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Abstract

Smart Sensing technologies can play an important role in the conditional assessment of concrete sewer pipe linings. In the long-

term, the permeation of acids can deteriorate the pipe linings. Currently, there are no proven sensors available to non-invasively

estimate the depth of acid permeation in real-time. The electrical resistivity measurement on the surface of the linings can

indicate the sub-surface acid moisture conditions. In this study, we consider acid permeated linings as a two resistivity layer

concrete sample, where the top resistivity layer is assumed to be acid permeated and the bottom resistivity layer indicates

normal moisture conditions. Firstly, we modeled the sensor based on the four-probe Wenner method. The measurements of

the developed model were compared with the previous studies for validation. Then, the sensor model was utilized to study

the effects of electrode contact area, electrode spacing distance and two resistivity layered concrete on the apparent resistivity

measurements. All the simulations were carried out by varying the thickness of top resistivity layer concrete. The simulation

study indicated that the electrode contact area has very minimal effects on apparent resistivity measurements. Also, an increase

in apparent resistivity measurements was observed when there is an increase in the distance of the electrode spacing. Further, a

machine learning approach using Gaussian process regression modeling was formulated to estimate the depth of acid permeated

layer
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Abstract—Smart Sensing technologies can play an impor-
tant role in the conditional assessment of concrete sewer
pipe linings. In the long-term, the permeation of acids can
deteriorate the pipe linings. Currently, there are no proven
sensors available to non-invasively estimate the depth of acid
permeation in real-time. The electrical resistivity measurement
on the surface of the linings can indicate the sub-surface acid
moisture conditions. In this study, we consider acid permeated
linings as a two resistivity layer concrete sample, where the
top resistivity layer is assumed to be acid permeated and the
bottom resistivity layer indicates normal moisture conditions.
Firstly, we modeled the sensor based on the four-probe Wenner
method. The measurements of the developed model were
compared with the previous studies for validation. Then, the
sensor model was utilized to study the effects of electrode
contact area, electrode spacing distance and two resistivity
layered concrete on the apparent resistivity measurements. All
the simulations were carried out by varying the thickness of
top resistivity layer concrete. The simulation study indicated
that the electrode contact area has very minimal effects on
apparent resistivity measurements. Also, an increase in apparent
resistivity measurements was observed when there is an increase
in the distance of the electrode spacing. Further, a machine
learning approach using Gaussian process regression modeling
was formulated to estimate the depth of acid permeated layer.

Index Terms—Apparent resistivity, acid permeation, concrete,
corrosion, electrode spacing, electrical resistivity, four probe,
Gaussian process, multilayered concrete resistivity, numerical
modeling, pipe linings, sensor, sewer, Wenner method.

I. INTRODUCTION

Structural health monitoring is an essential aspect for
assessing the conditions of ageing civil infrastructures like
underground concrete sewer pipes. The majority of those
pipes are affected by concrete corrosion, which is more
often attributed to sulfate-reducing bacterial activities that
happen on the walls of concrete sewer pipes [1]. As a result,
sulphuric acid is produced and penetrates the cementitious
material of the pipe [2]. Water utilities spend millions of
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dollars each year to address corrosion-related pipe deteri-
oration and rehabilitation [3]. Failure to prevent corrosion
can lead to a structural breakdown, which largely incurs
the financial cost and severely affects public health and the
environment [4].

Currently, there are no sensing technologies available to
directly measure the rate of corrosion or penetration of
acids into the concrete material. Most water utilities, take
core samples at discrete locations of the pipe to determine
the rate of corrosion [5]. This process involves human
traverses for taking core samples followed by pH tests in the
laboratory. A major water utility in Australia has developed
a predictive analytics model for estimating the corrosion
throughout the sewer network [6]. The developed model
requires hydrogen sulphide (H2S) content in sewer atmo-
sphere, surface temperature and surface moisture condi-
tions as data inputs for predictions. There is a commercially
available system for monitoring H2S in sewer gas [7]. A
sensing suite was recently developed for monitoring surface
temperature [8], [9] and surface moisture conditions [10],
[11]. Those sensors are capable of monitoring for a long-
term period. However, they can produce anomaly or fail
because of adverse environmental conditions [12], [13].
This will hamper the corrosion monitoring process. Another
method of estimating sewer corrosion is by estimating the
amount of intact concrete cover to the reinforcement bar
(rebar) through multiple sensors. This method work by
localizing the rebar using ground penetrating radar [14],
capacitive sensor [15] or electrical resistivity based sensors
[16], [17]. Then, estimating the depth of located rebar
through pulsed eddy current sensing method [18] combined
with drill resistance sensing system for measuring the
thickness of the corroded concrete layer [19]. With the
information from multiple sensors, corrosion is estimated.

Replacement of corroded sewer pipes is expensive [20].
To minimize rehabilitation costs, water utilities utilize pipe
lining technology. The linings are the protective coatings
applied to the deteriorated host structure to increase the



structural integrity and reduce the effects of corrosion. In
general, sewer pipe linings can be made up of calcium
aluminate cement or geopolymer based materials. They
offer high resistance to the sulphuric acid generated on
the walls of the concrete sewer pipes. However, the linings
can deteriorate in the long-term due to the permeation of
acids. Hence, monitoring sewer pipe linings in the long-
term is vital for water utilities. Reliable sensing technologies
can provide information about the long-term performance
of the linings. However, as mentioned earlier, there are
no sensing systems or methods to non-invasively estimate
the permeation or penetration of acids inside the concrete
sewer pipe. The larger picture of this research work is to
develop a non-invasive sensing technology that can provide
information on acid permeation in linings. The thickness of
the sewer pipe linings on the top of the host concrete pipe
is 2 cm. We have identified an electrical resistivity based
sensing method as a prime candidate that can provide
information about the depth of the acid permeation. Char-
acterization of the sensing method through numerical sim-
ulations can provide insights about the sensor behaviour.
In this context, this paper focuses on numerical character-
ization to study the sensing effects. The contributions of
this paper are: (a) a sensor model was developed based on
the Wenner method for apparent resistivity measurements.
The model was evaluated with previous studies to utilize
for the proposed application reported in this work, (b)
studied the effects of electrode contact area and two-layered
concrete resistivity on apparent resistivity measurements,
(c) the effects of electrode spacing and two-layered concrete
resistivity on apparent resistivity measurements were stud-
ied and (d) a machine learning approach using Gaussian
process modeling was formulated to estimate the depth of
acid permeated layer.

The rest of this paper is organised as follows: Section II
reviews the related work. Section III describes the adopted
methodology for apparent resistivity measurements and
simulations followed by results in Section IV. Finally, Section
V concludes the paper with future work.

II. BRIEF REVIEW OF RELATED WORK

The electrical resistivity measurement of concrete using
four probes is a popular non-invasive technique. Based
on the arrangement of the probes, the sensing technique
can be classified into several methods [21], which include
the Wenner method, Dipole-dipole method, Schlumberger
method, Pole-pole method, Pole-dipole method, Double
Wenner method, Half Schlumberger method, and Cross
borehole method. Among different probe sensing method,
the Wenner method was used for measuring electrical
resistivity on the surface of the multi-layered resistivity
concrete [22], [23]. A large concrete sample having 30 cm
(length) × 30 cm (breadth) × 15 cm (height) was utilized
to study the effects of multi-layered resistivity concrete on
surface resistivity measurements [24]. The dimension of the
concrete used in that study is large in the context of our

Fig. 1: Illustration of Wenner method.

application. Based on our literature review, we have not
found literature that reports the effects of multi-layered
resistivity concrete having a maximum 2 cm thickness on
the resistivity measurements. The 2 cm thickness relates to
the thickness of the sewer pipe linings.

An analytical model was developed [24] to determine the
resistivity in the two resistivity layered concrete by using
a technique that determines the earth’s resistance by solv-
ing the Laplace equation on a semi-infinite medium [25].
However, the analytical model performed well when the
thickness of the concrete is more than 7.5 cm. There are few
data-driven machine learning models [26], [27] developed
for estimating concrete properties by using resistivity as
input data. Those models entirely rely on the quality of
training dataset and subjected to high uncertainties.

In this work, we employ the Wenner method for deter-
mining the surface resistivity measurements. The next sec-
tion describes the sensing principle of the Wenner method.

III. METHODOLOGY

A. Sensing Principle and Modeling

The resistivity of the concrete samples can be non-
invasively measured through the Wenner method. This
method consists of four probes (electrodes). The electrodes
are equally spaced and they are in contact with the surface
of the concrete. A current signal (I ) is applied in the
outer two electrodes. The inner two electrodes measure
the potential difference (∆V ). The apparent resistivity ρa

is computed by using equation (1).

ρa = 2πa
∆V

I
(1)

where 2π is the geometric correction factor. In this work,
we used alternating current with 40 Hertz frequency as an
input signal. Figure 1 illustrates the Wenner method. The
term a refer to the distance between the electrode spacing
and h refers to the thickness of the top resistivity layer
(wet layer). For a more detailed background on the Wenner
method, the readers can refer to [28], [29]. The concrete
pipe lining specimen was modeled by using a commercially
available finite element method (FEM) modeling software.
The temperature of the concrete (geopolymer) specimen
was set to 20 ◦C, relative permittivity is 4.5, and the density
of the concrete layer is 2300 kg/m3.



B. Simulation Study

1) Experiment 1: The aim of this experiment is to validate
the developed FEM sensor model. A concrete sample having
30 cm (length) × 30 cm (breadth) × 15 cm (height) was
modeled in the FEM software. This sample is a two resis-
tivity layered concrete with no reinforcing bars. The h is the
thickness of the top resistivity layer. The apparent resistivity
measurements were taken by varying the electrode spacing
distance a to 2.0 cm, 2.5 cm, 3.0 cm, 4.0 cm, 5.0 cm, and 6.0
cm whilst varying the h to 0.2 cm, 0.5 cm, 1.0 cm, and 2.0
cm. The experiments reported in [22], [23] were replicated
in this study. The measurement results from the developed
FEM sensor model were compared with the results of the
previous studies.

2) Experiment 2: This experiment is to study the effects
of sensor electrode contact area and two resistivity layered
concrete on the apparent resistivity measurements. The
concrete specimen having 50 cm (length) × 50 cm (breadth)
× 2 cm (height) was modeled in the FEM software. Then,
the apparent resistivity measurements were taken by setting
the electrode contact area to 0.1 cm, 0.3 cm and 0.5 cm
while varying the electrode spacing a and the thickness of
the top resistivity layer h. The resistivity of the top layer
and bottom layer is 3.2 kΩcm and 104 kΩcm respectively.
The values were measured by making a real sample using
the concrete sewer pipe lining material. The wet resistivity
was taken as the value for the top resistivity layer and
reasonably cured concrete resistivity was taken for the
bottom resistivity layer. The moisture was induced by using
pH 7 liquid and the measurements were taken by using
a commercially available resistivity meter (Resipod, PCTE).
The measured values were also used for Experiment 3.

3) Experiment 3: This experiment is to study the effects
of electrode spacing and two resistivity layered concrete on
the apparent resistivity measurements. Firstly, the concrete
sample was modeled in the FEM simulation environment
to have 50 cm (length) × 50 cm (breadth) × 2 cm (height).
Then, the apparent resistivity measurements were taken by
setting the electrode spacing distance a to 0.5 cm, 1.0 cm,
1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm, 4.0 cm, 4.5 cm, and
5.0 cm whilst varying the top resistivity layer thickness h to
0.1 cm, 0.5 cm, 1.0 cm, 1.5 cm, and 2.0 cm.

4) Experiment 4: In this experiment, we study the fea-
sibility of a machine learning approach using Gaussian
Process (GP) modeling to estimate the depth of the per-
meation based on the apparent resistivity measurements.
We assume the top resistivity layer having 3.2 kΩcm is
an acid permeated layer. GP modeling approach [30] is
employed to train a non-parametric model, which obtains
apparent resistivity (ρa) as inputs and predicts the acid
permeated depth (D). The function f is learned in the form
of D = f (ρa)+ξ, where ξ is the uncertainty. Let [X ,Y ] be the
training data where X = [x1, x2, x3, ......, xm]T , xi = [(ρa)i ]T ,
and i (1 ≤ i ≤ m) is an integer and m is the number
of data pairs. Y = [y1, y2, y3, ......, ym]T is a vector having
corresponding training targets where yi = Di . [X ∗,Y ∗] is

the testing data, where X ∗ = [x∗
1 , x∗

2 , x∗
3 , ......, x∗

n ]T is a matrix
having test data inputs and Y = [y∗

1 , y∗
2 , y∗

3 , ......, y∗
n ]T is a

vector having predicted outputs corresponding to X ∗. Once
f has been learned using [X ,Y ], f can be used to predict
Y ∗ for a given X ∗ by using D∗ = f (ρ∗

a)+ξ∗. A K (X , X ) kernel
having ki , j = k(xi , x j ) elements was selected to address the
non-linear regression problem through GP modeling. In
this work, we use the squared exponential kernel, which
is defined as in (2).

k(xi , x j ) =α2exp

{
− 1

2β2

∥∥xi −x j
∥∥2

}
(2)

where the α and β are the hyper-parameters for the GP
model. The GP model was trained by minimizing the
negative log marginal likelihood in (3) with respect to
θ = {

α,β,σn
}
. The covariance function

∑
is defined as:

− log p(Y |X ,θ) = 1

2
Y T

(∑)−1
Y + 1

2

∣∣∣∑∣∣∣+ m

2
log(2π) (3)

∑= K (X , X )+σ2
n I (4)

The GP model equations are given by (5) and (6).

(µ)∗ = K (X ∗, X )
{
K (X , X )+σ2

n I
}−1 y (5)

(∑)∗ = K (X ∗, X ∗)+σ2
n I−{

K (X ∗, X )K (X , X )+σ2
n I

}−1K (X , X ∗)
(6)

The predicted depth (Y ∗) for the testing input (X ∗) will
be given by the mean of the posterior distribution (µ)∗ and
the associated uncertainty is given by the covariance (

∑
)*.

In this experimentation, the apparent resistivity measure-
ments were taken by keeping the electrode spacing 4 cm
and electrode contact area as 0.3 cm. These settings are
similar to the commercially available device [31].

IV. RESULTS

A. Experiment 1: Evaluation of the Developed Sensing Model

The four-probe FEM sensor model developed using the
Wenner method was validated by comparing it with the
previous scientific studies conducted by other researchers.
In high humidity environments, it is assumed that the
concrete close to the surface has ten times larger or smaller
resistivity value than the intrinsic concrete resistivity [24].
This was simulated in the previous studies [22], [23] in
two scenarios by varying the thickness of the top resistivity
layer and the distance between the electrodes. In the first
scenario, the top resistivity layer has 1 kΩcm and the
bottom resistivity layer has 10 kΩcm. This implies that the
top layer has high moisture content than the bottom layer.
We have modeled this scenario in simulation and apparent
resistivity measurements were taken by using the developed
FEM sensor model. Figure 2 shows the computed apparent
resistivity measurements for the highly moist top resistivity
layer. In the second scenario, we modeled the concrete



Fig. 2: Computed apparent resistivity measurements for the
concrete specimen having a 1 kΩcm top resistivity layer and
10 kΩcm bottom resistivity layer.

Fig. 3: Computed apparent resistivity measurements for the
concrete specimen having a 10 kΩcm top resistivity layer
and 1 kΩcm bottom resistivity layer.

specimen to have the top resistivity layer as 10 kΩcm and
the bottom resistivity layer has 1 kΩcm. This indicates that
the top layer has less moisture content than the bottom
layer. Figure 3 shows the computed apparent resistivity
measurements for the highly moist bottom resistivity layer.
The computed apparent resistivity measurements in Fig.
2 and Fig. 3 by using the developed FEM sensor model
produces similar results as reported in the previous studies
[22]–[24]. Hence, we will be utilising the developed FEM
model for studying the effects of the electrode contact area
and electrode spacing on apparent resistivity measures.

B. Experiment 2: Effects of Electrode Contact Area and Two-
layered Concrete Resistivity on Apparent Resistivity Measures

When the thickness of the top resistivity layer is 1.0 cm,
1.5 cm, and 2.0 cm, the apparent resistivity measurements
taken for the electrode contact area of 0.1 cm, 0.3 cm, and
0.5 cm showed 0.02 kΩcm variations when the electrode
spacing is between 2.0 cm and 5.0 cm. For 1.0 cm electrode
spacing, the variations were less than 0.07 kΩcm for the
measurements taken with the electrode contact area of 0.1
cm, 0.3 cm, and 0.5 cm.

For 0.5 cm top resistivity layer thickness, the apparent
resistivity measurement variations were less than 0.08 kΩcm
for the electrode contact area of 0.1 cm, 0.3 cm, and 0.5
cm when the electrode spacing is between 2.0 cm and
5.0 cm. For 1.0 cm electrode spacing, 0.1 kΩcm variation
in apparent resistivity measurement was observed. For 0.1
cm top resistivity layer thickness, the apparent resistivity
variations was around 0.7 kΩcm for the electrode contact
area of 0.1 cm, 0.3 cm, and 0.5 cm when the electrode
spacing is between 1.0 cm and 5.0 cm. Overall, from this
study, it can be said that the electrode contact area has a
negligible effect on apparent resistivity measurement.

C. Experiment 3: Effects of Electrode Spacing and Two-
layered Concrete Resistivity on Apparent Resistivity Measures

FEM computations were performed by varying the elec-
trode spacing and the thickness of the top concrete re-
sistivity layer to analyse the apparent resistivity measure-
ments on a two-layered concrete resistivity. Figure 4 shows
the computed apparent resistivity values for the electrode
spacing ranging from 0.5 cm to 5.0 cm and varying top
concrete resistivity layer thickness ranging from 0.1 cm to
2.0 cm. From the plot in Fig. 4, it can be noticed that the
measurements that were taken by keeping the electrode
spacing at 0.5 cm had the smallest apparent resistivity value
whereas the measurements that were taken for the electrode
spacing 5.0 cm had the largest resistivity value. This was
noticed for the top concrete resistivity layer thickness of
0.1 cm, 0.5 cm, 1.0 cm, 1.5 cm, and 2.0 cm. Therefore, it
can be said for the concrete sample with 2.0 cm thickness
having two-layered concrete resistivity, there is a gradual
increase in apparent resistivity measurements when there
is an increase in the spacing between the electrodes.

For the electrode spacing 1.0 cm, 2.0 cm, 3.0 cm, 4.0 cm,
and 5.0 cm, the apparent resistivity measurements for the
top concrete resistivity layer having 1.5 cm thickness were
0.32 kΩcm, 1.25 kΩcm, 2.21 kΩcm, 3.17 kΩcm, and 4.23
kΩcm higher than the measurements taken for the top con-
crete resistivity layer having 2.0 cm thickness respectively.
This shows that there are small differences in measurements
between the top concrete resistivity layer having 1.5 cm
and 2.0 cm thickness. Similar to previous analysis, for the
electrode spacing 1.0 cm, 2.0 cm, 3.0 cm, 4.0 cm, and
5.0 cm, the apparent resistivity measurements for the top
concrete resistivity layer having 1.0 cm thickness were 0.92
kΩcm, 2.72 kΩcm, 4.41 kΩcm, 6.19 kΩcm, and 8.23 kΩcm



Fig. 4: Apparent resistivity measurements are taken by
varying the spacing between the sensor electrodes for two-
layered concrete resistivity.

higher than the measurements taken for the top concrete
resistivity layer having 1.5 cm thickness respectively. The
computed values reveal that there are no large differences
in measurements between the top concrete resistivity layer
having 1.0 cm and 1.5 cm thickness. Further, when the
electrode spacing is 2.0 cm, 3.0 cm, 4.0 cm, and 5.0 cm,
the relative difference in apparent resistivity measurements
between the top concrete resistivity layer 1.0 cm and 1.5 cm
is almost twice the relative difference in apparent resistivity
measurements between the top concrete resistivity layer 1.5
cm and 2.0 cm. From this analysis, we can say that there
is no significantly large difference in apparent resistivity
measures for all electrode spacing when the top concrete
resistivity layer thickness is between 1.0 and 2.0 cm.

When the electrode spacing is 1.0 cm, 2.0 cm, 3.0 cm, 4.0
cm, and 5.0 cm, the apparent resistivity measurements for
the top concrete resistivity layer having 0.5 cm thickness
were 3.66 kΩcm, 7.98 kΩcm, 12.32 kΩcm, 17.22 kΩcm, and
22.81 kΩcm higher than the measurements taken for the
top concrete resistivity layer having 1.0 cm thickness re-
spectively. The measured apparent resistivity values indicate
that there are large differences in measurements between
the top concrete resistivity layer having 0.5 cm and 1.0
cm thickness. Further, there is a significant difference in
apparent resistivity measurements between the top thick-
ness layer of 0.1 cm and 0.5 cm. This shows that when the
thickness of the top layer is 95% smaller compared to the
sample thickness, the influence of the top layer is less in the
apparent resistivity measures for the electrode spacing 3.0
cm, 4.0 cm, and 5.0 cm. Below 3.0 cm electrode spacing, the
apparent resistivity measures were in between the resistivity
of the top and bottom layers.

Fig. 5: Learned GP model with training data.

Fig. 6: GP model prediction.

D. Experiment 4: Gaussian Process Modeling for Estimating
Acid Permeation Depth

The apparent resistivity measures obtained for different
depths from the simulation study was used to train the GP
model. Figure 5 shows the training data and Fig. 6 shows the
predicted depth data for the test data (apparent resistivity
measurements).

Figure 7 shows the behavior of GP predicted values
corresponding to training data, where it can be observed
that the predicted and actual depth data are similar and
falls within the uncertainty bounds when the depth is 6
mm or more. Large uncertainty in prediction was observed
when the acid permeated depth is below 6 mm. The mean
absolute error (MAE) between the actual depth and GP
predicted depth is 0.67 mm. However, predictions below the



Fig. 7: The behavior of GP predicted values corresponding
to training data.

depth of 6 mm had a MAE of 2.11 mm. For the depth above
6 mm, MAE was 0.05 mm. This indicates GP predictions
were reasonable for higher depth estimation.

V. CONCLUSION AND FUTURE WORK

This paper studied the effects of electrode spacing and
two resistivity layered concrete on apparent resistivity
measurements obtained by using the four-probe Wenner
method. The following summarizes the key outcomes.

• A FEM based four-probe Wenner array model was
developed for measuring apparent resistivity on a con-
crete block. The developed model was evaluated with
similar studies available in the literature. The outcome
of the evaluation was similar to previous studies.
Hence, the developed sensor model was utilized for
measuring apparent resistivity in this study.

• The sensor measurements were taken by setting the
electrode contact area as 0.1 cm, 0.3 cm, and 0.5 cm.
It was observed that the electrode contact area had
negligible effects on apparent resistivity measurements.

• For the thickness of the top resistivity layer from 0.1
cm to 2.0 cm, an increase in apparent resistivity mea-
surements was observed when the electrode spacing
increased from 0.5 cm to 5.0 cm.

• Smaller the electrode spacing i.e., 0.5 cm, the apparent
resistivity measurement values were smaller compared
to measurements taken at larger electrode spacing
distance. On the contrary, larger apparent resistivity
measurement values were observed when the electrode
spacing is larger, i.e., 5.0 cm.

• A significant increase in apparent resistivity measure-
ments was observed when the thickness of the top
resistivity layer is less than 0.5 cm. When the top

resistivity layer thickness is more than 1.0 cm, smaller
variations in apparent resistivity were observed.

• A Gaussian process based model was formulated to
estimate the depth of acid permeation. The depth
predictions were reasonably good when the acid per-
meated layer thickness is more than 0.6 cm.

In the future, we intend to extend the reported work
by studying the combined effects of electrode spacing and
two resistivity layered concrete on apparent resistivity mea-
surements by using real concrete samples. The two-layered
resistivity of the concrete sample will be created by exposing
the sample to an aqueous solution having different pH
values. Laboratory experimental results will be compared
with the simulation results for further investigations.
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