
P
os
te
d
on

13
A
p
r
20
20

—
C
C
-B

Y
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
21
00
71
3.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Capsule Networks: An Alternative Approach to Image

Classification Using Convolutional Neural Networks

KARAN SOOD 1 and Jinan Fiaidhi 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

I studied a new approach called Capsule networks to overcome the drawbacks of convolutional neural networks.

1



Capsule Networks: An Alternative Approach to
Image Classification Using Convolutional Neural

Networks
Karan Sood

Masters in Computer Science
Lakehead University
Student Id:1099550

Section: COMP-5112-WA

Abstract—Convolutional neural networks tend to lose lot of in-
formation about the image due to their pooling operation, which
leads them to misclassify images. In this paper, I discuss how
we can preserve the information about the various aspects of the
image such as translational information, rotational information
etc. by using Capsule networks suggested by the godfather of
deep learning- Geoffrey Hinton.

I. INTRODUCTION

A. What is Deep Learning?
Deep learning (also known as deep structured learning

or differential programming) is part of a broader family of
machine learning methods based on artificial neural networks
with representation learning. Learning can be supervised,
semi-supervised or unsupervised. Deep learning architectures
such as deep neural networks, deep belief networks, recurrent
neural networks and convolutional neural networks have been
applied to fields including computer vision, speech recogni-
tion, natural language processing, audio recognition, social
network filtering, machine translation, bioinformatics, drug
design, medical image analysis, material inspection and board
game programs, where they have produced results compara-
ble to and in some cases surpassing human expert perfor-
mance. Artificial neural networks (ANNs) were inspired by
information processing and distributed communication nodes
in biological systems. ANNs have various differences from
biological brains. Specifically, neural networks tend to be
static and symbolic, while the biological brain of most living
organisms is dynamic and analog.

Some common application of deep learning are:automatic
speech recognition, image recognition, visual art processing,
natural language processing, drug discovery and toxicology
and recommendation systems to list a few.

Deep learning methods can achieve state-of-the-art results
on challenging computer vision problems such as image clas-
sification, object detection, and face recognition.We are awash
in images: photographs, videos, YouTube, Instagram, and
increasingly from live video. Computer Vision, often shortened
to CV, is defined as a field of study that seeks to develop
techniques to help computers “see” and understand the content
of digital images such as photographs and videos.The problem

of computer vision appears simple because it is trivially solved
by people, even children but teaching computers to do exactly
same is quite a challenging task. This is mainly because of
following reasons:

• We do not have a strong grasp of how human vision
works.

• The complexity inherent in the visual world.
• A true vision system must be able to see in any of

an infinite number of scenes and still extract something
meaningful.

Deep learning methods are popular, primarily because they are
delivering on their promise. Some of the first large demon-
strations of the power of deep learning were in computer
vision, specifically image recognition. The five promises of
deep learning for computer vision are as follows:

• The Promise of Automatic Feature Extraction: Fea-
tures can be automatically learned and extracted from
raw image data.

• The Promise of End-to-End Models: Single end-to-end
models can replace pipelines of specialized models

• The Promise of Model Reuse: Learned features and even
entire models can be reused across related tasks.

• The Promise of Superior Performance: Techniques
demonstrate better skill than classical methods on chal-
lenging tasks.

• The Promise of General Method: A single general
method (e.g. convolutional neural networks) can be used
on a range of related tasks.

B. Convolutional Neural Networks
A Convolutional Neural Network (ConvNet/CNN) is a

Deep Learning algorithm which can take in an input image,
assign importance (learnable weights and biases) to various
aspects/objects in the image and be able to differentiate one
from the other. The pre-processing required in a ConvNet is
much lower as compared to other classification algorithms.
While in primitive methods filters are hand-engineered, with
enough training, ConvNets have the ability to learn these
filters/characteristics. The architecture of a ConvNet is anal-
ogous to that of the connectivity pattern of Neurons in the



human brain and was inspired by the organization of the
Visual Cortex. Individual neurons respond to stimuli only in
a restricted region of the visual field known as the Receptive
Field. A collection of such fields overlap to cover the entire
visual area.

1) Why ConvNets over Feed-Forward Neural Nets?: In
cases of extremely basic binary images, the method of using
feed forward neural networks might show an average precision
score while performing prediction of classes but would have
little to no accuracy when it comes to complex images
having pixel dependencies throughout. A ConvNet is able to
successfully capture the Spatial and Temporal dependencies
in an image through the application of relevant filters. The
architecture performs a better fitting to the image dataset due
to the reduction in the number of parameters involved and
reusability of weights. In other words, the network can be
trained to understand the sophistication of the image better.

Consider the following input image: In the figure, we

Fig. 1. Input image

have an RGB image which has been separated by its three
color planes- Red, Green, and Blue. There are a number of
such color spaces in which images exist — Grayscale, RGB,
HSV, CMYK, etc. When an image reaches higher dimensions
such as 8k (7680 x 4320), then it would turn out to be very
computationally expensive if a regular feed-forward network
is used. The role of the ConvNet is to reduce the images into
a form which is easier to process, without losing features
which are critical for getting a good prediction. This is
important when we are to design an architecture which is not
only good at learning features but also is scalable to massive
datasets.

2) The Convolution operation: In the figure shown below,
the green section resembles our 5x5x1 input image, I. The ele-
ment involved in carrying out the convolution operation in the
first part of a Convolutional Layer is called the Kernel/Filter,
K, represented in the color yellow. We have selected K as a
3x3x1 matrix.

Fig. 2. Convolution operation

The Kernel shifts 9 times because of stride length = 1
(non-strided), every time performing a matrix multiplication
operation between K and the portion P of the image over which
the kernel is hovering.

Fig. 3. Kernel slides with stride=1

The filter moves to the right with a certain stride value till
it parses the complete width. Moving on, it hops down to the
beginning (left) of the image with the same stride value and
repeats the process until the entire image is traversed.

C. The Convolution operation
Convolutional networks fail to understand the relationship

between simple features in the deeper layers nearer to the
input and high level features closer to the output. To solve
this, they use max-pooling operation that maps a group of
pixels to a particular value, thus, creating high level feature



maps.But in doing so, they tend do lose a lot of information
(for example, it has no information about the pose such as
translational and rotational information). Thus, mere presence
of some features in an image is enough for the CNN to classify
it into some category without taking into consideration the
relative orientation of those features.
Let us consider a very simple and non-technical example.
Imagine a face with components such as the oval face, two
eyes, a nose and a mouth. For a CNN, a mere presence of
these objects can be a very strong indicator to consider that
there is a face in the image. It does not understand the spatial
and relative orientational relationships.

Fig. 4. Non-equivariance in CNN

In this paper, I present my studies on a novel approach
developed by Geoffrey Hinton and his colleagues to overcome
the drawbacks of CNN discussed above. They called this new
type of network architecture- Capsule Networks. In addition
to introducing this new network, they also developed an
algorithm called Dynamic Routing in order to train these
networks.

II. THEORY

A. Inverse Graphics Approach

Computer graphics deals with constructing a visual image
from some internal hierarchical representation of geometric
data. Note that the structure of this representation needs to
take into account relative positions of objects. That internal
representation is stored in computer’s memory as arrays
of geometrical objects and matrices that represent relative
positions and orientation of these objects. Then, special
software takes that representation and converts it into an
image on the screen. This is called rendering. Inspired by
this idea, Hinton argues that brains, in fact, do the opposite
of rendering. He calls it inverse graphics: from visual
information received by eyes, they deconstruct a hierarchical
representation of the world around us and try to match it
with already learned patterns and relationships stored in the
brain. This is how recognition happens. And the key idea is
that representation of objects in the brain does not depend on
view angle.

In order to correctly do classification and object recognition,
it is important to preserve hierarchical pose relationships be-
tween object parts. Capsule networks incorporate these relative
relationships between objects and it is represented numerically
as a 4D pose matrix.When these relationships are built into
internal representation of data, it becomes very easy for a
model to understand that the thing that it sees is just another
view of something that it has seen before.

Fig. 5. Statue of liberty at different angles

Consider the image above. We can easily recognize that this
is the Statue of Liberty, even though both the images show it
from different angles. This is because internal representation
of the Statue of Liberty in our brain does not depend on the
view angle. For a CNN, this task is really hard because it
does not have this built-in understanding of 3D space, but for
a CapsNet it is much easier because these relationships are
explicitly modeled. Another benefit of the capsule approach
is that it is capable of learning to achieve state-of-the art
performance by only using a fraction of the data that a
CNN would use. In this sense, the capsule networks work
very much like human brains as human brain requires only
few dozens of images to classify the images whereas CNNs
require tens of thousands of images to achieve very good
performance, which seems to be no better than the brute
force approach.

B. What exactly are Capsule Networks?

In order to construct an image in a computer, we have to
decide some parameters that define various objects present in



the image. For example, consider the image show in below
figure.

Fig. 6. Parameters instantiation for rendering of images

Now, in order to construct this simple image representing
boat, we have to first of all define the parameters of the
rectangle and triangle that make up the image. After that, we
feed these parameters to a computer software that produces the
image as per the defined parameters. This is called rendering.
Now consider the reverse scenario as depicted in the image
below: Here, we have the image with us and we need to

Fig. 7. Estimating parameters given the image

estimate the instantiation parameters that make up various
objects present in the image, that is, given the image, we need
to find the x and y co-ordinates as well as the rotational angle
of the boat and the triangle that make up the image. This
process is called Inverse graphics approach which Hinton had
talked about. Capsule networks are networks that do inverse
rendering and try to identify the relationship between various
objects that make up the image.

C. How are capsules represented?
The capsules in the capsule networks are represented by

something called activation vectors. Just like any ordinary
vector, these activation vectors also have two fundamental
characteristics- the magnitude and the direction, as shown in
the fig 8

The length of the activation vector represents the probability
of an object being present at a particular location in the
image- zero length indicating absence whereas length of
one indicating absolute confidence about the presence of the
object. The direction on the other hand tells us about the pose
of the image. It gives us information about the rotational and
translational aspects among many others.

Since we know that measure of probability can never be
greater than one, therefore, we have to make sure that the

Fig. 8. Activation vector

length of each activation vector produced is between 0 and
1. To achieve this, we use a function called squash function
which is described by the below formula:

Fig. 9. Squashing the activation vector

In order to handle the case where the object might have
zero probability to be present at a particular location, we need
to add a non-zero parameter called ’epsilon’ to denominator
so that even if we have zero chance of observing an object
we do not end up with a case where we have zero by zero
division.

D. Concept of equivariance
The main drawback of convolutional neural networks is that

it tends to lose lot of information due to pooling operation
and hence, it is not able to preserve pose information of
an object in the image. This is known as non-equivariance.
Capsule networks tend to preserve the pose information.

Fig. 10. One possible orientation

If we look at Fig 10, then we can see that to represent
the boat in the image, we have 50 corresponding capsules



on the left. Among these capsules, there are two capsules or
activation vectors that have larger length as compared to other
capsules in the same figure. This represents higher probability
of finding the triangle and rectangle at those specific positions.

Fig. 11. Changed orientation

If we look at Fig 11, then we can observe that even
on slightly changing the orientation of the boat, there is a
corresponding change in the orientation of these two activation
vectors as well, which demonstrates the fact that these capsules
are able to capture the pose information with the help of the
activation vectors. Thus, we can say that capsules preserve the
pose information and are able to overcome the drawbacks of
traditional convolutional neural networks.

E. How do capsules work?
If we consider the working of an artificial neuron, then we

can easily observe that there are three basic steps that govern
the working of an artificial neuron. These are as follows:

1) Scalar product of weights: In this step, each artificial
neuron receives inputs from all other neurons it is
connected to in the form of scalar values and multiplies
them with the corresponding weights to obtain scalar
products..

2) Sum of products: In this step, all the products that have
been calculated in the above step are added together to
obtain the weighted sum of the signals that the neuron
has received.

3) Non-linear transformation: In this last step, the
weighted sum obtained in the previous step is passed
through one of the many activation functions available.
This step is required to add some non-linearity to
the input so that neural network is able to capture
non-linear trends in the data as well. If we do not use
any activation function, then a neural network would
only be able to identify the linear trends in the data and
would lead to problems such as heteroskedasticity, that
is, non-constant variance in the error terms leading to
unstable confidence intervals.

A capsule has these same transformations in the vector form
and an additional step where all the input vectors received
from the lower level neurons are multiplied together. These
steps are discussed in detail below.

1) Matrix multiplication of the input vectors: Consider
three inputs from lower level capsules entering the capsule ’j’
present in the layer above. The outputs from the lower level
capsules are represented as vectors u1, u2 and u3. Lengths
of these vectors encode probabilities that lower-level capsules

detected their corresponding objects and directions of the
vectors encode some internal state of the detected objects.
Let us assume that lower level capsules detect eyes, nose and
mouth respectively and output capsule detects face.

Fig. 12. Working of capsule

These vectors then are multiplied by corresponding weight
matrices ’W’ that encode important spatial and other rela-
tionships between lower level features (eyes, mouth and nose)
and higher level feature (face). For example, matrix W2j may
encode relationship between nose and face: face is centered
around its nose, its size is 10 times the size of the nose and
its orientation in space corresponds to orientation of the nose,
because they all lie on the same plane. Similar intuitions can
be drawn for matrices W1j and W3j. After multiplication by
these matrices, what we get is the predicted position of the
higher level feature. In other words, u1hat represents where
the face should be according to the detected position of the
eyes, u2hat represents where the face should be according to
the detected position of the nose and u3hat represents where
the face should be according to the detected position of the
mouth.
If the predictions made by these three capsules point at the
same position and state of the face, then the network concludes
that it must be a face there.

2) Scalar weighting of input vectors: In artificial neural
networks, the neuron receiving the input signal from the
neurons present in the previous layer weighs them according to
weights of the corresponding neuron that connects them. These
weights are learned by the network during back-propagation.
But in case of capsule networks these weights are decided by
a process called Dynamic Routing. The higher level capsules
receive input from many lower level capsules. When the lower
level capsules agree on a particular prediction, they tend to
form a cluster in the higher level capsule. When the output
of the lower level capsule is multiplied by the weight matrix
learned by the network, it tends to land in the cluster space
of the higher level capsule. The lower level capsule output
would be routed to that particular capsule where it tends to
agree with predictions made by the other low-level capsules.
In order to understand this better, we can consider the figure
given below where we have two higher level capsules and
one lower level capsule whose output we have to decide the
routing for.



Fig. 13. Routing of input signals to capsules

In the image above, we have one lower level capsule that
needs to “decide” to which higher level capsule it will send
its output. It will make its decision by adjusting the weights
C that will multiply this capsule’s output before sending it
to either left or right higher-level capsules J and K. Now, the
higher level capsules already received many input vectors from
other lower-level capsules. All these inputs are represented by
red and blue points. Where these points cluster together, this
means that predictions of lower level capsules are close to each
other. This is why, for the sake of example, there is a cluster
of red points in both capsules J and K. When we multiply the
lower level capsule’s output with the weight matrix, it lands
far from the cluster of red dots in capsule J whereas for other
capsule, that is capsule K, it lands near the cluster of red dots.
So, the output of the lower level capsule would be routed to
capsule K rather than capsule J.

3) Sum of the weighted input vectors: This is same as
the regular artificial neurons where we simply sum up the
weighted outputs. The only difference in the capsule networks
is that we have the addition of vectors here.

4) Squashing of the vectors: Just like I mentioned that the
length of the activation vector represents the probability of
finding an object at a particular position in the image, it needs
to be ensured that it does not exceed one as the probability can
never be greater than one. For this purpose, we make use of
squash function that takes in a vector as an input and produces
another vector that has length between 0 and 1 and without
any change in the original direction. This operation is known
as the squashing operation.

F. The dynamic routing between the capsules
1) The calculation of actual output of target capsules:

Consider the following picture showing a simple boat made
up of a rectangle and a triangle.

In this picture, we have to route the predicted output from
the lower level capsules to the higher layer which contains two
capsules because there are two possibilities for the object-one
is the object being a house and the other one is the object

Fig. 14. Routing mechanism

being a boat. In order to decide the path, the following steps
are followed:

• Initializing the raw routing weights to zero: In this
step, all the weights are initialized to zero. These are
known as the raw routing weights represented as bj .

• Calculating the actual routing weights: The second step
is to apply soft-max activation function to the raw routing
weights calculated in the previous step to obtain the actual
routing weights that are represented as cj .

• Weighted sum calculation: In this step, the routing
weights obtained in the previous step are multiplied
by the predicted output. In doing so, it might happen
that the length of the vectors become greater than one,
therefore, we need to apply squash function one more
time to satisfy the probability constraint. This gives us
the calculated actual output of the higher level capsules
which is represented as vj .

Fig. 15. Actual output calculation

The figure above shows how the actual output is calculated
using the routing mechanism.

After calculating the actual output, we need to update the
routing weights to make our model learn. In order to update the
routing weights, we first of all calculate the degree of similarity
between the predicted output and the actual output. This is
done by calculating the dot product of the predicted vector and
the calculated vector. When there is agreement, that is angle
between the two vectors is less than 90 degrees, its cosine
value is positive and there is a corresponding increase in the
routing weight. On the other hand, when the angle between the



two vectors is greater than 90 degrees, then cosine of that angle
becomes negative resulting in decrease in the corresponding
routing weights. In below figure, there is similarity between
the predicted and the actual output and hence, there is an
increase in the routing weights.

Fig. 16. Routing weights increase

The dissimilarity between the predicted output and the
actual output causes the routing weights to decrease as shown
in the figure below.

Fig. 17. Routing weights decrease

2) Convergence of the algorithm: This whole process
described above is just a single iteration in dynamic routing
mechanism. It repeats itself over a couple of times till there
is no change in the routing weights for specified number of
iterations or else the maximum number of iterations has been
reached, whichever happens earlier.
The dynamic routing, thus, helps us in preventing noise in the
system by properly routing the outputs of lower level capsules
to appropriate capsules in the higher layer.

III. METHODOLOGY

I have used TensorFlow to implement the capsule network.

A. Feeding the input images

My first step was to create tensor flow placeholder that
would directly feed the input images of dimensions (28 x
28 x 1) to the network. Since I am working with gray-scale
images, therefore, the last channel has the value 1. If there
were coloured images, then, the last channel value would have
been 3 corresponding to the red, green and blue channels.

B. Building the primary layer
The second step was to build the primary capsule layer

that would try to identify different types of information about
the objects present in the scene. For this purpose, I used two
convolutional layers. To the first convolutional layer, I directly
fed the input images. The output of this convolutional layer
was fed as an input to the second convolutional layer that
was configured to output 256 feature maps with each of them
containing 36 scalars. The feature maps were reshaped so that
I now had 32 maps containing 6 by 6 grid of 8 dimensional
vectors. This is illustrated in the image below.

Fig. 18. Convolutional feature maps reshaped

C. Modifying the squash function
The squash function that I defined in Fig 9 has a small

problem when I tried implementing it in the TensorFlow. The
problem is that if any of the vectors in the equation represented
by Fig 9 become zero, that is when we have zero chance of
observing an object in the given scene, then the gradients can
not be computed and the ’norm’ function of TensorFlow gives
us ’NaN’ values due to which the network literally becomes
dead. In order to solve this problem, the squash function can
be modified as shown in Fig 19.

Fig. 19. Modified squash function to handle NaN values



D. Implementing the digit capsules
Since there were ten classes to be identified (numbers 0 to

9), therefore, there were 10 capsules in the output layer. Each
of these capsules were 16-dimensional vectors that contained
full pose information (such as the skewness, rotation relative
to the axis etc.) of the objects present in the image to be
classified. Now, I needed to compute the output of the digit
capsules. This can be done in two steps.

1) Making predictions for the digit capsules: The first
step was to predict the output for each of the capsules
present in the digit capsule layer. The prediction is made
by computing the product of transformation matrix learned
during the training process and the output of the primary
level capsules. The transformation matrix learns the part-whole
relationship between the objects present in the image and the
image itself. This process is repeated for every pair possible
between the lower level capsules and the number of capsules
present in the higher layer. For example, here in the lower
layer, there are (32 x 36 = 1152) capsules present. Therefore,
there would be these many predictions for every digit capsule
in the higher layer. Since there are 10 digit capsules in total,
therefore, we have total of 11520 predictions. This is shown
in the figure below.

Fig. 20. Predicted output for the higher-level capsules

2) Dynamic routing of the outputs of lower level capsules:
After calculating the predicted outputs for the higher-level
capsules in the first step, we need to make sure that they reach

appropriate capsules in the higher layer so that the noise in the
system can be prevented. This is done by an algorithm called
routing by agreement which I have discussed in the theory
part. Visually, it looks something like this.

Fig. 21. Routing of the predicted outputs

E. Estimating the class probabilities
After calculating the outputs of the digit capsules, I calcu-

lated the length of the those output vectors that would give
me the probabilities of an instance to belong to each of the
10 classes, that is, the probability of an instance to be one
of the digits. After computing these probabilities, the class of
a given instance is determined by finding the digit capsule
that outputs the maximum value among all the capsules. For
example- if the length of the output vector corresponding to
the digit capsule 7 is found to be maximum, then we can
say that the image is of digit 7. One important point that
should be taken care of is that we are not using a soft-max
activation in the last layer due to which the probabilities may
not add up to one, But this gives us an additional advantage
of detecting multiple images in the scene corresponding to
the digit capsules that output the maximal probability values.
The next step was to improve the model using some loss
function. For this I used something suggested in the paper that
first introduced the concept of capsule networks and dynamic
routing algorithm. The loss is called margin loss and is given
by the following equation:

Fig. 22. The Margin loss for training the model

The term T represents the probability of an image to belong
to class ’k’.. For a given image instance, it is equal to 1 if the
image of class ’k’ is present in the image, else it is equal to
0. In order to minimize this margin loss, there is a constraint
which says that if an instance belongs to class ’k’, then the
value of ’v’ for class ’k’ should be greater than 0.9, else it
should be less than 0.1



The whole process up till now can be visualized as follows:

Fig. 23. A snapshot of the process

F. Computing reconstruction loss

To compute the reconstruction loss, I had to first construct
the image from the information that the network has learnt.
I used a decoder for this purpose. The decoder has three
fully connected layers also called dense layers with first layer
having 512 hidden neurons, the second layer having 1024
hidden units and the final one having 784 hidden units. The
decoder produced a 784-dimensional vector containing the
pixel intensity values for each 28 by 28 image instance that
was fed to the capsule network. The reconstruction loss was
computed by squaring the difference between the original
image and reconstructed image. Since the original image had
dimensions (28x28x1), therefore, it had to be first converted
into 784-dimensional vector. The total loss was obtained by
adding together the margin loss and the reconstruction loss
but it was scaled down in a manner to let the margin loss
dominate the training process of the model. I used ”Adam”
optimizer with default settings to optimize the training process.
One important thing suggested in the paper was that instead of
sending all the outputs of the capsule network to the decoder
network, we must send only the output vector of the capsule
that corresponds to the target digit. This was done by setting
zeros for all the values of the digit capsules except for the
one that actually represented the image. For testing instances,
since labels are not known beforehand, the predictions for a
particular class was used to decide the mask.
The entire process of training from the instance an input image

is fed to the network till the model fits to the data can be
visualized with the help of the following figure:

Fig. 24. The training process

The above image demonstrates the predictions made by the
model when it is dealing with the training instances. Here,
the class labels are used to create the mask. When the model
has to deal with the testing instances where the labels are not
known, the mask is created by using the predictions of the
model. This is illustrated in the figure below.

Fig. 25. The entire testing process

IV. RESULTS

A. Training accuracy
I used MNIST dataset for training the model. It contained

60000 training images and 10000 test images. I did not do
hyper-parameter tuning or used any dropout layer. I just trained
the model for a few epochs, each time measuring the accuracy
on the validation set and saving the model if the validation loss
happened to be lowest so far. This is method is generally called
’Early stopping’. The validation set contained 5000 images
and the model computed the mean accuracy and mean loss
value at the end of each epoch. Since TensorFlow has been
used to implement the code, GPUs or even better TPUs (tensor



processing units) can greatly enhance the speed of training and
the corresponding time would be greatly reduced. After a few
epochs, there was considerable learning by the model and it
was giving an accuracy of 99 percent on the validation set
containing 5000 images. This is shown in the below figure:

Fig. 26. Training epochs

B. Testing accuracy
After training the model for a few epochs, I evaluated

the model on the test set that contained 10000 images as is
provided by the creators of MNIST dataset. The test accuracy
of the model was found to be 99.5 percent. Earlier, I found
it a little strange having obtained better accuracy on the test
set than the training set. But, I researched and I found that
sometimes model is indeed able to better chase the errors in
the test set depending on how we split the data. The accuracy
on the test set is shown in the figure below.

Fig. 27. Accuracy on the test set

C. Predictions
After training my model, I decided to make some pre-

dictions to have a better idea about how my model was
performing. The model’s ability in making predictions on new
data is shown in Fig 28 and Fig 29 on the right hand side.

V. SUMMARY

The traditional use of convolutional neural networks can
be useful to some extent when we want to just label the
images and do not care much about the features that make
up the image. But, when it comes to tasks such as object
detection or image segmentation, then convolutional nets tend
to fail miserably due to loss of information during the pooling
operation that reduces the dimensionality of the feature maps
created during the convolution operation. Thus, we can say that
convolutional networks are non-equivariant in nature. This
drawback can be overcome by the use of capsule networks
suggested by Geoffrey Hinton. The capsule networks make
use of capsules which are nothing but the activation vectors
whose length represent the probability of presence of an object
in the image and the direction represent the orientation. De-
pending upon the number of dimensions used to represent the
activation vector, we can capture lot of pose information such

Fig. 28. Predictions-1

Fig. 29. Predictions-2

as translational information, rotational information, skewness,
thickness of the image etc. Whenever there is even a minute
change in the image, there is a corresponding change in the
values of the activation vector as well. This way the pose
information of the image is preserved and we say that capsule
networks are equivariant in nature.

VI. FUTURE WORK

There is lot of scope for improvement in the design of
the capsule networks. Although the capsule networks have
been able to achieve remarkable performance on the MNIST
dataset, but the performance is relatively average as far as the
other datasets such as CIFAR10 or CIFAR100 are concerned.
We also do not have any idea about the performance of capsule
networks on large image datasets such as ImageNet. Another
area that needs improvement is the dynamic routing of the
capsule networks as they significantly increase the training



time of the network, One last thing that I would like to mention
is that capsule networks are not able to detect identical objects
close to each other. But, this may or may not be a problem as
even human eyes are not very good at it.

REFERENCES

[1] Geoffrey E.Hinton, Google Brain, Toronto, Sara Sabour, Nicholas Frost,
Dynamic Routing Between Capsules, NIPS 2017.

[2] G. E. Hinton, A. Krizhevsky S. D. Wang, Transforming Auto-encoders,
2011.

[3] Wei Zhao, Min Yang, Shenzen Institutes of Advanced Technology,
Chinese Academy of Sciences, Jiambo Ye, Pennsylvania State Univer-
sity, Zeyang Lei, Graduate School at Shenzhen, Tsinghua University,
Soufei Zhang, Nanjing University of Posts and Telecommunications,
Zhou Zhao, Zhejiang University, Investigating Capsule Networks with
Dynamic Routing for Text Classification, 2018.

[4] Mercedes E. Paoletti, Student Member, IEEE, Juan M. Haut, Student
Member, IEEE, Ruben, Fernandez-Beltran, Javier Plaza, Senior Member,
IEEE, Antonio Plaza, Fellow, IEEE, and Filiberto Pla.

[5] Ningyu Zhang, Artificial Intelligence Research Institute, Zhejiang Lab,
China, Shumin Deng, College of Computer Science and Technology,
Zhejiang University, China, Alibaba-Zhejiang University Frontier Tech-
nology Research Center, China, Zhanlin Sun, College of Computer
Science and Technology, Zhejiang University, China, Xi Chen, College
of Computer Science and Technology, Zhejiang University, China, Wei
Zhang, Alibaba-Zhejiang University Frontier Technology Research Cen-
ter, China, Alibaba Group, China, Huajun Chen, College of Computer
Science and Technology, Zhejiang University, China.

[6] Steve Lawrence, Member, IEEE, C. Lee Giles, Senior Member, IEEE,
Ah Chung Tsoi, Senior Member, IEEE, Andrew D. Back, Member,
IEEE, Face Recognition: A Convolutional Neural-Network Approach,
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1,
JANUARY 1997.

[7] Patrice Y. Simard, Dave Steinkraus, John C. Platt, Microsoft Research,
One Microsoft Way, Redmond WA 98052, Best Practices for Convolu-
tional Neural Networks Applied to Visual Document Analysis.

[8] Alex Krizhevsky, University of Toronto, Ilya Sutskever, University of
Toronto, Geoffrey E. Hinton, University of Toronto, ImageNet Classifi-
cation with Deep Convolutional Neural Networks.

[9] Tianjun Xiao, Institute of Computer Science and Technology, Peking
University, Yichong Xu, 2Microsoft Research, Beijing, Kuiyuan Yang,
Microsoft Research, Beijing, Jiaxing Zhang, Microsoft Research, Bei-
jing, Yuxin Peng, Institute of Computer Science and Technology, Peking
University, Zheng Zhang, Institute of Computer Science and Technology,
Peking University, The Application of Two-level Attention Models in
Deep Convolutional Neural Network for Fine-grained Image Classifica-
tion.

[10] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir
Anguelov, Google, Inc, 1600 Amphitheatre Parkway, Mountain View
(CA), 94043, USA.

[11] Wanli Ouyang, Ping Luo, Xingyu Zeng, Shi Qiu, Yonglong Tian,
Bhuvana Ramabhadran1Hongsheng Li, Shuo Yang, Zhe Wang, Yuanjun
Xiong, Chen Qian, Zhenyao Zhu, Ruohui Wang, Chen-Change Loy,
Xiaogang Wang, Xiaoou Tang, the Chinese University of Hong Kong,
DeepID-Net: multi-stage and deformable deep convolutional neural
networks for object detection.

[12] Jifeng Dai, Microsoft Research, Yi Li, Tsinghua University, Kaiming
He, Microsoft Research, Jian Sun, Microsoft Research, R-FCN: Object
Detection via Region-based Fully Convolutional Networks.

[13] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class detection
with a generative model. In CVPR, volume 1, pages 26–36. IEEE, 2006.

[14] Tara N. Sainath, IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598, U.S.A, Abdel-rahman Mohamed, Department of Computer
Science, University of Toronto, Canada, Brian Kingsbury, IBM T. J.
Watson Research Center, Yorktown Heights, NY 10598, U.S.A, Bhuvana
Ramabhadran1, IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598, U.S.A, DEEP CONVOLUTIONAL NEURAL NETWORKS
FOR LVCSR.

[15] Amara Dinesh Kumar, R.Karthika , Latha Parameswaran , Department
of Electronics and Communication Engineering , Amrita School of
Engineering, Coimbatore , Amrita Vishwa Vidyapeetham,India.

[16] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
The german traffic sign recognition benchmark: a multi-class classifica-
tion competition. In Neural Networks (IJCNN), The 2011 International
Joint Conference on, pages 1453–1460. IEEE, 2011.


