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Abstract

In this paper, a model-independent sensitivity analysis

for (deep) neural network, Bilateral Sensitivity Analysis (BiSA), is proposed to measure the relationship between neurons and
layers. Both the BiSA between pair of layers and the BiSA between any pair neurons in different layers are defined for (deep)
neural networks. This sensitivity can measure the influence or contribution from any layer to another layer behind this layer
in the (deep) neural networks. It provides a helpful tool to interpret the learned model. The BiSA can also measure the
influence or contribution from any neuron to another neuron in a subsequent layer and is critical to analyze the relationship
between neurons in different layers. Then the BiSA from any input to any output of a network is easily defined to assess the
connections between the inputs and outputs. The proposed BiSA of (deep) neural networks is then applied to characterize the
well connectivity in reservoir engineering. Given a network trained by Water Injection Rates (WIRs) and Liquid Production
Rates (LPRs) data, the well connectivity can be efficiently described through BiSA. The empirical results verify the effectiveness
of

the proposed method. The comparisons with the exiting methods demonstrate the robustness and the superior performance of

the proposed method.
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Abstract—In this paper, a model-independent sensitivity analy-
sis for (deep) neural network, Bilateral Sensitivity Analysis (BiSA),
is proposed to measure the relationship between neurons and
layers. Both the BiSA between pair of layers and the BiSA
between any pair neurons in different layers are defined for
(deep) neural networks. This sensitivity can measure the influence
or contribution from any layer to another layer behind this
layer in the (deep) neural networks. It provides a helpful tool
to interpret the learned model. The BiSA can also measure the
influence or contribution from any neuron to another neuron
in a subsequent layer and is critical to analyze the relationship
between neurons in different layers. Then the BiSA from any
input to any output of a network is easily defined to assess the
connections between the inputs and outputs. The proposed BiSA
of (deep) neural networks is then applied to characterize the well
connectivity in reservoir engineering. Given a network trained
by Water Injection Rates (WIRs) and Liquid Production Rates
(LPRs) data, the well connectivity can be efficiently described
through BiSA. The empirical results verify the effectiveness of
the proposed method. The comparisons with the exiting methods
demonstrate the robustness and the superior performance of the
proposed method.

Index Terms—Sensitivity analysis, bilateral sensitivity, neural
network, understandable, interpetable, well connectivity.

I. INTRODUCTION

(Deep) neural networks have shown powerful capabilities
and effectiveness in realizing intelligent systems [1]–[3]. De-
spite this, the “black-box” nature still limits its applications
and becomes the main reason of the refusal by many ap-
plication areas [4]. In reservoir engineering, for instance,
the researchers question the reliability of neural networks
in real oil field handling, which has a direct effect on the
cost of production and productivity. Researchers need ma-
chine learning models that they can understand and interpret.
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Besides, they are eager for meaningful interactions with the
models. Recently, several attempts have been made to develop
understandable machine learning models that can explain the
insights of the models to improve model transparency and
obtain thorough insights into what is learned by the models
[5]. This issue has been addressed by various means such as
extracting symbolic rules [6], [7], visualization [8], and quan-
titative analysis [19]. However, explaining neural networks,
especially deep neural networks, is a hard issue, even simple
properties of the models are difficult to describe using strictly
theoretical inference. Hence, more efforts are needed to clarify
the internal mechanism of the mighty (deep) neural networks.

Sensitivity analysis (SA) is a process that determines the
impact of an input variable on the output of a model [9],
[10]. The most widely adopted definition of SA is the one
introduced by Saltelli et al. [11] as follows: the study of how
uncertainty in the output of a model can be apportioned to
different sources of uncertainty in the model input. Sensitivity
in a learning system refers to the change in the output of the
network corresponding to a small change in the parameter(s)
under study. Sensitivity analysis, as a fundamental part of com-
plex system analysis, has been proven to be an efficient tool to
interpret the awareness of neural networks [12]–[14]. It opens
the “black-box” by investigating the first-hand impacts of the
parameter(s) on the outputs for classification or regression
tasks, and helps to understand the learned relationship between
the input parameters and the output variables. SA has been
used to analyze the adaptive linear element (Adaline) network
as early as 1962 [15]. After that, a series of works have
been developed to discover the characteristics of sensitivity
for various neural networks, such as Adaline-based networks
[16], multi-layer perceptron (MLP) neural networks [17], [18],
and deep neural networks [19]. In [20], the sensitivity analysis
of ANNs is described as a partial derivative of the output to
the input of the network. Some other literatures focus on the
variance of the output error under certain assumptions [17],
[18]. Most works have implemented sensitivity analysis either
on input or weight perturbations for a single neuron taken from
an MLP network. In [17], sensitivity analysis is performed on
the output layer’s error, sequentially computing the sensitivity
neuron by neuron from the first to the last layer.

The neural network sensitivity analysis methods are de-
veloped in two major streams: partial derivative SA (PD-
SA) and stochastic SA (ST-SA). The PD-SA method [20]–[26]
primarily quantifies the significance of the input parameters
to the model output based on the differentiation of the input
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variables from the output variables. A standard approach in
sensitivity analysis is to compute the partial derivative of
outputs with respect to its input vector via the chain rule
of the derivatives, computing one layer at a time (Hashem
[20] and Fu and Chen [21]). On the other hand, the PD-SA
computes the sensitivity of the MLP neural network output
according to input perturbation which approaches zero [23],
[27]. It requires an assumption that the input perturbations are
random variables with the maximum absolute value less than
or equal to a calculated Q-value. This is not applicable to
common models owing to the difficulty of computing the Q-
value automatically. In [23], a PD-SA is applied to quantify the
relevance of input and hidden neurons of feedforward neural
networks. A variance-based pruning heuristic is proposed to
determine which neurons to remove. The partial derivative
sensitivity analysis computes the changes in the network
output with respect to perturbations of the parameters.

The PD-SA is often done based on the approximation of
the changes in the outputs with respect to the input or weight
perturbations. For the m-th input of the j-th sample with
perturbations, the Taylor expansion of the output changes is
as follows [15]:

f̂w

(
X(j) +4X(j)

m

)
− f̂w

(
X(j)

)
= f̂ ′w

(
X(j)

)
4xm +

1

2
f̂ ′′w

(
X(j)

)
(4xm)

2
+ · · ·

≈ f̂ ′w
(
X(j)

)
4xm,

(1)

where 4Xm = (0, · · · ,4xm, · · · , 0), 4xm >0 is a very
small fixed number for each feature. Then the PD-SA is
defined as the first order derivative, f̂ ′w

(
X(j)

)
, based on

the assumption that the part 1
2 f̂
′′
w

(
X(j)

)
(4xm)

2
+ · · · is

very small. PD-SA is sometimes represented as f̂ ′′w
(
X(j)

)
if

f̂ ′w
(
X(j)

)
≈ 0. In [10], the PD-SA for radial basis function

neural network (RBFNN) with regard to the m-th input of the
j-th sample is defined as

SAjm = f̂ ′w

(
X(j)

)
=
∂f̂w

(
X(j)

)
∂xm

=

Q∑
i=1

[
wiexp

(
‖X(j) − Ui‖
−2v2i

)
x
(j)
m − uim
−v2i

]
,

(2)

where X(j) represents the j-th sample, xm is the m-th input,
wi is the weight connecting the i-th hidden node, Ui and vi are
the center and width of the i-th basis function, respectively.
This kind of method has two main weaknesses. First, it
cannot deal with networks with non-differentiable activation
functions, and second, it does not consider the magnitude of
the parameters.

The stochastic sensitivity analysis (ST-SA) uses the magni-
tudes of the output perturbations between the original samples
and perturbed samples, in a statistical sense. Because of its
high computational efficiency, and as long as the function
expression between the output variable and the input parameter
is given, the sensitivity of the output variable in different input
parameters can be effectively analyzed. So it is widely used in
sensitivity analysis. The ST-SA for neural network is defined

by the magnitudes of the change in the output with respect
to weight or input perturbations. Compared to PD-SA, where
the rate of output change is used to approximate the sensitivity
corresponding to parameter perturbations, the ST-SA possesses
several advantages. First, the ST-SA does not evaluate each
training sample one by one and constrains less on the used
perturbations. It measures the differences between the original
outputs and the perturbed outputs based on the analytical
formulas for the neural network. Besides, ST-SA is more
interpretable, and it is more meaningful for feature or instance
selection. Finally, ST-SA is a straightforward manner reflects
the generalization error because of the usage of magnitudes of
output error produced by the parameter perturbations, which is
a direct reflection of the generalization. Hence, the sensitivity
analysis for neural networks in this paper is defined in a
stochastic manner.

In this paper, we first propose a Bilateral Sensitivity Analysis
(BiSA) scheme for the (deep) neural networks, then apply it
to an important issue of characterizing the well connectivity
in reservoir engineering.

The main contributions of this paper are:
(i) The model-independent BiSA between any pair of layers

in a neural network is defined;
(ii) The model-independent BiSA between any pair of neu-

rons where the members of the pair are from different layers
in a neural network is defined;

(iii) The BiSA from an input to the output of a neural
network is given;

(iv) The proposed BiSA of neural networks is applied to
characterize the well connectivity in reservoir engineering.

The remainder of this paper is organized as follows. Some
related works on stochastic sensitivity analysis and inferring
well connectivity are investigated in Section II. In Section III,
the Bilateral Sensitivity is proposed for both between a pair of
laye rs and between as pair of neurons from different layers.
The reservoir connectivity is characterized using the Bilateral
Sensitivity in Section IV. Some useful conclusions of this work
are given in Section V.

II. RELATED WORKS

In this section, first, a brief survey of stochastic sensitivity
of neural networks is investigated to make clear the diverse
definitions. Then some basic knowledge of well connectivity
in reservoir engineering is given to make readers ready for a
specific application of the proposed BiSA method.

A. The stochastic sensitivity analysis of neural networks

To the best of our knowledge, the sentivity of neural net-
works was first discussed by Hoff in [28] to analyze the output
changes of Adalines generated by weight perturbations and
later it was extended in [15], [16], [30]. Stevenson et al. [16]
studied the sensitivity of multi-layered networks (Madaline) to
weight errors, input errors, and the combination of input and
weight errors. For instance, the probability of decision error
was expressed in term of the ratio for weight error. Similarly
the probability of a decision error was approximated by a
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simple expression involving the weight and input perturba-
tion ratios due to the combined effect of weight and input
perturbations.

In [16], [18] and [29], the statistical sensitivity to weight
perturbations 4W is defined as

Sj(W ) := lim
σ→0

√
var[4y]

σ
, (3)

where 4y is the output changes due to weight perturbations,
σ is the standard deviation of each component of 4W , and
var[·] is the variance of [·]. Piché [30] introduced the direct
statistical analysis to determine the sensitivity of a neural net-
work to perturbations of weights. It provided understandable
consequence of neurons by the variance of the output error
for Madalines according to weight perturbations. This is a
fundamental work for ST-SA, where the output error of the
n-th Adaline node in layer l caused by the input and weight
perturbations is defined as

4ynl = f
(

(Xl +4Xl)
T

(Wl +4Wn
l )
)
− f

(
XT
l W

n
l

)
,

(4)
where 4Xl is the perturbation on the input to the l-th layer,
Xl, and 4W p

l is the perturbations to the weight Wl associated
with the n-th Adaline node in layer l. Then the sensitivity of
the l-th layer output to perturbations in the weights is repre-
sented by the noise-to-signal ratio (NSR), which is defined as
the ratio of the variance of the l-th layer’s output error to the
variance of the output of the l-th layer:

NSRl =
σ2
4yl
σ2
yl

. (5)

In [31], Alippi et al. introduced a sensitivity to errors in
neural networks using probability as follows:

pl (δyl) =
∑
δXl

pδyl |δXl · p(δXl), (6)

where pδyl |δXl is the conditional probability that a relative
output error δyl is generated whenever the input relative error
is δXl.

One important definition of stochastic sensitivity is proposed
by Sobol [36] considering the variance with respect to the
parameters and the total variance of the output. Sobol defined
the global sensitivity indices as as follows:

SfI (xI) =
V (fI)

V (f)
=

V (fI)∑
I V (fI)

, (7)

where V (fI) is the variance corresponding to the indices
I , V (f) is the sum of all the first-order and higher-order
terms added up to the total unconditional variance. Saltelli
et al. [11], [32], [33] improved the estimation procedure for
computing variances based on the Fourier amplitude sensitivity
test (FAST), where the sensitivity is computed through

Sh =
VarXh

[E(Y |Xh)]

Var(Y )
, (8)

where E(Y |Xh) represents the expectation of Y conditional
on X = xh, VarXh

denotes , Y is the output, and xh is the
h-th input factor. Fock [34] did further improvements on the

extended FAST method. Furthermore, a global sensitivity anal-
ysis based on the ANOVA decomposition was introduced in
[35] as an alternative way of measuring the sensitivity indices
of Sobol decomposition [36] for neural network classifiers.
However, two conditions, limited variable range and square-
integrable classification function, are required to be imposed
on the classification function.

Stevenson et al. [16] used the probability of decision error
to describe sensitivity but the magnitude of the error was
not considered. This was enhanced by Cheng and Yeung
[37] in neocognitron model but still could be directly used
in MLP. With antisymmetric squashing activation function,
Yeung et al. [38] extended Piche’s method [30] and removed
the independently identically distributed (i.i.d) restriction on
the input and output errors. In [17], sensitivity is defined as
the expectation of the output errors with respect to the input
and weight perturbations in a continuous interval. Both the
sensitivity for a single neuron and of the entire multi-layer
perceptron network are discussed. However, the computation is
highly complex, especially for the tasks with high dimensional
data. Shi et al. [39] generalized this method to radial basis
function (RBF) networks, later Yeung et al. [40] introduced
a localized generalization error model (L-GEM) within a
so-called Q-neighborhood of the training samples. However,
this method does not calculate the sensitivity for individual
instances. In [41] another Q-neighborhood based sensitivity
was introduced to assess sensitivity for individual instances of
the imbalanced classification problem. Recently, a stochastic
sensitivity [42] based on L-GEM was introduced to provide a
straightforward measure on an MLP’s output fluctuations.

Ng et al. [43] utilized a localized generalization error model
to create a novel hybrid filter-wrapper-type feature selection
methodology. This solution gives the possibility of removing a
large percentage of features causing a statistically insignificant
loss in the accuracy. The work presented in [44] defined
the stochastic sensitivity as the expected value of square of
the changes in the classifier output with respect to feature
perturbations. This, in turn, allows the authors to crate a
radial basis function neural network that can be trained by
minimizing the defined sensitivity.

The expectation based methods are also combined with
the variance to achieve a better performance. For the j-
th instance X(j) with the perturbation on the m-th feature,
4X(j)

m =
(

0, · · · ,4x(j)m , · · · , 0
)

, 4x(j)m ∈ R, the sensitivity
of this feature is given based on the difference of the network
output

4y(j) = f̂(W+4W )

(
X(j) +4X(j)

m

)
− f̂W

(
X(j)

)
, (9)

where 4y(j) is the output changes for the j-th sample, 4W
is the weight perturbation on weight W . For instance, the
ST-SA for RBFNN in [15] is defined as the combination of
expectation and variance:

SA = |E(4y)|+ c
√
V ar(4y), (10)

where 4y is the vector of output changes for all samples, c is
a positive constant, E(4y) is the expectation and V ar(4y)
is the variance of the output changes.
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Recently, Karmakar et al. [45] exploited the statistical
sensitivity in [18] as a penalty in the objective function of
an MLP neural network to enable the network to say “Don’t
know”. Xiang et al. [46] introduced the maximum sensitivity
by a bounded disturbance on the nominal input to measure
the maximum deviation of outputs. Li et al. [47] studied
the deviation of functions represented by DNN from their
typical mean field solutions by the large deviation theory
and path integral analysis, where the commonly used weight
sparsification and binarization in model simplification were
investigated under parameter perturbations. In [48], a provable
Sensitivity-informed Provable Pruning (SiPPing) method of
neural networks was suggested based on a ST-SA of measuring
the importance of each weight for one layer. The sensitivity of
a weight was defined as the proportion of the signal delivered
by this weight to the whole signal of that layer. Motivated by
information geometry, Shu et al. [49] introduced a stochastic
sensitivity analysis for DNN classifiers using a perturbation
manifold. To interpret and to enhance the adversarial ro-
bustness of DNNs, a sensitivity measure of a neuron was
defined by measuring the intensity of variation of neuron’s
behavior against benign and adversarial examples [50]. Given
an example xj , (j = 1, 2, · · · , J) and its corresponding
adversarial example x

′

j , the sensitivity for the m-th neuron
in the lth layer was computed as

Sml (xj , x
′

j) =
1

J

J∑
j=1

‖Fml (xj)− Fml (x
′

j)‖1, (11)

where Fml (xj) and Fml (x
′

j) are the corresponding outputs
of neuron Fml . These sensitivity methods provide a deeper
understanding of the (deep) neural networks. Nevertheless, it is
necessary to study the sensitivity analysis from the perspective
of a general view and provide the sensitivity analysis for both
the bilateral neurons and layers. Hence, this paper focuses
on contributing a model-independent bilateral sensitivity to
evaluate the contribution from one neuron to another neuron
or from one layer to another layer. It is easily extended to
the cases from one neuron to one layer or from one layer to
a neuron. This is essential to deeply understand and interpret
the mechanism of the (deep) neural network.

B. Reservoir connectivity

In this paper, we will test the proposed bilateral sensi-
tivity on the task of inferring well connectivity in reservoir
engineering, which is a hard and classic inverse-problem in
engineering. Well connectivity remains a vital research topic
in the petroleum industry, where waterflood is commonly used
as the secondary recovery technique to generate man-made oil-
displacing energy. Well connectivity reveals the connectivity
between the injectors and producers to guide optimizing op-
erations and maximize oil production. Usually, it is identified
by the recorded production and injection data. However, the
issue is very tough owing to its non-stationary and non-linear
nature [51]. Fortunately, abundance of production data such
as injector and producer flow rates can be easily obtained
even for marginal oil fields. These production data contain

the information of well connectivity. Various methods using
production data to infer connectivity have been developed. For
instance, the injection and liquid production rates are used in
a linear multivariate regression (MLR) model by employing
capacitance model to characterize the well connectivity in [52],
[53]. Wang et al. [54] introduced a method with signal pro-
cessing techniques to represent connectivity. Recent works try
to deal with this problem using machine learning techniques
[55], [56], but the potential power of machine learning has
not yet been exploited. The lack of interpretability of neural
networks also limited the interest of reservoir engineer’s to
explore further the use of NNs on this task.

The sensitivity analysis has also been applied to the topic
of reservoir connectivity inference. In [57], Albertoni et al.
employed sensitivity analysis to multivariate linear regression
(MLR) to infer the interwell connectivity. Demiryurek et al.
[58] simulated the sensitivity analysis of neural network to
analyze the connectivity between injector and producer in
fields and similar approach was employed in [56]. However,
both works use the identical SA method defined in [18], which
is a partial derivative sensitivity analysis. The proposed BiSA
in this paper is based on a stochastic manner, which is more
suitable for well connectivity because the observed production
data are not continuous basically.

III. BILATERAL SENSITIVITY ANALYSIS (BISA) FOR
NEURAL NETWORKS

In this section, we define the Bilateral Sensitivity Anal-
ysis for (deep) MLP neural networks. In fact, it is model-
independent and can be regarded as a measure for other kinds
of models too. Assume that an MLP has (L + 1) layers, as
shown in Fig. 1, and the l-th (0 ≤ l ≤ L) layer possesses
nl neurons. Especially, n0 represents the number of features
in the input layer when l = 0 and nL indicates the number
of outputs in the output layer when l = L. For the i-th
(1 ≤ i ≤ nl) neuron in layer l, X l = (xl1, x

l
2, · · · , xlnl−1

)T

is the input vector, W l
i = (wi1, wi2, · · · , winl−1

)T is the
corresponding connection weights, θl = (θl1, θ

l
2, · · · , θlnl

)T is
the bias vector of the l-th layer, then the output of the l-th
layer is

yl = fl
(
W lX l + θl

)
. (12)

Here, we define the operator φ as

φl
(
X l
)

= fl
(
W lX l + θl

)
. (13)

Then we have
yl = φl

(
X l
)
. (14)

The input to the l-th layer is exactly the output of the (l−1)-th
layer, thus for an MLP, the mapping from its beginning input
to its final output can be represented as

yL = ΦL
(
X0
)
, (15)

where ΦL (·) , φL ◦ φL−1 ◦ · · · ◦ φ1(·).
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Fig. 1. The structure of a deep MLP network. Layer 0 represents the input layer and layer L represents the output layer of the MLP. The numbers below
the network, nls (0 ≤ l ≤ L), indicate the number of neurons in the corresponding layers. Assume that the red node in the lm-th (0 ≤ lm < L) layer is
the i-th neuron in this layer, and the yellow node in the ln-th (0 < ln ≤ L, lm < ln) layer is the j-th neuron in this layer. The Bilateral Sensitivity of the
two neurons is investigated in Section III.

A. Definition of Bilateral Sensitivity (BiS)

For the input vector of lm (0 ≤ lm < L) layer, X lm ∈
[0, 1]nlm−1 , it is the output of the (lm − 1) layer, thus

X lm = φlm−1
(
X lm−1

)
= φlm−1 ◦ φlm−2 ◦ · · · ◦ φ1

(
X0
)
,

(16)
then the output of the lm layer is

ylm = φlm
(
X lm

)
= φlm ◦ φlm−1

◦ · · · ◦ φ1
(
X0
)
. (17)

Similarly, for the input vector of ln-th (0 < ln ≤ L, lm < ln)
layer, X ln ∈ [0, 1]nln−1 and we have

X ln = φln−1
(
X ln−1

)
= φln−1 ◦ φln−2 ◦ · · · ◦ φ1

(
X0
)
,

(18)
then the output of the ln layer is

yln = φln
(
X ln

)
= φln ◦ φln−1 ◦ · · · ◦ φ1

(
X0
)

= φln ◦ φln−1
◦ · · · ◦ φlm ◦ φlm−1

· · · ◦ φ1
(
X0
)

= φln ◦ φln−1 ◦ · · · ◦ φ1m
(
X lm

)
.

(19)

Based on these, the Bilateral Sensitivity of the lm-th layer to
the ln-th layer can be defined using the perturbations on the
inputs of the lm-th layer as follows.

Definition 1. Given the perturbations on the input vector of

lm-th layer, 4X lm =
(
4xlm1 ,4xlm2 , · · · ,4xlmnlm−1

)T
, and

Φlnlm(·) , φln◦φln−1◦· · ·◦φ1m(·), then the Bilateral Sensitivity
of the lm-th layer to the ln-th layer (lm < ln) is defined as

BiS (lm, ln) = E
(∣∣Φlnlm (X lm +4X lm

)
− Φlnlm

(
X lm

) ∣∣) .
(20)

This sensitivity can measure the influence or contribution
from any layer to another later layer in a neural network
including deep neural networks. It provides a helpful tool
to interpret the the learned deep model. Here, the Bilateral
Sensitivity BiS (lm, ln) describes the relation between the lm-
th layer and the ln-th layer. The j-th element in the output of
the ln-th layer is

ylnj =
(
φln
(
X ln

))
j

= fln
(
W ln
j X

ln + θlnj
)
, (21)

then the Bilateral Sensitivity of the i-th neuron in the lm-th
layer to the j-th neuron in the ln-th layer can be given through
perturbing the i-th neuron in the lm-th layer as follows.

Definition 2. Given the perturbation on the i-th input of the

lm-th layer4X lm
i =

(
0, · · · , 0,4xlmi , 0, · · · , 0

)T
1×nlm−1

, the

Bilateral Sensitivity of the i-th neuron in the lm-th layer to the
j-th neuron in the ln-th layer is defined as

BiS (lm, i, ln, j)=E

(∣∣∣∣fln (W ln
j Φln−1lm

(
X lm +4X lm

i

)
+θlnj

)
−fln

(
W ln
j Φln−1lm

(
X lm

)) ∣∣∣∣).
(22)

This sensitivity can measure the influence or contribution
from any neuron to any other neuron in any higher layer.
This is critical to analyze the relationship from one neuron
to another. The perturbation on the i-th neuron of the lm-th
layer, 4X lm

i , affects the whole subsequent network including
the j-th neuron in the ln layer, as shown in Fig. 1. The vector
W ln
j =

(
W ln(j, 1),W ln(j, 2), · · · ,W ln(j, nln−1)

)
is the j-

th row vector of weight matrix W ln , i.e. the weight vector
connecting all the neurons in the (ln-1)-th layer to the j-th
neuron in the ln-th layer, as shown by the orange lines in Fig.
1 for example.

Subsequently, the relation between the i-th input and the
j-th output for an MLP with L layers, namely the Bilateral
Sensitivity of the i-th input in the 0-th layer to the j-th output
in the L-th layer, is given by the following definition.

Definition 3. The Bilateral Sensitivity of the i-th input to the
j-th output of the MLP is described as

BiSio(i, j) = BiS (0, i, L, j)

= E

(∣∣∣∣fL (WL
j ΦL−1

(
X0 +4X0

i

)
+ θLj

)
− fL

(
WL
j ΦL−1

(
X0
)

+ θLj
) ∣∣∣∣),

(23)
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where 4X0
i =

(
0, · · · , 0,4x0i , 0, · · · , 0

)T
1×n0

is the pertur-
bation on the input layer and ΦL−1 (·) , φL−1 ◦ · · · ◦ φ1(·).

The proposed Bilateral Sensitivities are calculated after the
network being trained and are independent of the optimization
method used to train the network. Hence, the sensitivity indices
are model-independent. They are calculated easily and effi-
ciently using the optimized weights and biases. The calculation
is only a chain of l (0 < l < L) operations consisting
of multiplication, addition (if bias is used), and activation
function. In this paper, the perturbations are generated by
Gaussian noise. After training the network, the final weights
capture the patterns existing in the training data. In this case, it
is easy to compute the Bilateral Sensitivity for each pair, which
reflects the connectivity between the corresponding injection-
production wells through perturbing the water injection rates.

IV. INFERRING WELL CONNECTIVITY USING BILATERAL
SENSITIVITY OF NEURAL NETWORKS

A. Inferring well connectivity

Here we consider an MLP with single hidden layer, as
shown in Fig. 2, where no bias is used to simplify the
discussion. The input vector, I = (I1, I2, · · · , IM )T , consists
of the injection rates from M water injection wells. The
output vector, P = (P1, P2, · · · , PN )T , involves the liquid
production rates from N production wells. We train the
network with the reservoir history data, i.e., the water injection
rates (WIRs) for the water injectors as inputs and the liquid
production rates (LPRs) for the producers as outputs. For a
highly connected injector-producer pair, Im (1 ≤ m ≤M ) and
Pn (1 ≤ n ≤ N ) for instance, LPRn (the liquid production
rate of Pn) is expected to vary in accordance with the alteration
of WIRm (the water injection rate of Im). Nevertheless, the
consistency tends to hardly occur for a poorly connected pair.

𝐼1

𝐼2

𝐼3

⋮
⋮ ⋮

𝑃2

𝑃3

𝑃𝑁

𝐼4

𝐼𝑀

⋮

𝑀 𝑄 𝑁

𝑃1

⋮

Fig. 2. The structure of an MLP with only one single layer.

Perturbation creation. After training, with the learned
knowledge from the training history data, the relationship
between input variables and target properties can be analyzed
by the Bilateral Sensitivity Analysis. For the neural network
with only one hidden layer in Fig. 2, the connectivity between
the m-th injector and the n-th producer is defined by the
Bilateral Sensitivity from the m-th input to the n-th output:

C(m,n)=E(|g (Unf(V(I+4I)))−g (Unf(VI))|) , (24)

where 4I = (0, · · · , 0,4Im, 0, · · · , 0)M×J , the perturbation
4Im = (4Im1,4Im2, · · · ,4Imj , · · · ,4ImJ)1×J . Suppose,
Im = (im1, im2, · · · , imj , · · · , imJ) is the m-th input vector
for all training samples, std(Im) is its standard deviation, then
the j-th element in 4Im is created by

4Imj ∼ N(0, γ ∗ std(Im)), (25)

where γ ∈ [0, 1] represents a percentage to control the differ-
ence between standard deviations of the generated perturbation
and the original input data. In this paper, we let γ = 10% and
20% respectively to generate noises. We adopt such a strategy
because if the variance of an input is very high, then it should
be tolerant to larger level of noise perturbation.

Data source. Two synthetic reservoir scenarios in petroleum
engineering are used throughout this paper. One is from [55],
the other is from a simulation of a complex reservoir scenario.
Although both cases have relatively simple permeability, they
are typical and universal examples of the real cases in practical
applications. The understanding of these characteristics are
quite crucial to the design of the water flooding scheme.
These scenarios have been built and run by a commercial
reservoir simulator, Eclipse 2011. These kinds of synthetic
models have been proven to be useful in a number of works
[55] and are widely used in reservoir engineering. The first
case is defined as a Streak Case, which represents reservoirs
with high-permeability streaks. The second one is defined as
Braided River, which represents complex reservoirs which
contain several high permeability channels. The proposed
methods, INNGLP and CINNGLP, are tested on both cases
with the network architecture in Fig. 2. We take the water
injection rates of each injection as the network input and liquid
production rates of each producer as the network output. All
the reported results are the average ones obtained by 10 repeats
of the experiments.

Global normalization. Normalization plays an important
role in the pre-processing of data for a given task. Minmax and
z-score normalization are some of the popular techniques used
for relevance score normalization. For a good normalization
scheme, the estimates of the location and scale parameters of
the matching score distribution must be robust and efficient.
Robustness refers to insensitivity to the presence of outliers.
Efficiency refers to the proximity of the obtained estimate
to the optimal estimate when the distribution of the data is
known [59]. Here we use z-score normalization on the input
data of the neural network, namely the water injection rates,
while Min-Max normalization on the output data. Z-score
normalization is a strategy of normalizing data that can avoid
the outlier issue [60]. The z-score normalization is defined as
below:

X̃ =
X − µ
σ

, (26)

where µ is the mean value of the original data vector X and
σ is the standard deviation of the vector. For a variable, if
all the values are equal (i.e., variance is equal to zero) then
the normaized value is set to zero. Note that a global z-score,
instead of column (or feature-wise) z-score, is implemented
here to maintain the difference of the inputs (water injection
rates) at different sources. However, z-score normalization
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is not suitable for the output data due to use of the tansig
activation function at the output layer of the neural network,
where the network output is limited from -1 to 1. Hence a
global Min-Max normalization is used for the output data,
i.e., the liquid production rates.

B. Case Study 1: Streak Case

The Streak Case is a public synthetic field case and its
detailed description is available in [55], [61]. As shown in
Fig. 3, it is a square reservoir made up of 5 vertical injectors
and 4 vertical producers, represented by I1, I2, I3, I4, I5
and P1, P2, P3, P4, respectively. The permeability of the
two high-permeability streaks I1-P1 (the streak between I1
and P1) and I3-P4 (the streak between I3 and P4) are set to
be 1000 md and 500 md, respectively. The permeability for
the rest of the reservoir is 5 md. Note that the permeability
of the underground is not known in real applications. Both
rock and water compressibilities are 1 ∗ 10−6 psi−1. The oil
compressibility is 5 ∗ 10−6 psi−1. The porosity is 0.18 and
the total mobility is 0.45 independent of saturation.

After being trained by the water injection rates and liquid
production rates, the neural network has learned the knowledge
from the input and output patterns. This means a nonlinear
mapping from the inputs to the outputs, which reflects the
knowledge of the reservoir, is established based on the learned
weights. In this case, we have used the multiplicative Gaussian
noise to perturb the inputs and obtained the Bilateral Sensi-
tivity between each injector and producer pair.

Fig. 4 shows the results of the proposed BiSA
method with addictive 10% Gaussian noise (with
σ = standard deviation of input data ∗ 0.1)
perturbation on the water injection rates of the Streak
Case scenario, where the darker the color the stronger the
connectivity. This heat-map clearly demonstrates the two
streaks of high connectivity in Streak Case, i.e. I1-P1 and
I3-P4, and the quite low connectivities for the other pairs.
To verify the robustness of the proposed method, other noise
levels are also tested in our experiments. Fig. 5 shows the
results of the proposed BiSA method with multiplicative 20%
Gaussian noise perturbation on the water injection rates of
the Streak Case scenario. With this stronger perturbations,
the heat-map more clearly reflects the two streaks of high
connectivity, I1-P1 and I3-P4, and the low connectivities for
the other pairs. This demonstrates the robustness of using the
multiplicative Gaussian noise as the perturbation.

To explain the mechanism explicitly, we analyze it from
the training data and the perturbations. Fig. 6 shows curves of
the original I1 (the water injection rates for injection 1), 10%
Gaussion noised I1, and the 20% Gaussion noised I1. With
these perturbations, we turn to the corresponding outputs of
the learned model. Fig. 7 shows the curves of the original
P1 (the liquid production rates for producer 1), the output
for producer 1 according to 10% Gaussion noised I1, and the
output for producer 1 with regard to the 20% Gaussion noised
I1, respectively. Obvious changes can be observed for the
values of this output with both 10% and 20% Gaussion noised
I1. This is because the network learned the knowledge of the

Fig. 3. Scenario 1: The permeability field of the Streak Case with 5 injections
and 4 producers.

Fig. 4. The results for the BiSA method with 10 percent Gaussian noise
perturbation on the Streak Case scenario.

Fig. 5. The results for the BiSA method with 20 percent Gaussian
multiplicative noise perturbation on the Streak Case scenario.

strongly connected streak between I1 and P1, which means the
I1 affects largely P1 and the changes of I1 directly lead to the
changes in P1. As a result, the computed BiS(1, 1, 3, 1) in (22)
is a large value of 0.8551 and 1.72 for 10% and 20% percent
Gaussian multiplicative noises, respectively. Here, the values
in heat-map indicate the relative magnitudes of connectivities,
which means we cannot compare the values in different heat-
maps. Note that normalization can be implemented on the final
calculated connectivities, if necessary.

Conversely, the network outputs for P2, P3, and P4 are
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Fig. 6. The results for the BiSA method with Gaussian multiplicative noise
perturbation on injection 1 in the Streak Case scenario.

Fig. 7. The original producer 1 and the outputs for the producer 1 of the
network with Gaussian noise perturbation on injection 1 in the Streak Case
scenario for one run.

Fig. 8. The original producer 2 and the outputs for the producer 2 of the
network with Gaussian noise perturbation on injection 1 in the Streak Case
scenario for one run.

Fig. 9. The original producer 3 and the outputs for the producer 3 of the
network with Gaussian noise perturbation on injection 1 in the Streak Case
scenario for one run.

slightly changed with regard to the perturbations on I1, as
shown in Figs. 8, 9, and 10. This is because the network has
learned the low dependency of the pairs I1-P2, I1-P3, and I1-
P4, which means I1 has little contributions to P2, P3, and
P4. Hence, even if we add 20% percent Gaussian noise to I1,
the obtained outputs of P2, P3, and P4 are still not perturbed
much in the learned model. This leads to the low values of
BiS(1,m, 3, n) (m = 1, 2, · · · ,M and n = 1, 2, · · · , N ) in
(22), as shown in the figures.

Next we perturb I3 also with respect 10% and 20% percent
Gaussian multiplicative noises, as shown in Fig. 11, the graphs

Fig. 10. The original producer 4 and the outputs for the producer 4 of the
network with Gaussian noise perturbation on injection 1 in the Streak Case
scenario for one run.

Fig. 11. The results for the BiSA method with Gaussian noise perturbation
on injection 3 in the Streak Case scenario for one run.

Fig. 12. The original producer 1 and the outputs for the producer 1 of the
network with Gaussian noise perturbation on injection 3 in the Streak Case
scenario for one run.

Fig. 13. The original producer 2 and the outputs for the producer 2 of the
network with Gaussian noise perturbation on injection 3 in the Streak Case
scenario for one run.

demonstrate consistent effects for the corresponding network
outputs of the producers. Fig. 12 shows the original output of
P1, the perturbed P1 with 10% percent noise, and the perturbed
P1 with 20% percent noise, respectively. The three curves
almost coincided together. This indicates that I3 contributes
nearly no energy to P1 and hence, I3-P1 is judged to be a very
low connected pair. Consequently, the calculated connection
strength is significantly low having a value of 0.01133 and
0.02338 in the two heat-maps, respectively. Both values can
even be ignored with comparison to the connectivity of I1-P1.
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Fig. 14. The original producer 3 and the outputs for the producer 3 of the
network with Gaussian noise perturbation on injection 3 in the Streak Case
scenario for one run.

Fig. 15. The original producer 4 and the outputs for the producer 4 of the
network with Gaussian noise perturbation on injection 3 in the Streak Case
scenario for one run.

Fig. 16. Scenario 2: The permeability field of the Braided River with 4
injections and 4 producers. The permeability varies from 10md to 2080md.

Similar results can be observed for P2 and P3 as shown in
Figs. 13 and 14, respectively. However, the obtained outputs
of P4 according to the perturbations change a lot to the
original output of P4 as shown in Fig. 15. This is due to the
learned information in the training patterns that I3 has a high
correlation (connectivity) to P4. Consequently, the computed
BiS is relatively large as 0.3873 and 0.7564 respectively with
regard to the two perturbations.

Fig. 17. The results for the BiSA method with 10 percent Gaussian noise
perturbation on the Streak Case scenario.

C. Case Study 2: Braided River

Braided River is a complex scenario with several predomi-
nant pathways of water-flooding, 5 injectors (I1, I2, I3, I4, and
I5) and 4 producers (P1, P2, P3, and P4). It is a conventional
fluvial deposition widely distributed in the continental facies
basin. The permeability of the river channel is very high yet
those of the other areas are quite low. This case is composed
of 100×100 single-layer grids on the horizontal plane, each
with a size of 80ft × 80ft × 12ft. The initial oil saturation
is set to 0.7 and the porosity is is set to 0.18. In this case, the
permeability of the river channels is set to 1000 md while that
of other areas is set to 50 md. As shown in Fig. 16, I1 and
P1 are located in the river channel on the top left. P2, P3, P4
are situated in three different channels respectively and I5 is
located in the channel on the right bottom part.

Fig. 17 shows the results of the proposed BiSA method for
the Braided River scenario with multiplicative 10% Gaussian
noise perturbation on the water injection rates, where a darker
color reflects a stronger connectivity. From the heat-map, the
highly connected well pairs can be clearly observed. The
highest one is I1-P1 with the connectivity value of 16.4. This
is exactly the reflection of the channel-connected situation of
I1 and P1 in the Braided River scenario. For pairs I5-P2,
I5-P3, and I3-P4, the obtained connectivities are also higher
with values 12.16, 8.367, and 6.057, respectively. They are
also consistent with the actual situation in Fig. 17, where
P2, P3, and P4 are well connected to I5 by three individual
channels and I5-P2 is the highest among them. Nevertheless,
the connectivities are quite low for the other pairs especially
for I2, I3, and I4, caused by that all of these injectors
are located in the low permeability area far from the river
channels. Fig. 18 shows the results of the proposed BiSA
method with addictive 20% Gaussian noise perturbation on
the water injection rates of the Streak Case scenario. With
stronger perturbation, the relative magnitude for each injector-
producer pair are suitably represented as well. The four highly
connected pairs, namely I1-P1, I5-P2, I5-P3, and I5-P4, are
prominently characterized by the proposed methods. All these
results are consistent with the real situation in Braided River
scenario. These results clearly demonstrate the utility of the
proposed methods.
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TABLE I
COMPARISON WITH THE CURRENT METHODS ON THE Streak Case.

ANN [55] CRM [52] BiSA-10% BiSA-20%

c/f P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

I1 0.995 0.174 0.267 0.081 1.000 0.002 0.003 0.005 1.000 0.0083 0.0078 0.0712 1.000 0.0077 0.0072 0.0676
I2 0.110 0.033 0.001 0.061 0.548 0.003 0.137 0.303 0.0002 0.0001 0.0001 0.0003 0.0002 0.0001 0.0001 0.0003
I3 0.011 0.240 0.339 1.000 0.057 0.010 0.033 0.974 0.0132 0.0075 0.0071 0.4529 0.0135 0.0074 0.0070 0.4397
I4 0.273 0.580 0.243 0.473 0.117 0.178 0.001 0.662 0.0001 0.0000 0 0.0003 0.0001 0.0000 0 0.0002
I5 0.289 0.383 0.349 0.390 0.126 0.001 0.106 0.766 0.0001 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001 0.0003

Fig. 18. The results for the BiSA method with 20 percent Gaussian noise
perturbation on the Streak Case scenario.

Fig. 19. The connectivity diagrams for the results of ANN (left) and the
results by BiSA (right).

D. Comparisons with the current methods

Comparisons with the latest works in [55] and [52] are
conducted to further validate the effectiveness of BiSA. Table
I demonstrates the comparison results by the ANN method in
[55], the capacitance resistance model (CRM) in [52], BiSA
with 10% Gaussian noise, and BiSA with 20% Gaussian noise
on the Streak Case scenario in Fig. 3. Although the original
values without normalization for BiSA provide intuitive de-
scription, the used results of the proposed BiSA method in
Table I are normalized to range [0,1] to make an explicit
contrast.

From the table, both ANN and CRM methods can identify
the two streaks of high permeability, however, the real char-
acteristics are not appropriately depicted. For CRM method,
the obtained connectivity of I3-P4 (0.974) is fairly close to
that of I1-P1 (1.0). This is not a proper reflection of the
fact that I1-P1 has about double permeability compared to
I3-P4. Similarly, for the ANN method, both I1-P1 and I3-
P4 have very high and similar values and more surprisingly
I1-P1 exhibits a weather connection than I3-P4! Besides,

the characterizations for some other inter-well pairs are not
accurate as well, as shown by the values marked in red.
From the description of the Streak Case, we know that except
for the pairs I1-P1 and I3-P4, connectivities for the other
injector-producer pairs are practically non-existence. However,
the acquired connectivities for I3-P3, I4-P2, I4-P4, I5-P2, I5-
P3,I5-P4 by the ANN method and those for I2-P1, I2-P4, I4-
P4, I5-P4 by the CRM method are noticeably high. These
results can mislead the operations in real production. For the
ANN method, for instance, the obtained connectivity of I4-P2
is 0.580, which makes an illusion that this pair has a reason-
ably strong connection between them. However, both the two
streaks and the other injector-producer pairs are appropriately
characterized by the proposed BiSA method. From Table I,
we can see that for the proposed method, the connectivity of
I1-P1 is the most dominant indicating a high transmissibility
path while I3-P4 is the second one having almost the half of
the connectivity value of I1-P1. Also, the obtained values for
other pairs are very close to zero. This reflects the real situation
as in the Streak Case scenario. Moreover, the proposed BiSA
method is more stable and trustable than ANN method in
[55], which is greatly affected by the initial weights. Finally,
the BiSA method is model-independent and quite efficient in
computation, compared to the other two methods. All these
results demonstrate the effectiveness of the proposed BiSA
method.

In reservoir engineering, connectivity diagram is a com-
monly used tool to exhibit the inter-well connectivity. The
results of BiSA can be easily changed into a diagram as
shown in Fig. 19, where the left one shows the results of
ANN on the Streak Case scenario and the right one shows the
connectivity diagram for BiSA with 20% Gaussian noise. The
performance for these two methods can be easily compared
from these views. If a policymaker develops the injection-
production scheme depending on the left connectivity diagram,
he or she may make unreasonable decisions (undesirable ex-
ploration) especially for I4 and I5. Because this diagram shows
superior channel connected to both injections. Conversely, the
right diagram for BiSA is clear and easy to understand. The
policymaker can gain a more accurate understanding of the
connectivity in this field. These results further demonstrate
the effectiveness of the proposed BiSA method.

V. CONCLUSION

In this paper, a stochastic sensitivity analysis method for
(deep) neural networks, Bilateral Sensitivity, is proposed to
measure the relationship between layers and neurons. Both the
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Bilateral Sensitivity between any layer pair and the Bilateral
Sensitivity between any neuron pair of different layers in deep
neural networks are defined. Then the Bilateral Sensitivity
from an input to an output of a multi-layer neural network
is easily obtained to infer the connections between the inputs
and outputs. The proposed method is calculated in a highly
efficient way. As long as the function expression between the
input parameters and the output variables is given, namely
the network is trained, both the Bilateral Sensitivity between
layers and the Bilateral Sensitivity of each output variable with
respect to different inputs can be effectively analyzed.

Based on this, the proposed Bilateral Sensitivity of neural
network is applied to characterize the well connectivity in
reservoir engineering. Given a trained network by Water Injec-
tion Rates (WIRs) and Liquid Production Rates (LPRs) data,
the well connectivity can be efficiently characterized by the
measure of Bilateral Sensitivity. The empirical results verify
the effectiveness of the proposed method and the comparisons
with some state-of-the-art methods demonstrate its superior
performance. Besides, the proposed Bilateral Sensitivity is
independent of the model and is easy to be implemented on
other neural networks such as RBFs and CNNs.
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