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Abstract

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text

data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to

sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning

based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer

learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.
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Abstract— During the last few years, RNN models have been 

extensively used and they have proven to be better for sequence 

and text data. RNNs have achieved state-of-the-art performance 

levels in several applications such as text classification, sequence 

to sequence modelling and time series forecasting. In this article 

we will review different Machine Learning and Deep Learning 

based approaches for text data and look at the results obtained 

from these methods. This work also explores the use of transfer 

learning in NLP and how it affects the performance of models 

on a specific application of sentiment analysis.   

Keywords—Recurrent Neural Networks, Machine Learning, 

Deep Learning, Sentiment Analysis. 

I. INTRODUCTION  

  Sentiment analysis is contextual mining of text which 

identifies and extracts subjective information in source 

material, and helping a business to understand the social 

sentiment of their brand, product or service while monitoring 

online conversations. The dataset selected for this experiment 

is the IMDB movie review dataset. It is an opensource dataset 

and is easily accessible on the internet. The dataset contains a 

text.csv file which contains the reviews given by different 

users and the sentiment attached to that review. The dataset 

has three columns in total namely: text, is_valid and label. The 

text column has the review sentences and all the sentences are 

of variable lengths. The column is_valid defines if a specific 

review belongs to the validation set or not. The target feature 

here is label which states if a review is positive or negative. 

There are no missing values in the dataset. 

 This experiment will use a Naïve Bayes classifier and an 
RNN based model to predict the label of these reviews. 
Pytorch framework has been used to develop and test the 
model. The pipeline of the experiment is stated as follows: 

• Data Pre-processing 

• Splitting the data 

• Numerical Representation of data 

• Model Creation  

• Evaluating the model 

Data pre-processing, in this case means tokenization, stop-

word removal, punctuation removal and stemming. The data 

loading and pre-processing steps have been carried out using 

the torchtext library. The data has already been split into the 

training and testing set which can be differentiated using the 

is_valid feature. Torchtext uses two parts namely TEXT and 

LABEL to read the data. Here, TEXT contains all the reviews 

and the LABEL contains the labels of these reviews.  

Word embeddings, which are used for representing the 
text data into a numerical form are a type of word 
representation that allows words with similar meaning to have 
a similar representation. They are a distributed representation 
for text that is perhaps one of the key breakthroughs for the 
impressive performance of deep learning methods on 
challenging natural language processing problems. A preview 
of the dataset is as shown in figure-1.   

 Text Label Is_valid 

 

0 

Un-
bleeping-
believable! 
Meg Ryan 
doesn't even 
... 

 

Negative 

 

False 

 

1 

This is a 
extremely 
well-made 
film. The 
acting... 

 

Positive 

 

False 

 

2 

Every once 
in a long 
while a 
movie will 
come a… 

 

Negative 

 

True 

Figure-1 

The rest of the paper is organised as follows: Section II 
provides the Literature review which is followed by Section 
III shows the Exploratory Data analysis. Section IV explains 
Naïve Bayes Classifier model followed by the Word 
embedding techniques in Section V and Section VI talks about 
deep learning models. Section VII describes the system 
architecture and setup. Section VIII provides the results and 
Section IX gives a conclusion which is followed by the 
references.  

II. LITERATURE REVIEW 

Vu et al.[1] investigate CNN and basic RNN (i.e., no 

gating mechanisms) for relation classification. 1D CNN have 

been used for time series forecasting and text classification 

problems. The authors of [2] have shown that the 1D CNN 

model has achieved higher performance in terms of accuracy 

than the traditional methods. It has shown that 1D CNNs 
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perform better for some applications than their 2D 

counterparts. The reasons for this are stated as follows: (1) 

Rather than matrix operations, FP and BP in 1D CNNs 

require simple array operations. This means that the 

computational complexity of 1D CNNs is significantly lower 

than 2D CNNs. (2) Recent studies show that 1D CNNs with 

relatively shallow architectures (i.e. small number of hidden 

layers and neurons) are able to learn challenging tasks 

involving 1D signals. On the other hand, 2D CNNs usually 

require deeper architectures to handle such tasks. Obviously, 

networks with shallow architectures are much easier to train 

and implement. (3) Usually, training deep 2D CNNs requires 

special hardware setup (e.g. Cloud computing or GPU farms). 

On the other hand, any CPU implementation over a standard 

computer is feasible and relatively fast for training compact 

1D CNNs with few hidden layers. (4) Due to their low 

computational requirements, compact 1D CNNs are well-

suited for real-time and low-cost applications especially on 

mobile or hand-held devices. The authors of [3] designed and 

trained a 1D CNN to locate and quantify structural damage in 

a five-story structure. Qianzi Shen et.al[4] have proposed an 

approach where thye combine convolutional neural networks 

(CNNs) and BLSTM (bidirectional Long Short-Term 

Memory) as a complex model to analyze the sentiment 

orientation of text. They have shown that this structure gives 

better results than a single CNN or an LSTM model. The 

authors of [5] have used CNN for Sentiment analysis of 

twitter data and have shown that it performs better than the 

traditional methods used for classification purpose. Akhtar 

Shad et.al.[6] proposed a method to learn sentiment 

embedded vectors from the Convolutional Neural Network 

(CNN). These are augmented to a set of optimized features 

selected through a multi-objective optimization (MOO) 

framework. The sentiment augmented optimized vector 

obtained at the end is used for the training of SVM for 

sentiment classification. 

Statistical methods like the naïve bayes classifier have 

been extensively used until the rise of Deep Learning models. 

The authors of [7] have studied different event based models 

of naïve bayes and shown some results obtained using these 

models. The work done by the authors of [8] discuss the usage 

of different deep learning models with respect to the text data. 

Their extensive research shows us comparative performances 

of different models on different NLP tasks. Lee JY et.al[9] 

have proposed a model that uses an RNN along with a CNN 

classifier for text classification problems. They have used 

RNN model to create fixed length vector representations of 

sentences which are then fed into a CNN model with a fixed 

input size. This approach has shown good results for short-

text classification problems such as dialogue act prediction. 

Word embeddings have also been vastly used as of the 

recent past as they provide an efficient way to represent 

words in a vector form based on their similarities and also 

help reduce the computational complexity as compared to its 

traditional counterparts such as one-hot representation. One 

of the popular word embedding technique glove[10] used for 

word vector representations has been used in our experiment. 

Pre-trained word embeddings have proven to be highly useful 

in neural network models for NLP tasks such as sequence 

tagging Lample et al.[11] and text classification Kim 

et.al[12]. 

 

III. EXPLORATORY DATA ANALYSIS 

The distribution of different classes in the dataset is as 

shown in figure-3. The sentiments are divided into two 

classes namely: positive and negative and figure-2 shows 

the frequency associated with each sentiment class.  

 
Figure-2 

A frequency distribution plot for length of the sentences is 

as shown in figure-3. 

 
Figure-3 

IV. STATISTICAL MODEL FOR TEXT CLASSIFICATION 

The Naïve Bayes (NB) model is one of the most simple 

and popular generative classifiers describing how to generate 

random instances X conditioned on the target value Y and is 

widely used as a learning algorithm for both discrete and 

continuous values [13]. Naive Bayes model has been used in 

various applications like real time prediction, 

recommendation system and numerous recognition tasks.  

Along with simplicity, Naïve Bayes is known to outperform 

even the most-sophisticated classification methods. It proves 

to be quite robust to irrelevant features, which it ignores. It 

learns and predicts very fast and it does not require lots of 

storage. However, Naïve Bayes algorithm works based on the 

following assumption: all features must be independent of 

each other. In reality, this is usually not the case; however, it 

still returns very good accuracy in practice even when the 

independent assumption does not hold. Equation (1) shows 

how posterior probability is calculated for a class given a set 

of features. 

 

P(c | x)  =
P(x | c) P(c)

P(x)
                 (1) 
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Statistical methods have three major drawbacks: (1) 

manual feature engineering, which requires domain 

expertise, (2) they are based on a complex set of hard if-then 

rules, which works good only for a specific task only and (3) 

Curse of dimensionality, which hinders joint probability 

function. An overview of the curse of dimensionality is 

illustrated by the following example: suppose a child wants 

to select a cookie and he/she has to choose based on its taste. 

This is quite easy as he/she can just choose the sweetest 

cookie out of all. Now, suppose that each cookie has three 

features: taste, shape and color. Now, making a decision 

becomes much harder than the previous case. This example 

perfectly illustrates the curse of dimensionality. 

To address these limitations the following techniques were 

used:(1) Learning distributed representations of words 

existing in low-dimensional space to tackle the Curse of 

Dimensionality, (2) word embeddings learned from a large 

unlabeled corpus for the issue of Handcrafting Features and 

(3) Artificial Neural networks to learn the structure of the 

language instead of hard if-else rules.  

V. WORD EMBEDDINGS 

Word-embedding vectors are one of the hot topics in text 

representations for NLP. They provide significant 

improvements over the formerly renowned one-hot encoding 

vectors in terms of sparsity reduction and better contextual 

information understanding. When each word is fed into the 

network, the Embedding layer retrieves its embedding vector, 

which the model learns to train using gradient descent. 

Word2vec[17] is a group of related models that are used to 

produce word embeddings. These models are shallow, two-

layer neural networks that are trained to reconstruct linguistic 

contexts of words. Word2vec takes as its input a large corpus 

of text and produces a vector space, typically of several 

hundred dimensions, with each unique word in the corpus 

being assigned a corresponding vector in the space. Word 

vectors are positioned in the vector space such that words that 

share common contexts in the corpus are located close to one 

another in the space. The two models are as shown in figure-

4. 

 
Figure-4 

GloVe[18], coined from Global Vectors, is a model for 

distributed word representation. The model is an 

unsupervised learning algorithm for obtaining vector 

representations for words. This is achieved by mapping 

words into a meaningful space where the distance between 

words is related to semantic similarity. Training is performed 

on aggregated global word-word co-occurrence statistics 

from a corpus, and the resulting representations showcase 

interesting linear substructures of the word vector space. 

VI. DEEP LEARNING BASED MODELS 

Deep learning models have achieved remarkable results 

in computer vision and speech recognition in recent 

years.  Within natural language processing, much of the work 

with deep learning methods has involved learning word 

vector representations through neural language models [14] 

and performing composition over the learned word vectors 

for classification[15].Word vectors, wherein words are 

projected from a sparse, 1-of-V encoding (here V is the 

vocabulary size) onto a lower dimensional vector space via a 

hidden layer, are essentially feature extractors that encode 

semantic features of words in their dimensions. In such dense 

representations, semantically close words are likewise close 

in euclidean or cosine distance in the lower dimensional 

vector space[12]. 

Generally, RNN or CNN based architecture are used for 

NLP task such as sentiment analysis. The CNN network tries 

to extract information about the local structure of the data by 

applying multiple filters (each having different dimensions). 

The RNN based better suited to extract the temporal 

correlation of the data and dependencies in the text snippet. 

CNNs have been very successful for several computer 

vision and NLP tasks in the recent years. They are specially 

powerful in exploiting the local correlation and pattern of the 

data through learned by their feature maps. One of the early 

works which used CNN for text classification is by Kim [12], 

which showed great performance on several text 

classification tasks. 

To perform text classification with CNN, usually the 

embedding from different words of a sentence (or paragraph) 

are stacked together to form a two-dimensional array, and 

then convolution filters (of different length) are applied to a 

window of h words to produce a new feature representation. 

Then some pooling (usually maxpooling) is applied on new 

features, and the pooled features from different filters are 

concatenated with each other to form the hidden 

representation. These representations are then followed by 

one (or multiple) fully connected layer(s) to make the final 

prediction. Figure-5 shows general architecture of CNN. 

 
Figure-5 

A recurrent neural network (RNN) [Elman, 1990] is able 

to process a sequence of arbitrary length by recursively 

applying a transition function to its internal hidden state 

vector ht of the input sequence. The activation of the hidden 

state ht at time-step t is computed as a function f of the current 

input symbol xt and the previous hidden state ht-1. 

It is common to use the state-to-state transition function f 

as the composition of an element-wise nonlinearity with an 
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affine transformation of both xt and ht1. Traditionally, a 

simple strategy for modeling sequence is to map the input 

sequence to a fixed-sized vector using one RNN, and then to 

feed the vector to a softmax layer for classification or other 

tasks Cho et al.[16]. A standard RNN architecture is as shown 

in figure-6. 

 
 

Figure-6 

VII. SYSTEM ARCHITECTURE AND EXPERIMENTAL SETUP 

The configuration of a RNN is formed by the following 

hyper-parameters: (1) output dimension on embedding layer 

(2) Number of hidden RNN and MLP layers/neurons. The 

model used in this experiment has one embedding layer with 

output dimension of  100 along with a RNN layer. The hidden 

dimension for the RNN layer is set as 256. There is one dense 

layer in the network. The output from the RNN layer is then 

fed as an input to the fully connected layers. The output of 

these dense layers is then passed through a softmax layer 

which calculates the probabilities for each of the class. The 

Sentiment Feature is the target variable in this experiment. 

The batch size used in this experiment is 20. The learning rate 

set for the experiment is 3e-3. The loss measure used here is 

the CrossEntropyLoss and the performance metric used is 

Accuracy. We also use pretrained GLOVE embeddings in the 

experiment to perform transfer learning. 

VIII. RESULTS 

The results obtained are shown for all the three methods: 

Naïve Bayes classifier, RNN and RNN with pre-trained 

embeddings. The system architecture and setup is described 

in section VII.  

The plot for training and testing accuracy with respect to 

number of epochs is as shown in figure-7 

 
Figure-7 

The plot for testing loss with respect to the number of 

epochs is as shown in figure-8. 

 

 
Figure-8 

 

 

Table-1 gives us details of accuracies for different models 

on the dataset. 

 

Classification Model Accuracy 

Naïve Bayes    52.56% 

RNN    57.04% 

RNN with pre-trained 

embeddings 

73.68% 

Table-1 

 

IX. CONCLUSION 

It can be said for this experiment that the use of pre-

trained embeddings can prove to be quite useful to boost 

up the accuracy and reduce the computational complexity. 

However, the use of pre-trained embeddings also depends 

on the domain of an application. Thus, word vector 

representation needs to be computed as a universal vector 

that can understand the context of words in multiple 

domains. Although, pre-trained embeddings may not be 

able to represent words across multiple domain but they 

prove to be of great use when working on a dataset that has 

a limited amount of text. These vectors can quickly learn 

from the given set of data and can be used as an effective 

learning technique.      
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