be
increased.

2 - Lower and upper limits of mutation probability τ is de-
fined by equation 30. In initial iterations, it is high to
explore maximum search space, which is reduced expo-
nentially to very low value to fine-tune the solution in
later evolution epochs.

3 - Flipping probability δ is an important factor and defined
in equation 14. Since it fillips the SS and produces com-
pletely different AS of the DNA, thus, it needs to be
defined carefully. The high value of it avoids the local
extreme in the initial phase of evolution but affects the
later stage of evolution when fine-tuning of the solution
is required. Thus, in the later stage of evolution iteration,
it should be lower enough. However, for a large number
of variables, instead of equation 14, τ can be generated
randomly in the range [0, 0.3] for each selected DNA
of the chromosome from fist iteration to the last. It may
provide an efficient search. The optimal value of it needs
rigorous experimentation, which is our future research
scope.

4 - Cross-breeding and self-breeding and Epimutation rates
are again important factors. Appropriate selection of them
reduced the number of function evaluation. The value of
them should not be small as well as large. In our pro-
posal we recommends its value in Algorithm-5, by ∆F1
and ∆F2. Epimutation rates should be the same as ∆F2.

5 - Smaller population size may give quicker convergence,
but there is a risk to be trapped at a local extreme. Vice-
e-verse, large population size can lead to process speed
down. Similarly, a low number of bits Nv tends for lower
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Table 16: Kruskal Wallis Rank Sum Score: 100 variables

METO BHGA BBO IWO DE CMAES SFLA FA TLBO CUCKOO BA GSA SLPSO

F1 36.9 158.8 180.8 301.4 522.1 625.4 575.6 419.9 259.4 419.5 402.3 65.0 264.3

F3 76.5 182.6 237.5 363.2 463.8 25.5 574.7 431.1 426.1 331.2 364.7 625.2 129.4

F4 25.6 142.9 175.3 268.1 396.7 624.5 574.0 418.7 446.2 319.1 243.2 75.7 521.7

F5 38.6 290.3 225.9 372.7 436.3 135.7 625.5 545.1 134.0 550.7 336.9 113.9 425.9

F6 37.8 155.1 267.8 252.8 470.8 434.1 568.2 351.6 137.3 417.1 445.4 620.3 73.1

F7 81.9 352.6 210.0 298.8 495.3 96.8 625.5 499.2 314.6 574.5 416.9 164.9 100.7

F8 25.5 95.2 131.3 212.4 409.0 596.7 581.2 488.1 534.1 361.8 310.2 171.5 314.5

F9 25.5 103.3 125.9 214.4 303.2 596.5 600.7 465.2 514.7 362.0 358.5 179.0 382.6

F13 75.5 125.5 197.4 388.0 296.8 613.7 586.3 452.8 234.8 447.8 277.0 25.5 510.6

F14 75.5 131.4 226.8 475.6 295.7 599.0 565.4 391.0 224.6 514.9 255.0 25.5 451.3

F15 29.1 129.7 171.3 482.7 230.5 620.3 526.2 392.5 416.3 362.3 271.2 71.9 527.5

F16 66.5 216.3 134.7 349.4 453.6 615.7 573.0 411.3 534.3 345.0 296.0 34.7 200.9

F18 75.5 320.1 187.5 508.5 218.6 25.5 625.5 491.4 271.0 571.0 360.3 431.2 145.7

F21 37.6 162.5 202.1 487.0 292.4 610.3 584.6 418.1 314.7 468.5 150.3 79.5 423.9

F23 71.7 280.7 221.5 334.1 458.3 131.9 625.5 489.9 158.1 510.8 389.1 53.0 506.9

F24 87.8 223.0 150.1 236.0 474.1 625.3 575.7 382.5 519.5 385.5 365.9 25.5 180.6

F25 55.3 323.3 212.8 378.0 558.2 146.9 625.5 505.8 201.3 456.5 474.7 47.0 246.1

F44 25.5 235.5 178.5 342.4 543.5 113.4 625.5 508.8 359.0 449.4 499.5 107.3 243.2

F26 77.7 127.5 205.6 425.1 338.9 623.9 562.9 421.6 241.8 461.1 232.7 25.5 487.4

F45 31.7 151.8 264.7 254.2 457.5 472.1 562.9 342.1 143.1 412.0 443.7 620.0 75.8

F22 74.9 125.5 452.1 541.0 287.6 26.1 625.5 400.3 299.6 448.8 193.8 507.9 248.5

F46 76.2 304.1 152.0 267.2 507.8 452.2 609.7 463.7 503.5 402.2 292.8 173.5 26.6

Table 17: Rank of all optimizer based on Kruskal Wallis Rank Sum score: 100 variables

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 TF ω Average-ω Winner

METO 11 11 0 0 0 0 0 0 0 0 0 0 0 22 275 21.2 1

BHGA 0 2 7 4 3 2 3 1 0 0 0 0 0 22 211 16.2 12

BBO 0 0 5 7 7 2 0 0 0 1 0 0 0 22 208 16.0 2

IWO 0 0 0 0 5 3 4 4 1 2 2 1 0 22 142 10.9 3

DE 0 0 0 0 2 3 3 1 2 5 3 3 0 22 114 8.8 13

CMAES 3 1 3 1 0 0 0 0 2 0 1 1 10 22 119 9.2 11

SFLA 0 0 0 0 0 0 0 0 0 0 1 12 9 22 36 2.8 9

FA 0 0 0 0 0 0 2 6 2 8 4 0 0 22 104 8.0 4

TLBO 0 0 3 3 2 2 3 1 2 1 5 0 0 22 153 11.8 6

CUCKOO 0 0 0 0 0 1 3 5 6 2 1 4 0 22 108 8.3 5

BA 0 0 1 1 2 6 3 4 2 3 0 0 0 22 154 11.8 10

GSA 7 6 0 4 0 0 0 0 1 0 1 0 3 22 214 16.5 8

SLPSO 1 2 3 2 1 3 1 0 4 0 4 1 0 22 164 12.6 7

MF 13 12 11 10 9 8 7 6 5 4 3 2 1

accuracy but provides faster computation. Thus, an ap-
propriate selection of it can increase the computation
power of the algorithm. An optimized trade-off between
the number of species and its size may lead to better re-
sults, which is problem specific. Instead of increasing
the population size increasing number of species gives
considerably better result for large problem space.

6 - As the discussion given in -4, it is expected that best
genes should dominate in offspring. Simulation results

and effect of different values of ρ are shown in Fig. 14.
Based on the experiments, we proposed it varying be-
tween the range 0.9 to 0.97.

7 - Epimutation factor ξ is also problem-dependent. It in-
creases the function evaluations. A large number of ξ

may give extra burden on the computation time but could
improve the convergence as shown in Fig. 14. Thus it
needs attention to define it carefully. For large variables
problem space it can be increased to five.
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Fig. 14: Effect of parameter tuning

Another parameter may be the probability of transferring
dominant genes from both parents to produce F1 generation
offspring. We simulated it for 0.5, which follows the theory
that half-half genes come from each parent plants. Although,
dynamic selection of this parameter may play a significant
role in global exploration, where the parent with high fitness
may be more dominating than the other parent. The analysis
of it is our future research scope.

6 Future research scope

It is worth to discuss the possible improvements in the ba-
sic structure of the METO. Pollination scheme stands at the
First stage of improvement, where to introduce more diver-
sity for the solution, random pollination, tournament polli-
nation, roulette wheel pollination, etc. and hybrid technol-
ogy of them can be tested. In the proposed optimizer, off-
spring generation from pure-bred plants contained in the
same species is not considered, which may be a critical de-
cision factor and thus future research scope. An adaptive
mechanism for ρ , τ and ξ may be an impacting factor to im-
prove the efficiency of the proposed optimizer. The choice of
optimal parameters can be extracted using some methods for
example fuzzy approach and machine learning techniques
like the neural network.

After analysis of the above parameters, a question arises
here, which individual should go to the next evolution? Dif-
ferent selection schemes can be utilized here, such as ran-
dom, roulette wheel, tournament, reward-based, stochastic

universal sampling, proportionate fitness selection, etc. Pro-
posed algorithm performance with the different selection schemes
is left open for future research. Also, mutation of the result-
ing offspring of F1 and F2 generation may improve the per-
formance of the optimizer, which is out of the scope of this
paper and could be analyzed in the future. Moreover, by uti-
lizing the methods as given in [58, 59], binary tree memory,
and spline interpolation, the computational time to evalu-
ate functions for the same chromosomes can be saved. As a
result, the faster algorithm can handle huge variables prob-
lems like training of deep neural network with millions of
parameters very efficiently.

Hybridization of METO with other meta-heuristic algo-
rithms [60] and Fuzzy logic computation [61] may be a bet-
ter strategy to solve plate-shaped functions. At this juncture,
we can observe that METO has a broad scope of further im-
provement and maybe a substitute optimization algorithm of
GA and other optimizers for most of the large-scale complex
problems from sociology, engineering, networks, topology,
graph, biology, etc. Additionally, METO has one benefit of
hardware friendly algorithm due to its processing in the bi-
nary coded system. Thus, a proposal of developing associ-
ated hardware to be implemented with embedded and VLSI
systems is left open as a future development.

7 Conclusion

This paper presents a novel bio-inspired meta-heuristic bi-
nary coded optimization technique. Its algorithm imitates
the Mendelian evolutionary theory proposed by G. Mendel
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on multiple species of plants, where the recessive genes are
transmitted to next generation with some probability. Thus,
based on the evolution theory, five operators as called the
Flipper, the Pollination, the Breeding, the Discrimination,
the Epimutation are introduced and sequentially employed.

The algorithm imitates a two-strand DNA structure rather
than a single chromosome one, which is formed by fertiliza-
tion of sense strand of one plant DNA with the anti-sense
strand of another plant DNA. By assigning a recessive DNA
corresponding to each plant as the pseudo-global point, the
algorithm does not deviate from optimal. A member with
the best surviving value associated with a plant is assigned
to as recessive chromosome and focuses on the exploration
of neighboring points based on Mendelian transfer proba-
bility of genes. To benchmark the proposed optimizer, we
have compared it with thirteen best-known optimizers of
different nature, as well as a diverse set of test problems.
Simulation results and statistical analysis on thirty and hun-
dred variables test problems ranks the METO higher than
the other optimizers. From the presented results, we can ob-
serve the better consistency of METO on multi-modal and
steep-ridge, noisy and deceptive in nature functions. ACCs
show clear-cut distinction between the algorithms on vari-
ous types of test functions. Although, the limitation of the
METO on plate-shaped, bowl-shaped problems is observ-
able, where BBO, TLBO, RSA. In conclusion, METO is
a nature-inspired genetic evolutionary algorithm which uti-
lizes the standard structure of genotype and phenotypes for
a double-strand DNA. Thus, it can be used on the broad
range of the problems without any specific guidelines. Fu-
ture works are expected to be done on the parametric control,
complexity analysis, convergence analysis, reducing the num-
ber of functions evaluation, testing the algorithm in solving
real-life problems, hardware implementation and extension
for the multi-objective optimization problem case.
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