
P
os
te
d
on

10
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
21
00
69
2
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Deep Learning for text in limted data settings

Pathikkumar Patel 1, Bhargav Lad 2, and Jinan Fiaidhi 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text

data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to

sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning

based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer

learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.

1

Deep Learning for text in limted data settings

Bhargav Lad

Department of Computer Science

Lakehead University

Thunder Bay, Canada

bamratbh@lakeheadu.ca

Jinan Fiaidhi

Department of Computer Science

Lakehead University

Thunder Bay, Canada

jfiaidhi@lakeheadu.ca

Pathikkumar Patel

Department of Computer Science

Lakehead University

Thunder Bay, Canada

ppatel73@lakeheadu.ca

Abstract— During the last few years, RNN models have been

extensively used and they have proven to be better for sequence

and text data. RNNs have achieved state-of-the-art performance

levels in several applications such as text classification, sequence

to sequence modelling and time series forecasting. In this article

we will review different Machine Learning and Deep Learning

based approaches for text data and look at the results obtained

from these methods. This work also explores the use of transfer

learning in NLP and how it affects the performance of models

on a specific application of sentiment analysis.

Keywords—Recurrent Neural Networks, Machine Learning,

Deep Learning, Sentiment Analysis.

I. INTRODUCTION

 Sentiment analysis is contextual mining of text which

identifies and extracts subjective information in source

material, and helping a business to understand the social

sentiment of their brand, product or service while monitoring

online conversations. The dataset selected for this experiment

is the IMDB movie review dataset. It is an opensource dataset

and is easily accessible on the internet. The dataset contains a

text.csv file which contains the reviews given by different

users and the sentiment attached to that review. The dataset

has three columns in total namely: text, is_valid and label. The

text column has the review sentences and all the sentences are

of variable lengths. The column is_valid defines if a specific

review belongs to the validation set or not. The target feature

here is label which states if a review is positive or negative.

There are no missing values in the dataset.

 This experiment will use a Naïve Bayes classifier and an
RNN based model to predict the label of these reviews.
Pytorch framework has been used to develop and test the
model. The pipeline of the experiment is stated as follows:

• Data Pre-processing

• Splitting the data

• Numerical Representation of data

• Model Creation

• Evaluating the model

Data pre-processing, in this case means tokenization, stop-

word removal, punctuation removal and stemming. The data

loading and pre-processing steps have been carried out using

the torchtext library. The data has already been split into the

training and testing set which can be differentiated using the

is_valid feature. Torchtext uses two parts namely TEXT and

LABEL to read the data. Here, TEXT contains all the reviews

and the LABEL contains the labels of these reviews.

Word embeddings, which are used for representing the
text data into a numerical form are a type of word
representation that allows words with similar meaning to have
a similar representation. They are a distributed representation
for text that is perhaps one of the key breakthroughs for the
impressive performance of deep learning methods on
challenging natural language processing problems. A preview
of the dataset is as shown in figure-1.

 Text Label Is_valid

0

Un-
bleeping-
believable!
Meg Ryan
doesn't even
...

Negative

False

1

This is a
extremely
well-made
film. The
acting...

Positive

False

2

Every once
in a long
while a
movie will
come a…

Negative

True

Figure-1

The rest of the paper is organised as follows: Section II
provides the Literature review which is followed by Section
III shows the Exploratory Data analysis. Section IV explains
Naïve Bayes Classifier model followed by the Word
embedding techniques in Section V and Section VI talks about
deep learning models. Section VII describes the system
architecture and setup. Section VIII provides the results and
Section IX gives a conclusion which is followed by the
references.

II. LITERATURE REVIEW

Vu et al.[1] investigate CNN and basic RNN (i.e., no

gating mechanisms) for relation classification. 1D CNN have

been used for time series forecasting and text classification

problems. The authors of [2] have shown that the 1D CNN

model has achieved higher performance in terms of accuracy

than the traditional methods. It has shown that 1D CNNs

2

perform better for some applications than their 2D

counterparts. The reasons for this are stated as follows: (1)

Rather than matrix operations, FP and BP in 1D CNNs

require simple array operations. This means that the

computational complexity of 1D CNNs is significantly lower

than 2D CNNs. (2) Recent studies show that 1D CNNs with

relatively shallow architectures (i.e. small number of hidden

layers and neurons) are able to learn challenging tasks

involving 1D signals. On the other hand, 2D CNNs usually

require deeper architectures to handle such tasks. Obviously,

networks with shallow architectures are much easier to train

and implement. (3) Usually, training deep 2D CNNs requires

special hardware setup (e.g. Cloud computing or GPU farms).

On the other hand, any CPU implementation over a standard

computer is feasible and relatively fast for training compact

1D CNNs with few hidden layers. (4) Due to their low

computational requirements, compact 1D CNNs are well-

suited for real-time and low-cost applications especially on

mobile or hand-held devices. The authors of [3] designed and

trained a 1D CNN to locate and quantify structural damage in

a five-story structure. Qianzi Shen et.al[4] have proposed an

approach where thye combine convolutional neural networks

(CNNs) and BLSTM (bidirectional Long Short-Term

Memory) as a complex model to analyze the sentiment

orientation of text. They have shown that this structure gives

better results than a single CNN or an LSTM model. The

authors of [5] have used CNN for Sentiment analysis of

twitter data and have shown that it performs better than the

traditional methods used for classification purpose. Akhtar

Shad et.al.[6] proposed a method to learn sentiment

embedded vectors from the Convolutional Neural Network

(CNN). These are augmented to a set of optimized features

selected through a multi-objective optimization (MOO)

framework. The sentiment augmented optimized vector

obtained at the end is used for the training of SVM for

sentiment classification.

Statistical methods like the naïve bayes classifier have

been extensively used until the rise of Deep Learning models.

The authors of [7] have studied different event based models

of naïve bayes and shown some results obtained using these

models. The work done by the authors of [8] discuss the usage

of different deep learning models with respect to the text data.

Their extensive research shows us comparative performances

of different models on different NLP tasks. Lee JY et.al[9]

have proposed a model that uses an RNN along with a CNN

classifier for text classification problems. They have used

RNN model to create fixed length vector representations of

sentences which are then fed into a CNN model with a fixed

input size. This approach has shown good results for short-

text classification problems such as dialogue act prediction.

Word embeddings have also been vastly used as of the

recent past as they provide an efficient way to represent

words in a vector form based on their similarities and also

help reduce the computational complexity as compared to its

traditional counterparts such as one-hot representation. One

of the popular word embedding technique glove[10] used for

word vector representations has been used in our experiment.

Pre-trained word embeddings have proven to be highly useful

in neural network models for NLP tasks such as sequence

tagging Lample et al.[11] and text classification Kim

et.al[12].

III. EXPLORATORY DATA ANALYSIS

The distribution of different classes in the dataset is as

shown in figure-3. The sentiments are divided into two

classes namely: positive and negative and figure-2 shows

the frequency associated with each sentiment class.

Figure-2

A frequency distribution plot for length of the sentences is

as shown in figure-3.

Figure-3

IV. STATISTICAL MODEL FOR TEXT CLASSIFICATION

The Naïve Bayes (NB) model is one of the most simple

and popular generative classifiers describing how to generate

random instances X conditioned on the target value Y and is

widely used as a learning algorithm for both discrete and

continuous values [13]. Naive Bayes model has been used in

various applications like real time prediction,

recommendation system and numerous recognition tasks.

Along with simplicity, Naïve Bayes is known to outperform

even the most-sophisticated classification methods. It proves

to be quite robust to irrelevant features, which it ignores. It

learns and predicts very fast and it does not require lots of

storage. However, Naïve Bayes algorithm works based on the

following assumption: all features must be independent of

each other. In reality, this is usually not the case; however, it

still returns very good accuracy in practice even when the

independent assumption does not hold. Equation (1) shows

how posterior probability is calculated for a class given a set

of features.

P(c | x) =
P(x | c) P(c)

P(x)
 (1)

3

Statistical methods have three major drawbacks: (1)

manual feature engineering, which requires domain

expertise, (2) they are based on a complex set of hard if-then

rules, which works good only for a specific task only and (3)

Curse of dimensionality, which hinders joint probability

function. An overview of the curse of dimensionality is

illustrated by the following example: suppose a child wants

to select a cookie and he/she has to choose based on its taste.

This is quite easy as he/she can just choose the sweetest

cookie out of all. Now, suppose that each cookie has three

features: taste, shape and color. Now, making a decision

becomes much harder than the previous case. This example

perfectly illustrates the curse of dimensionality.

To address these limitations the following techniques were

used:(1) Learning distributed representations of words

existing in low-dimensional space to tackle the Curse of

Dimensionality, (2) word embeddings learned from a large

unlabeled corpus for the issue of Handcrafting Features and

(3) Artificial Neural networks to learn the structure of the

language instead of hard if-else rules.

V. WORD EMBEDDINGS

Word-embedding vectors are one of the hot topics in text

representations for NLP. They provide significant

improvements over the formerly renowned one-hot encoding

vectors in terms of sparsity reduction and better contextual

information understanding. When each word is fed into the

network, the Embedding layer retrieves its embedding vector,

which the model learns to train using gradient descent.

Word2vec[17] is a group of related models that are used to

produce word embeddings. These models are shallow, two-

layer neural networks that are trained to reconstruct linguistic

contexts of words. Word2vec takes as its input a large corpus

of text and produces a vector space, typically of several

hundred dimensions, with each unique word in the corpus

being assigned a corresponding vector in the space. Word

vectors are positioned in the vector space such that words that

share common contexts in the corpus are located close to one

another in the space. The two models are as shown in figure-

4.

Figure-4

GloVe[18], coined from Global Vectors, is a model for

distributed word representation. The model is an

unsupervised learning algorithm for obtaining vector

representations for words. This is achieved by mapping

words into a meaningful space where the distance between

words is related to semantic similarity. Training is performed

on aggregated global word-word co-occurrence statistics

from a corpus, and the resulting representations showcase

interesting linear substructures of the word vector space.

VI. DEEP LEARNING BASED MODELS

Deep learning models have achieved remarkable results

in computer vision and speech recognition in recent

years. Within natural language processing, much of the work

with deep learning methods has involved learning word

vector representations through neural language models [14]

and performing composition over the learned word vectors

for classification[15].Word vectors, wherein words are

projected from a sparse, 1-of-V encoding (here V is the

vocabulary size) onto a lower dimensional vector space via a

hidden layer, are essentially feature extractors that encode

semantic features of words in their dimensions. In such dense

representations, semantically close words are likewise close

in euclidean or cosine distance in the lower dimensional

vector space[12].

Generally, RNN or CNN based architecture are used for

NLP task such as sentiment analysis. The CNN network tries

to extract information about the local structure of the data by

applying multiple filters (each having different dimensions).

The RNN based better suited to extract the temporal

correlation of the data and dependencies in the text snippet.

CNNs have been very successful for several computer

vision and NLP tasks in the recent years. They are specially

powerful in exploiting the local correlation and pattern of the

data through learned by their feature maps. One of the early

works which used CNN for text classification is by Kim [12],

which showed great performance on several text

classification tasks.

To perform text classification with CNN, usually the

embedding from different words of a sentence (or paragraph)

are stacked together to form a two-dimensional array, and

then convolution filters (of different length) are applied to a

window of h words to produce a new feature representation.

Then some pooling (usually maxpooling) is applied on new

features, and the pooled features from different filters are

concatenated with each other to form the hidden

representation. These representations are then followed by

one (or multiple) fully connected layer(s) to make the final

prediction. Figure-5 shows general architecture of CNN.

Figure-5

A recurrent neural network (RNN) [Elman, 1990] is able

to process a sequence of arbitrary length by recursively

applying a transition function to its internal hidden state

vector ht of the input sequence. The activation of the hidden

state ht at time-step t is computed as a function f of the current

input symbol xt and the previous hidden state ht-1.

It is common to use the state-to-state transition function f

as the composition of an element-wise nonlinearity with an

4

affine transformation of both xt and ht1. Traditionally, a

simple strategy for modeling sequence is to map the input

sequence to a fixed-sized vector using one RNN, and then to

feed the vector to a softmax layer for classification or other

tasks Cho et al.[16]. A standard RNN architecture is as shown

in figure-6.

Figure-6

VII. SYSTEM ARCHITECTURE AND EXPERIMENTAL SETUP

The configuration of a RNN is formed by the following

hyper-parameters: (1) output dimension on embedding layer

(2) Number of hidden RNN and MLP layers/neurons. The

model used in this experiment has one embedding layer with

output dimension of 100 along with a RNN layer. The hidden

dimension for the RNN layer is set as 256. There is one dense

layer in the network. The output from the RNN layer is then

fed as an input to the fully connected layers. The output of

these dense layers is then passed through a softmax layer

which calculates the probabilities for each of the class. The

Sentiment Feature is the target variable in this experiment.

The batch size used in this experiment is 20. The learning rate

set for the experiment is 3e-3. The loss measure used here is

the CrossEntropyLoss and the performance metric used is

Accuracy. We also use pretrained GLOVE embeddings in the

experiment to perform transfer learning.

VIII. RESULTS

The results obtained are shown for all the three methods:

Naïve Bayes classifier, RNN and RNN with pre-trained

embeddings. The system architecture and setup is described

in section VII.

The plot for training and testing accuracy with respect to

number of epochs is as shown in figure-7

Figure-7

The plot for testing loss with respect to the number of

epochs is as shown in figure-8.

Figure-8

Table-1 gives us details of accuracies for different models

on the dataset.

Classification Model Accuracy

Naïve Bayes 52.56%

RNN 57.04%

RNN with pre-trained

embeddings

73.68%

Table-1

IX. CONCLUSION

It can be said for this experiment that the use of pre-

trained embeddings can prove to be quite useful to boost

up the accuracy and reduce the computational complexity.

However, the use of pre-trained embeddings also depends

on the domain of an application. Thus, word vector

representation needs to be computed as a universal vector

that can understand the context of words in multiple

domains. Although, pre-trained embeddings may not be

able to represent words across multiple domain but they

prove to be of great use when working on a dataset that has

a limited amount of text. These vectors can quickly learn

from the given set of data and can be used as an effective

learning technique.

X. REFERENCES

[1] Vu NT, Adel H, Gupta P, Schütze H. Combining recurrent and

convolutional neural networks for relation classification. arXiv
preprint arXiv:1605.07333. 2016 May 24.

[2] Kiranyaz S, Ince T, Hamila R, Gabbouj M. Convolutional
neural networks for patient-specific ECG classification. In2015
37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC) 2015 Aug 25 (pp.
2608-2611). IEEE.

[3] Avci O, Abdeljaber O, Kiranyaz S, Inman D. Structural
damage detection in real time: implementation of 1D
convolutional neural networks for SHM applications.
InStructural Health Monitoring & Damage Detection, Volume
7 2017 (pp. 49-54). Springer, Cham.Aslam N, Xia K, Ali A,
Ullah S. Adaptive TCP-ICCW congestion control mechanism
for QoS in renewable wireless sensor networks. IEEE sensors
letters. 2017 Oct 2;1(6):1-4.

[4] Shen Q, Wang Z, Sun Y. Sentiment analysis of movie reviews
based on cnn-blstm. InInternational Conference on Intelligence
Science 2017 Oct 25 (pp. 164-171). Springer, Cham.

[5] Liao S, Wang J, Yu R, Sato K, Cheng Z. CNN for situations
understanding based on sentiment analysis of twitter data.
Procedia computer science. 2017 Jan 1;111:376-81.

5

[6] Akhtar MS, Kumar A, Ekbal A, Bhattacharyya P. A hybrid deep
learning architecture for sentiment analysis. InProceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers 2016 Dec (pp.
482-493).

[7] McCallum A, Nigam K. A comparison of event models for naive
bayes text classification. InAAAI-98 workshop on learning for
text categorization 1998 Jul 26 (Vol. 752, No. 1, pp. 41-48).

[8] Yin W, Kann K, Yu M, Schütze H. Comparative study of cnn
and rnn for natural language processing. arXiv preprint
arXiv:1702.01923. 2017 Feb 7.

[9] Lee JY, Dernoncourt F. Sequential short-text classification with
recurrent and convolutional neural networks. arXiv preprint
arXiv:1603.03827. 2016 Mar 12.

[10] Pennington J, Socher R, Manning CD. Glove: Global vectors
for word representation. InProceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP)
2014 Oct (pp. 1532-1543).

[11] Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer
C. Neural architectures for named entity recognition. arXiv
preprint arXiv:1603.01360. 2016 Mar 4.

[12] Kim Y. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882. 2014 Aug 25.

[13] Tom M. Mitchell, “Generative and Discriminative Classifiers:
Naïve Bayes and Logistic Regression”,
https://www.cs.cmu.edu/~tom/ mlbook/NBayesLogReg.pdf

[14] Bengio Y, Ducharme R, Vincent P, Jauvin C. A neural
probabilistic language model. Journal of machine learning
research. 2003;3(Feb):1137-55.

[15] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K,
Kuksa P. Natural language processing (almost) from scratch.
Journal of machine learning research. 2011;12(Aug):2493-537.

[16] Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D,
Bougares F, Schwenk H, Bengio Y. Learning phrase
representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078. 2014 Jun
3.

[17] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of
word representations in vector space. arXiv preprint
arXiv:1301.3781. 2013 Jan 16.

[18] Pennington J, Socher R, Manning CD. Glove: Global vectors
for word representation. InProceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP)
2014 Oct (pp. 1532-1543).

