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Abstract

Drones-aided ubiquitous applications play more and more important roles in our daily life. Accurate recognition of drones is
required in aviation management due to their potential risks and even disasters.

Radio frequency (RF) fingerprinting-based recognition technology based on deep learning is considered as one of the effective
approaches to extract hidden abstract features from RF data of drones. Existing deep learning-based methods are either a high
computational burden or low accuracy.

In this paper, we propose a deep complex-valued convolutional neural network (DC-CNN) method based on RF fingerprinting
for recognizing different drones.

Compared with existing recognition methods, the DC-CNN method has the advantages of high recognition accuracy, fast
running time and small network complexity.

Nine algorithm models and two datasets are used to represent the superior performance of our system.

Experimental results show that our proposed DC-CNN can achieve recognition accuracy of 99.5\% and 74.1\% respectively on
4 and 8 classes of RF drone datasets.
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Abstract—Drones-aided ubiquitous applications play more and
more important roles in our daily life. Accurate recognition of
drones is required in aviation management due to their potential
risks and even disasters. Radio frequency (RF) fingerprinting-
based recognition technology based on deep learning is consid-
ered as one of the effective approaches to extract hidden abstract
features from RF data of drones. Existing deep learning-based
methods are either a high computational burden or low accuracy.
In this paper, we propose a deep complex-valued convolutional
neural network (DC-CNN) method based on RF fingerprinting
for recognizing different drones. Compared with existing recog-
nition methods, the DC-CNN method has the advantages of
high recognition accuracy, fast running time and small network
complexity. Nine algorithm models and two datasets are used to
represent the superior performance of our system. Experimental
results show that our proposed DC-CNN can achieve recognition
accuracy of 99.5% and 74.1% respectively on 4 and 8 classes of
RF drone datasets.

Index Terms—Drone recognition, RF fingerprinting, deep
learning, deep complex-valued network, convolutional neural
network, physical layer security.

I. INTRODUCTION

Today, drones or unmanned aerial vehicles (UAVs) have
been used to improve our daily life. Due to the fast devel-
opment of embedded devices and wireless communications,
drones have become cheaper and more powerful. For example,
drones can not only make outstanding contributions in civil
areas such as logistics and agriculture, but also play an
important role in responding to search and rescue in emergency
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disasters [1]—[3]. Drones have become an integral part of our
rapid development of society. However, the widespread use of
drones without government regulation may cause many risks
related to people’s security and privacy. For example, drones
are used by some people to eavesdrop on people’s wireless
communication data from long distances [4]. Therefore, rele-
vant authorities have considered the safety and privacy issues
involved in drones and efficient identification and detection of
drone signals need to be adopted [5].

Radio frequency (RF) fingerprinting-based recognition tech-
nology [6]-[10] is a classification technology based on the
physical layer measurements. RF fingerprinting plays an im-
portant role in the recognition and detection of drones to
accurately identify a variety of internet of things (IoT) devices
[11]]. Because the inherent characteristics and specifications
of different IoT devices (e. g., radio frequency) are not com-
pletely consistent, RF fingerprinting technology detects and
identifies different devices by extracting subtle differences. In
addition, the process of RF fingerprinting recognition usually
includes two steps: training and classification [[12]]-[14], which
are shown in Fig. [I] First, we use the RF data receiver to
collect RF data from different IoT devices, such as non-linear
phase changes and frequency offsets. Subsequently, the RF
fingerprinting characteristics of each device were extracted
and stored in our database [15]. Second, we can identify
and classify the signals of unknown devices according to
the prepared RF fingerprinting database obtained in the first
step. M. Ezuma et al. [16lused k-nearest neighbor (KNN)
classifier to detect and classify RF signals from different
UAV controllers. However, there is an upper limit to the
recognition accuracy of RF fingerprinting based on traditional
algorithms and we urgently need better technology with higher
recognition performance [17].

Deep learning-aided algorithms [18] are widely used in
the field of wireless communications because of their effi-
cient feature extraction and recognition capabilities [[19]-[29].
Convolutional neural network (CNN) has achieved excellent
performance for improving the classification accuracy of au-
tomatic modulation classification (AMC). H. Gu et al. [30]
proposed a new AMC method combined with two CNNs
trained on different datasets and achieved higher identification
accuracy. In addition, the use of deep learning algorithms
in RF fingerprint recognition technology has also achieved
many outstanding results. For example, L. Peng er al. [31]]
utilized differential constellation trace figure (DCTF) and CNN
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Fig. 1. System design of our proposed drone recognition method.

algorithm to achieve high 99% recognition accuracy on 54
Zigbee devices.

RF fingerprinting technology based on deep learning has
achieved high classification accuracy based on deep real-
valued networks. The RF signals sent by wireless devices
combine in-phase and quadrature components. Compared with
deep real-valued network, deep complex-valued network [32]]
extracts more abstract data from drone RF signals (the RF sig-
nals transmitted from drones), which helps to achieve higher
classification accuracy. Inspired by this, this paper proposes a
DC-CNN based RF recognition technology to detect different
drone signals. Unlike most RF technologies that use real-
valued CNN model, our proposed algorithm model is based
on deep complex-valued network, which extracts the hidden
features of drone signals with high accuracy in comparison
with real-valued CNN. The main contributions of this article
are summarized as follows:

« We propose a drone recognition technology based on DC-
CNN model with improved classification performance
within two given independent drone signal datasets.

e Our study considers three different types of drones un-
der different operating modes. We use two RF signal
receivers to receive the high and low frequency signal
data of the drone and the entire RF spectrum is obtained
by performing discrete fourier transform (DFT) on these
signal data.

o We present nine different models compare and evaluate
classification performance to show the superior perfor-
mance of DC-CNN model. We comprehensively evaluate
the performance of each algorithm and found that the pro-
posed DC-CNN model is superior to the other algorithm
models.

The remainder of the paper is organized as follows: Section
111} introduces our proposed drone recognition system design
and some basic theory of deep complex-valued network. Then,
Section [[V] provides architecture of two algorithm models and
their training steps. The implementation of datasets and simu-
lation results of our drone recognition methods are described

in Section [V] Finally, the paper is concluded in Section

II. RELATED WORKS

In this section, we first introduce some traditional transmit-
ter device identification methods based on statistical learning.
Then, we focus on RF fingerprinting identification methods
based on automatic feature extraction (such as neural network-

S).

A. Traditional Transmitter Device ldentification Methods

The traditional transmitter device identification methods are
all based on detecting the unique properties of different trans-
mitters. As we all know, the transmitter sends instantaneous
signal when it starts or stops receiving RF signal data. During
this short period of time (usually a few microseconds), the
capacitive load is charged or discharged. In [33[], the authors
proposed a transmitter classification method based on instan-
taneous signals and they used a multifractal segmentation
method with the same transient concept. Segmentation tech-
nology extracts important features from instantaneous signals
and generates compact multi-element models. It was shown by
computer simulation that the use of temporal features extracted
by the random neural network classifier achieves an classifica-
tion accuracy of about 90%. What’s more, it is important that
although the authors use neural networks for final classifica-
tion, they determine the characteristics of instantaneous signals
based on experience, so we consider it to be a traditional
method of RF fingerprinting identification. In [34], the authors
proposed another transmitter classification method based on
instantaneous signals. The KNN discrimination method was
used for device identification. This method used instantaneous
signals for spectrum feature selection. The author identified a
total of 8 RF signal transmitters, achieving 97% accuracy at
30 dB signal-to-noise ratio (SNR) and 66% accuracy at 0 dB
SNR. The above are some traditional transmitter identification
methods, which mainly classify transmitters based on the
RF signal characteristics of the transmitter. However, because
these characteristics depend on the protocol adopted by the de-
vice, any change in the protocol will change the characteristics
results, which could make it difficult for traditional methods
to identify devices between different types of transmission
protocols.

B. Automatic Feature Extraction based RF Fingerprinting
Techniques

In recent years, more and more researchers have studied to
combine automatic feature extraction with RF fingerprinting
techniques. All traditional methods used for RF fingerprinting
lack flexibility. These methods require human involvement
to determine the features to be extracted (such as instan-
taneous signals) and design specific algorithms for those
features. Automatic feature extraction techniques (such as
neural networks) can explore the abstract features of RF
data and make classification accuracy higher. In [35[, in
order to identify the cognitive communication networks, the
authors used CNN model from deep learning algorithms to



recognize and identify the signals of seven ZigBee devices.
The recognition accuracy of this can reach 92.29% under high
SNR conditions. However, this algorithm performed poorly at
low SNR conditions. In [36], the authors proposed an auto-
encoder-based indoor location method within deep learning
algorithms. This algorithm used an auto-encoder to achieve
high-precision positioning capability within RF data collected
from the smartphones. As the training data set increases, the
positioning accuracy became more accurate.

III. SYSTEM DESIGN AND COMPLEX-VALUED NETWORK
THEORY

The design of our proposed drone recognition system used
in this paper is shown in Fig. 2] The signal targets we
studied include three different types of running drone signals
(drone activities) and noise signals in the space without
drones (background activities). We first use the RF receiver
to collect the drone or background activities signal at multiple
times. Then, we pre-process the RF data collected from the
RF receiver and make the signal sample size of all drone
signal classes consistent. Importantly, DC-CNN and various
algorithm models are used to train and test these drone signal
samples, respectively. Finally, we evaluate the classification
performance of all algorithm models in order to verify the
superiority of our proposed DC-CNN algorithm.
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Fig. 2. System design of our proposed drone detection method.

A. Deep Complex-valued Network

Since most of the electromagnetic wave signals are in
complex-valued form, comparing to real-valued networks,
the deep complex-valued network is able to extract abstract
information from the in-phase and quadrature parts of the
signal. Therefore, it is particularly important to introduce the
theory of deep complex-valued network in RF research and
two complex-valued network concepts used in this article is
explained.

1) Complex-valued convolution operation: As we all know,
the core part of CNN is convolution operation, which can
extract various abstract features from network input and reduce
network parameters. Similarly, complex-valued convolution
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Fig. 3. Process of complex-valued convolution operation.

operation is also the core part of DC-CNN and it can be
implemented by superposing multiple real-valued convolu-
tion operations. The process of complex-valued convolution
operation between complex-valued feature map M and the
complex-valued convolution kernel K is shown in Fig. [3] As
we can see from the figure, the green part My represents the
real part of M, the blue part K i represents the real part of K,
the red part M represents the imaginary part of M and the
yellow part K represents the imaginary part of K. After the
complex-valued convolution operation is completed, the output
of feature map is still divided into real and imaginary parts.
Finally, we can get the complete complex-valued convolution
calculation function as

M« K = (MrKr— M;K;) +i(MrK; + M;Kp)
(D

2) Complex-valued weight initialization: Complex-valued
weight initialization can effectively reduce the disappearance
of gradients and accelerate the convergence of complex-
valued neural network. A complex-valued weight W can be
expressed in polar or matrix coordinates:

W = |W|e? = Re [W] + ilm[W] (2)

Among them, € and |W| are the phase and modulus value of
W respectively. The variance of W is defined as:
Var (W) = EWW"] — (E[W])* = E[[W[*] - (E[W])’
3)
distributed about 0, the
W|2} . On the other hand,
the variance of |[W| can be expressed as:

When W is center-symmetricall
variance of W is simplified as E ﬁ
Var (IW) = E[WF] - (E[W])* )
In summary, we can define the variance of W as:
Var (W) = Var (W) + (E[|W]])* (5)

If the modulus value of |[W| obeys the Rayleigh distribution,
the mathematical expectation and variance of |W| are calcu-
lated as follows:

B[W(=oy3
{ Var (W) = 5702 ©
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Fig. 4. Architecture of CLDNN algorithm model.
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Fig. 5. Architecture of our proposed DC-CNN algorithm model.

TABLE I
STRUCTURES AND MODEL SIZES OF THREE CNN-BASED METHODS IN ©1.

Algorithm Convolutional layer | LSTM layer FC layer Model size
DR-CNN (Conv2D) 128, 64 - (256, 128, 64, M 33,891,912
DR-CNN (Conv1D) 128, 64 (256, 128, 64, M 33,859,656

FCN - - {512, 256, 128, M 2,267,400
LSTM {256, 128} {256, 128, 64, M} 2,665,160

o is the parameter of Rayleigh distribution. Bringing function
@ into function (EI), we can get the variance of W as:

4—m o

5 o°+ gUQ = 20? (@)

Through this formula we can implement the modulus value
initialization of the complex-valued weight W . In addition, the
phase initialization of W can be done by choosing uniformly
distributed values obeying [—, ].

Var (W) =

IV. ALGORITHM MODEL AND IMPLEMENTATION

In this section, we focus on two deep learning algorithm
models. We first introduce an existing classification algo-
rithm model: convolutional, long short-term memory, fully
connected deep neural network (CLDNN), which incorporates

three classic deep learning algorithm models. Next, we will
elaborate the DC-CNN algorithm proposed in this paper for
drone detection, which is extended from deep real-valued CNN
(DR-CNN). Finally, the architecture of other deep learning
algorithm and specific training steps is described.

A. Architecture of CLDNN

CLDNN combines the advantages of three deep learning
algorithm models: CNN, long short-term memory (LSTM)
and deep neural network (DNN). The architecture of CLDNN
model is depicted in Fig. @] Besides the input and output
layers, the CLDNN model also includes convolutional part,
LSTM part and fully connected (FC) part. The sample size of
the drone dataset used in this paper is 2 x 2048, which is also



the size of input layer.

This model has two convolutional layers, one LSTM layer
and three FC layers. The size of convolutional kernel in
the first convolution layer is 2 x 4, and that in the second
convolutional layer is 1 x 8. In order to better extract features,
the number of convolutional kernels in the two convolutional
layers is 128 and 64 respectively and the only LSTM layer
has 256 neurons. In addition, the activation functions of all
convolutional layers and LSTM layer are both ReLU and
Dropout layer is behind each of them in order to reduce over
fitting and accelerate network convergence. Whats more, the
number of neurons in the three FC layers is 256, 128 and M,
which is the type of drones to be distinguished. By connecting
the FC layer with the Softmax activation function, we can
output the predicted probability of the target drone and finally
realize the drone recognition.

B. Architecture of DC-CNN

Unlike CLDNN model, the proposed DC-CNN algorithm
model in this paper is based on the fusion of traditional CNN
and deep complex-valued network. The architecture of DC-
CNN model used in drone detection is depicted in Fig. [3
Besides the input and output layers, our proposed DC-CNN
model also includes complex-valued convolutional part and
complex-valued FC part, who use the theory of complex-
valued convolution operation and complex-valued weight ini-
tialization described in The sample size of the drone
dataset used in this paper is 2 x 2048, which is also the input
size in our proposed model.

Furthermore, our proposed DC-CNN model has two
complex-valued convolutional layers and three complex-
valued FC layers. The size of complex-valued convolutional
kernel in the first complex-valued convolution layer is 16, and
that in the second complex-valued convolutional layer is 8. In
order to better extract features, the number of complex-valued
convolutional kernels in the two complex-valued convolutional
layers is 128 and 64 respectively and all complex-valued
convolution layers use one-dimensional complex-valued con-
volution (cConvlD). Additionally, the activation functions
of complex-valued convolutional layers are complex-valued
ReLU (cReLU) and Dropout layer is behind each of them
in order to reduce overfitting and accelerate network con-
vergence. Whats more, the number of neurons in the three
complex-valued FC layers is 256, 128 and M, which is the
type of drones to be distinguished. By connecting the complex-
valued FC layer with one Softmax activation function, we
can output the predicted probability of the target drone and
finally realize drone detection.

C. Architecture of Other Deep Learning Algorithm models

The rest of deep learning algorithms used in this paper con-
tain DR-CNN (Conv2D), DR-CNN (Conv1D), fully connected
neural network (FCN) and LSTM models, whose architecture
is shown in Tabs. [l

D. Drone Recognition Algorithm Steps

The entire proposed intelligent drone recognition algorithm
steps is presented. Algorithm [] lists the pseudo-code of our
proposed algorithm based on RF fingerprinting.

Algorithm 1 The proposed DC-CNN based drone recognition
method.

Input: IQ samples with the size of 2 x 2048;

QOutput: The best algorithm model for drone detection method;

1: Select IQ samples in drone datasets and mix them randomly;

2: Initialize the complex-valued neural network weight parameter
s

3: Divide all drone datasets into training sets and testing sets within
7:3;

4: Send the IQ samples to different deep neural network for training.
The structure and parameters of CLDNN algorithm model is
shown in Fig. ] and that of DC-CNN is shown in Fig. 5}

5: Test and verify data in multiple times in order to obtain average
recognition accuracy and each samples running GPU-time in
every algorithm models;

6: Evaluate various indicators of each algorithm and achieve best
algorithm for drone recognition method;

7: return the best algorithm model.

E. Experiment Setup

Extensive experiments are performed in order to evaluate the
classification performance of our proposed DC-CNN model.
The hardware platform that we use is one RF signal collector
and one computer, which includes two operating systems:
Windowl0 and Ubuntul6.04.1 — Linux. Further, the com-
puter contains 8 IntelXeonE3(x86_64) central processing
units (CPUs) and 4 NVIDIAGT X 10801 graphics process-
ing units (GPUs), which can efficiently handle various matrix
multiplication and convolution operations. On one hand, the
Windows system mainly uses M AT LABR2019a software to
preprocess RF drone data. On the other hand, the Linux system
mainly uses Spyder software for training and testing deep
learning algorithm models. In addition, we use Keras2.2.2
software library based on Python3.7.1 language to complete
constructing deep learning models.

V. RESULTS AND DISCUSSION

In this section, the performance of our proposed DC-CNN
algorithm model is demonstrated and analyzed using two
different drone datasets. We compared a total of 9 different
machine learning or deep learning algorithms, all of which
are training within independent training and testing datasets.
We comprehensively evaluate all algorithms in classification
accuracy, sample running time, model size and so on. Details
will be shown as below.

A. Dataset Description

Similar to most deep learning based RF fingerprinting
research, we use two RF receivers to receive high-frequency
and low-frequency signals during multiple drones are running.
Portable computer is used to perform DFT to the RF data
collected from two RF receivers and connect them together to



TABLE II
DETAILS OF TWO USED DRONE DATASETS IN OUR EXPERIMENT.
Datasets Category Classes Samples
dataset 1 | background background activities 1100
- drone drone {1, 2, 3} activities 3300
Total 4400
dataset 2 drone 1 mode {1, 2, 3, 4} 4400
- drone mode {1, 2, 3, 4} 4400
Total 8800
TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT DRONE RECOGNITION
METHOD.
Accuracy (%) Dataset 1 (4 classes) | Dataset 2 (8 classes)
DC-CNN (proposed) 99.50 74.10
CLDNN 97.65 70.36
DR-CNN (Conv2D) 92.93 59.28
DR-CNN (Conv1D) 91.46 66.44
FCN 85.05 42.12
LSTM 55.63 23.94
RF 86.74 46.78
DT 53.93 22.69
SVM 23.48 12.05

form the entire drone RF spectrum. We use a two independent
RF fingerprinting based drone datasets for training and testing.
In Table [, we provide all details of drone datasets used in
our simulation experiment. Dataset 1 contains 4 classes of
drone data: background activities, drone 1 activities, drone 2
activities and drone 3 activities. Dataset 2 contains RF data
collected by two kinds of drones in 4 different running modes,
whose total is 8 classes of drone data. In addition, the size of
each class of RF samples is 2 x 2048 and its number is 1100,
which means that there are 4,400 samples in dataset 1 and
8,800 samples in dataset 2.

B. Accuracy of Different Algorithms within Two Datasets

As shown in Table [Tl we compared the classification
accuracy of nine algorithms in total, which are DC-CNN,
CLDNN, DR-CNN (Conv2D), DR-CNN (ConvlD), FCN,
LSTM, random forest (RF), decision tree (DT) and support
vector machine (SVM). First, we are concerned that the
recognition accuracy of three machine learning algorithms
(RF, DT, and SVM) is lower for both dataset 1 and dataset 2.
FCN model has more than 30% higher recognition accuracy
than LSTM model. When training on dataset 1, the recognition
accuracy of first four algorithms in Table [I| are all higher than
90%. In addition, compared to classic deep learning algorithms
(CNN, FCN, LSTM), DC-CNN and CLDNN model are more
capable of identifying different drone RF signals. It is partic-
ularly important that DC-CNN model proposed in this paper
achieves the best recognition accuracy in two datasets, which
are 99.5% and 74.1%, respectively.

In order to further explore the relationship between different
datasets and the recognition algorithms, we draw the following
figure. As shown in Fig.[6] all 9 algorithm models are used to
distinguish between dataset 1 who containing 4400 samples
and dataset 2 who containing 8800 samples. We can clearly
find that as the number of classification samples increases, the

recognition accuracy decreases, which is under expectations.
The downward trend of each algorithm is basically the same,
except the recognition results of DR-CNN (Conv1D) and DR-
CNN (Conv2D). In addition, the accuracy of most algorithms
decreases in a non-linear manner. For example, the recognition
accuracy of DC-CNN model in 4 classes is 99% and drop to
74% in 8 classes. Compared with deep learning algorithms,
the accuracy of machine learning algorithms drops faster.

= DC-CNN (proposed) = CLDNN
mDR-CNN (ConviD) ®FCN
mRF DT

60
40
30
: I I I
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. |

Dataset 1 (4 classes)

DR-CNN (Conv2D)
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mSVM
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3

Dataset 2 (8 classes)
Number of classes

Fig. 6. Accuracy of different algorithms within two datasets.

C. Algorithm System Comparison

Fig. [7] depicts the running GPU-time required for each
algorithm to identify a single drone sample and the total
parameters contained in that algorithm model. It can be seen
from the figure that the number of parameters included in one
model is not directly related to its GPU-time. For CLDNN
model, its GPT-time is similar to that of DR-CNN model,
but the total model parameters are 4 times that of DR-CNN
model. Further, we can conclude that although the recognition
accuracy of CLDNN is higher than most other algorithms,
this is obtained at the cost of too many model parameters
and running time. In addition, we can clearly see that the
total model parameters of DC-CNN model are roughly the
same as those of three classic deep learning algorithms, but
the GPU-time of DC-CNN model is much less than them. In
summary, we can conclude that even if the complex-valued
network has the same parameters as the real-valued network,
the complex-valued network has lower processing time and
faster recognition speed.

D. Confusion Matrix of DC-CNN Model in Different Datasets

Subsequently, we show the confusion matrices of our pro-
posed DC-CNN model within different datasets in Fig. [§]
These percentage matrices can apparently reflect some details
which cannot be seen above. Fig. [§[a) represents dataset 1
(4 classes) and Fig. Ekb) represents dataset 2 (8 classes).
By observing the diagonals of all the confusion matrices,
we can see the recognition performance of our algorithm
model for each class. Firstly, we find that the CLDNN model
can accurately identify each type of drone signal in dataset
1. Even in the worst case, the classification accuracy of
background activities signals can achieve 98.5%. What’s more,
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for dataset 2, the name of each class is composed of M and
two numbers, the first number indicating drone model and
the second number indicating the running mode of drone. For
example, the meaning of M12 is the signal received by the
first drone in mode 2. Therefore, we can easily understand
that DC-CNN model is difficult to identify the signal of the
second drone in mode 3 (M23), whose identification accuracy
is only 4.88%. This is also the main reason for the decline in
the accuracy of DC-CNN model within dataset 2.

E. Additive Evaluation of DC-CNN Model in Differen-
t Datasets

Finally, we evaluate the performance of DC-CNN algorithm
model in two datasets from other aspects. The additive perfor-
mance evaluation indicators which we used in this paper are
Precision, Recall and F'1 score. The definitions of precision
and recall are as follows:

TP
Precision = —————
recision TP+ FP (8)
TP
frecall = 75 TN ®

Among them, TP, FP and FN indicate true positive, false
positive and false negative respectively. The value of F'1 score
is determined by the values of Precision and Recall whose
definition is:

(10)

F1 score — 2 (Preczszon X Recall>

Precision + Recall

As shown in Fig. 9] blue is the Precision value, green is the
Recall value and red curve represents F'1 score for each class.
The values of these three evaluation indicators in Fig. [Ofa) are
all above 98%, which shows that DC-CNN model has excellent
performance in identifying the drone dataset 1. In addition,
we can clearly see from Fig. [0[b) that these three indicators
of DC-CNN in drone dataset 2 also perform very well in most
classes. However, the recognition performance of M23 class
seems to be worse, whose Recall and F'1 score value even not
reach 10%. Moreover, we observe that the Precision value
of M13 and the Recall value of M24 are only about 50%,
which is the focus of our next research and improvement.

BG D1 D2 D3
BG 0.00% 1.45% 0.00%
D1 | 0.00% 0.00% 0.00%
D2 | 0.00% 0.55% 0.00%
D3 | 0.00% 0.00% 0.00%

(a) Confusion matrix of dataset 1.

M1l M12 M13 M14 M21 M22 M23 M24

M1l 0.00% | 0.00% | 7.36% | 0.00% | 0.00% | 0.00% | 0.00%

M12 0.00% | 0.329% [ 0.009% [ 0.00% | 0.00%

M13 0.00% (23.68%| 0.16% | 0.00%

0.00% | 0.00% 0.00%

M14 | 0.00% [19.92%| 0.00% 0.00% [ 0.009% | 0.00% | 0.00%

M21 | 0.00% | 0.00% [ 0.00% 0.00% | 0.00% [10.56%

0.00%

M22 | 0.009% | 0.009% | 3.04% | 0.00% 0.00% | 0.00%

0.00% ! 0.00%

0.00% | 0.00% | 0.00% |46.72%]| 0.00%

0.00%

M23 | 0.00% 0.00% |29.20%| 4.88% | 0.00%

M24 | 0.00%

(b) Confusion matrix of dataset 2.

Fig. 8. Confusion matrix of DC-CNN model in different datasets.

VI. CONCLUSION

In this paper, we have proposed a new drone recogni-
tion method based on DC-CNN. Unlike conventional DR-
CNN methods, our proposed DC-CNN method can extract
more hidden features from drone RF signals who have in-
phase and quadrature parts. We used nine different drone
recognition algorithm models who were trained separately on
two independent datasets and evaluate their performance in
classification, GPU-time and parameters. The experimental
results show that the classification accuracy of DC-CNN
model to identify dataset 1 is 99.5%, and that of dataset 2 is
74.1%. Simulation results prove that our proposed algorithm
is obviously performs well than other existing deep learning-
based drone recognition algorithm. In future work, we will
consider further optimizing network parameters and running
time.
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