
P
os
te
d
on

20
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
21
49
87
4
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

System Identification of Static Nonlinear Elements: A Unified

Approach of Active Learning, Over-fit Avoidance, and Model

Structure Determination

Nalika Ulapane 1, Karthick Thiyagarajan 2, and sarath kodagoda 1

1Affiliation not available
2University of Technology Sydney

October 30, 2023

Abstract

Systems containing linear first-order dynamics and static nonlinear elements (i.e., nonlinear elements whose outputs depend only

on the present value of inputs) are often encountered; for example, certain automobile engine subsystems. Therefore, system

identification of static nonlinear elements becomes a crucial component that underpins the success of the overall identification of

such dynamical systems. In relation to identifying such systems, we are often required to identify models in differential equation

form, and consequently, we are required to describe static nonlinear elements in the form of functions in time domain. Identifi-

cation of such functions describing static elements is often a black-box identification exercise; although the inputs and outputs

are known, correct mathematical models describing the static nonlinear elements may be unknown. Therefore, with the aim

of obtaining computationally efficient models, calibrating polynomial models for such static elements is often attempted. With

that approach comes several issues, such as long time requirements to collect adequate amounts of measurements to calibrate

models, having to test different models to pick the best one, and having to avoid models over-fitting to noisy measurements.

Given that premise, this paper proposes an approach to tackle some of those issues. The approach involves collecting measure-

ments based on an uncertainty-driven Active Learning scheme to reduce time spent on measurements, and simultaneously fitting

smooth models using Gaussian Process (GP) regression to avoid over-fitting, and subsequently picking best fitting polynomial

models using GP-regressed smooth models. The principles for the single-input-single-output (SISO) static nonlinear element

case are demonstrated in this paper through simulation. These principles can easily be extended to MISO systems.
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Abstract—Systems containing linear first-order dynamics and
static nonlinear elements (i.e., nonlinear elements whose out-
puts depend only on the present value of inputs) are often
encountered; for example, certain automobile engine subsystems.
Therefore, system identification of static nonlinear elements
becomes a crucial component that underpins the success of the
overall identification of such dynamical systems. In relation to
identifying such systems, we are often required to identify models
in differential equation form, and consequently, we are required
to describe static nonlinear elements in the form of functions in
time domain. Identification of such functions describing static
elements is often a black-box identification exercise; although
the inputs and outputs are known, correct mathematical mod-
els describing the static nonlinear elements may be unknown.
Therefore, with the aim of obtaining computationally efficient
models, calibrating polynomial models for such static elements
is often attempted. With that approach comes several issues,
such as long time requirements to collect adequate amounts of
measurements to calibrate models, having to test different models
to pick the best one, and having to avoid models over-fitting to
noisy measurements. Given that premise, this paper proposes an
approach to tackle some of those issues. The approach involves
collecting measurements based on an uncertainty-driven Active
Learning scheme to reduce time spent on measurements, and si-
multaneously fitting smooth models using Gaussian Process (GP)
regression to avoid over-fitting, and subsequently picking best
fitting polynomial models using GP-regressed smooth models.
The principles for the single-input-single-output (SISO) static
nonlinear element case are demonstrated in this paper through
simulation. These principles can easily be extended to MISO
systems.

Index Terms—Active Learning, Gaussian Process, nonlinear
systems, over-fitting, system identification, uncertainty

I. INTRODUCTION

Accurate identification of static elements is crucial for
identifying effective models for control applications related to
dynamical systems, especially when it comes to the domain of
automobile engine subsystems [1]. Such systems commonly
include linear dynamics and static nonlinear elements, and
the system architecture comprising such linear dynamics and
static elements has been specifically studied over the years
[2]. When it comes to identifying static elements, a well-
known challenge encountered is the requirement of a long

time for measurements [1], especially in relation to systems
like engines as measurements typically have to be taken when
system responses have reached a steady state. Furthermore, on
instances where the model structure is unknown and black-
box identification is required (which is often the case in
real-world system identification tasks), computation time has
to be spent for model structure determination and over-fit
avoidance. It is therefore desirable to reduce the time required
for measurements by enabling the collection of only an amount
of data which is optimal and informative enough in some
sense, and also reducing the computation time by developing
algorithms that can systematically determine suitable model
structures. This paper contributes to this space by presenting
a unified approach, by combining Active Learning [3], [4] to
systematically collect informative measurements, and model
structure determination in a way that over-fitting is avoided.

Optimal design of experiments (DoE) in relation to system
identification has been extensively studied [5]–[7] with the
aim of reducing time spent on experiments, or maximizing
the information gained within a time budget. DoE often relies
on Fisher Information [7], [8] and thus comes the limitation
of having to assume a model for the system beforehand.
Assuming a model can become challenging in some real-
world system identification tasks, and as an alternative, the
approach of Mean Value Engine Modeling (MVEM) [9] is
sometimes adopted. MVEM is usually physics-based, and the
resulting models can be complicated, making them difficult
to be coupled with DoE since mathematically describing
‘Information’ can become tedious. Active Learning which
is greatly analogous to DoE, in its conventional use adopts
techniques like ‘query by committee’ [10] to collect measure-
ments guided by some means of model uncertainty. However,
such approaches used for system identification [4] too often
rely on an assumed model, or a set of models, which can
be identified as a limitation, especially since on the other
hand, more modern machine learning approaches such as
Gaussian Processes (GP)s [11] enable similar uncertainty-
based approaches on a non-parametric paradigm avoiding the
requirement of having to assume parametric models.



In this paper, the authors propose a greedy Active Learning
scheme to systematically collect measurements to identify
static nonlinear elements. The scheme starts with a set of
given prior measurements and decides the next point to take
measurements using maximum uncertainty produced by GP
regression as the criteria for deciding. The scheme operates
recursively until reaching some termination criteria. Since
GP is non-parametric, the proposed Active Learning scheme
is model-free, and therefore is different from parametric
model-based approaches presented in works such as [4], [7].
On termination of the Active Learning-based measurement
scheme, a polynomial-based model structure is determined
and calibrated. Some important literature about polynomial
structure determination include the works [12], [13]; however,
they are not coupled with Active Learning schemes unlike
in this paper, and revolve around determining polynomial
structures using a given set of measurements. We demonstrate
the approach on identification of a single-input-single-output
(SISO) static nonlinear element. The approach can easily be
extended to the MISO case.

The structure of the paper is as follows: Section II describes
the principles of GP-based regression; Section III presents the
system identification problem formulation; Section IV presents
the methodology detailing the Active Learning scheme and the
polynomial model structure determination approach; Section V
presents the results; and Section VI concludes the paper by
discussing the implications of results and potential avenues
for future work.

II. RELATED KNOWLEDGE: GAUSSIAN PROCESS
FORMULATION FOR REGRESSION

GPs are a strong tool used for solving multi-dimensional
nonlinear regression problems as well as classification prob-
lems. Reference [11] is useful to study GPs in detail, while this
section summarizes the GP regression formulation for the one-
dimensional nonlinear regression case for a smooth function.

Suppose there is a noisy process y = f(x) + ε where
x ∈ < is a one dimensional independent variable, y ∈ <
is a one dimensional dependent variable, and ε ∈ < is noise,
and it is required to learn a regression model describing the
process. Firstly, it is required to collect some training data X
and Y where X = [x1, x2, x3, ..., xn]T is a vector containing
measurement points and Y = [y1, y2, y3, ..., yn]T is a vector
containing corresponding noisy process responses; n ∈ Z+.
Secondly, a kernel K(X,X) whose elements are given by
ki,j = k(xi, xj) where k(., .) is some kernel function and
xi, xj ∈ X , has to be selected. Choices for kernel functions
and some rationale behind the suitability for some kernel
functions for some specific applications are available in [11].
The work of this paper focuses on smooth functions, and
therefore has selected the squared exponential kernel function
(described in (1); α, η ∈ < in (1) are hyper-parameters) as
it has been known to work well with smooth functions and
has been commonly used in previous works to learn smooth

functions [14]–[20].

k(xi, xj) = α2 exp

{
− 1

2η2
(xi − xj)2

}
(1)

When the squared exponential kernel function is used, α
and η along with an additional hyper-parameter (i.e., noise
variance σ) construct the set θ = {α, η, σ} which is the set
of hyper-parameters. Following a maximum likelihood esti-
mation formulation (details given in [11]), a regression model
describing the noisy process can be obtained by minimizing
(with respect to θ) the cost function of negative log marginal
likelihood given by:

− log[p(Y |X, θ)] =
1

2
XTΣ−1X+

1

2
log |Σ|+n

2
log(2π); (2)

where p(Y |X, θ) is the conditional probability of vector Y
given the vector X , |.| is the determinant of a matrix, and Σ
is the covariance matrix given by:

Σ = K(X,X) + σ2I (3)

where I is the corresponding identity matrix.
After finding θ which minimizes the negative log marginal

likelihood, that solution can be used in (4) and (5) to predict
process outputs y∗ for arbitrary inputs x∗. These results
can be interpreted as a Gaussian distribution in the form of
y∗|x∗ ∼ N (y∗, σ∗

y). σ∗
y in (5) is the predicted uncertainty,

which is used later in this paper as the criteria for selecting
informative measurement points.

y∗ = K(x∗, X)Σ−1Y (4)

(σ∗
y)2 = α2 + σ2 −K(x∗, X)Σ−1K(X,x∗) (5)

III. PROBLEM FORMULATION

This section presents the system identification problem
formulation. Suppose there is a static nonlinear SISO element
in the form of y = f(x) + ε where x ∈ < is the input, y ∈ <
is the output and ε ∈ < is noise. The element is subject to the
following assumptions:

1) x and y are measurable.
2) y is a continuous and smooth function of x, but the

structure of the function f(.) is unknown.
3) x has a range xmin < x < xmax, where

xmin, xmax ∈ <, and the values of xmin and xmax
are known.

4) The element shows open loop input-to-output stability
∀x in xmin < x < xmax; implying that |y| < ymax,∀y,
where |.| denotes absolute value and ymax ∈ <+.

5) Noise ε is zero mean white noise where |ε| < εmax,∀ε,
and εmax ∈ <+.

6)
εmax
ymax

< γ where γ ∈ <+, γ << 1.

The objective would now be to produce a computational-
ly efficient model ŷ = f̂(x) which satisfactorily describes
the element while not over-fitting the measurements. The
approach proposed to achieve this objective, starts by col-
lecting some prior measurements X = [x1, x2, x3, ..., xn]T

and Y = [y1, y2, y3, ..., yn]T and estimating a GP model



ˆygp|x ∼ N ( ˆygp, σy) from those measurements by minimizing
the negative log marginal likelihood objective function given
in (2). Further measurements {xn+1, yn+1} will be collected
via a maximum σy−based Active Learning scheme (described
in Section IV); those measurements will be added to the sets
X and Y and recursive estimation of the GP model and
data collection will take place until some termination criteria
(described in Section IV) indicating the convergence of the GP
model is reached. The aim of Active Learning as discussed
before, is to reduce the number of measurements collected as
opposed to collecting all possible measurements.

In the interest of producing a computationally efficient
model, we impose a polynomial structure to f̂ given by

ŷ =

m∑
k=0

φkx
k and construct the set φ = [m,φ1, φ2, ..., φm].

Eventually, the solution this paper seeks to find is:

φ∗ = arg min
φ

1

N

N∑
i=1

|ŷi − ˆygpi |
| ˆygpi |

, (6)

which minimizes the Mean Absolute Relative Error (MARE)
between the polynomial model and the GP model over a
user specified N , N ∈ Z+ number of function evaluation
points where ˆygpi 6= 0, with the aim of the solution φ∗

providing a polynomial model describing the nonlinear static
element whilst not over-fitting to the collected measurements.
Section IV details the methodology proposed to solve the
problem formulated in this section.

IV. METHODOLOGY

The methodology is broken down and detailed in the subsec-
tions coming within this section. Fig. 1 and 2 at the end of this
section depict the methodology in the form of two flowcharts;
Fig. 1 depicts the Active Learning scheme proposed to obtain
a GP model, and Fig. 2 depicts the subsequent polynomial
model identification scheme which relies on the GP model.

A. The Static Nonlinear Element

The methodology is presented in this section via a demon-
strative example using the static nonlinear element given by:

y = exp(−2x) sin(7πx) + exp(−3x) + 0.5 + ε. (7)

Assumptions (1) to (6) listed in Section III are valid for this
element; xmin and xmax are set to be 0 and 1 respectively
following Assumption (3), and γ is set to be 0.05 following
Assumption (6). Readers have the freedom to experiment the
proposed approach with different static elements subject to the
assumptions.

B. Performing Measurements

The Active Learning scheme operates using some given
measurements X = [x1, x2, ..., xn]T , Y = [y1, y2, ..., yn]T ,
and by recursively collecting measurements {xn+1, yn+1} and
adding them to the sets X and Y . Capturing noise becomes
necessary, therefore any measurement instance {xi, yi} would
have to be repeated multiple times (say M occasions). As a

result, xi ∈ X , ∀i would be given by xi =
1

M

M∑
j=1

xi,j , and

yi ∈ Y , ∀i would be given by yi =
1

M

M∑
j=1

yi,j . In addition,

variance of yi (i.e., σ2
i =

1

M

M∑
j=1

(yi,j−yi)2) would have to be

recorded ∀i and be arranged as σme = [σ1, σ2, ..., σn]T along
with sets X and Y . M is set to be 10 for the demonstrative
example.

C. The Active Learning Scheme

1) Initializing Hyper-Parameters: Suppose the Active
Learning scheme is to be started with a given set of mea-
surements X , Y , and σme having n measurements. The first
step authors propose is to arrange X to be in ascending
order, i.e., set X = [x1, x2, ..., xn]T , such that xi ≤ xi+1,
∀i, i ∈ Z+, i ≤ n − 1, and set Y = [y1, y2, ..., yn]T to be
corresponding to X . Thereafter, initializing hyper-parameters
(α, η, σ) as follows is proposed:

αini =
1

n− 1

n−1∑
i=1

|yi+1 − yi| (8)

ηini =
1

n− 1

n−1∑
i=1

|xi+1 − xi| (9)

and setting σini to have the mean value of elements of σme.
Since overlapping x values would be deliberately avoided,

ηini will naturally be nonzero. However, since y is a system
response, such a guarantee of being nonzero would not nat-
urally be imposed on αini. Should a rare instance resulting
αini = 0 occur for some set Y , an exception handling routine
should be in place to catch such instances and proceed to add
one or a few more random measurements to the sets X , Y
and σme in order to capture some degree of non-linearity of
the static element in question, and enforce αini 6= 0, prior to
using the collected measurements to estimate GP models.

2) Collecting Prior Measurements: Since n prior
measurements arranged as X = [x1, x2, ..., xn]T ,
Y = [y1, y2, ..., yn]T , and σme = [σ1, σ2, ..., σn]T are
required to begin the Active Learning scheme, collecting
any n random measurements would be adequate as long
as the condition αini 6= 0 is satisfied. For the purpose of
the demonstrative example though, authors do not resort to
random measurements, and go on to set n = 2 and impose
just two prior measurements such that x1 = xmin and
x2 = xmax, since xmin and xmax values will be known
beforehand according to Assumption (3). When starting with
just two measurements, should the event y1 = y2 occur
resulting in αini = 0, more measurements would have to be
added to the prior measurement set as said earlier, before
using the prior measurements to estimate GP models.



3) Estimating GP Models: Estimating GP models (i.e.,
models in the form: ˆygp|x ∼ N ( ˆygp, σy)) is to be done
by using any available measurement sets X and Y , and
minimizing the negative log marginal likelihood cost function
in (2). Starting from the initial values of the hyper-parameters
(i.e., θini = {αini, ηini, σini}), gradient-based optimization
can be used to reach a nearest local minimum in the cost
function [11]. The solution θ∗ = {α∗, η∗, σ∗} resulting from
the local minimum is taken as the solution yielding the GP
model from the available set of measurements X and Y .

4) Selecting the Next Best Measurement: After estimating
a GP model (i.e., ˆygp|x ∼ N ( ˆygp, σy)) using measurements
X = [x1, x2, ..., xn]T , a new set Xt is constructed such
that Xt = [x1, x2, ..., xn, xn+1, ...xN ]T where N > n. The
specialty of Xt is that it would contain N equally spaced
values, whose minimum and maximum would be xmin and
xmax respectively. The set of measurements X would then be
removed from Xt to construct a new set X∗

t = Xt − X ,
X∗
t = [xn+1, xn+2, ..., xi, ..., xN ]T . Uncertainty (i.e., σy)

values will be generated for all points in X∗
t using (5), and

the set σ∗
y = [σn+1, σn+2, ..., σi, ..., σN ]T will be constructed.

The index i∗ corresponding to the maximum uncertainty value
in σ∗

y will be selected, and thus, index n + 1 = i∗ will be
considered as the next best (i.e., xn+1) measurement to be
taken. Suppose i∗ becomes an adjacent point to any of the
available measurements, an exception is then made to come to
effect to enable i∗ to become a random index not adjacent to or
overlapping with any available measurements. This exception
allows for greater spatial distribution for the measurements.
Subsequently, the next best measurement {xn+1, yn+1} will
be added to sets X and Y , and the process will follow
recursively by re-initializing hyper-parameters, re-estimating
the GP model, and relocating the maximum uncertainty from
subsequent sets of σ∗

y , until the termination criteria specified
in the next subsection is reached. The flowchart in Fig. 1 will
be helpful to grasp the Active Learning scheme.

For the purpose of the demonstrative example, N is set to
be 1000.

5) Termination Criteria: Since the Active Learning scheme
iteratively takes new measurements, the foremost termination
criteria imposed is a maximum number of iterations. Function
evaluation is done on at most N points when selecting the
next best measurement, and as a result, limiting the maximum
number of iterations too to N is proposed; N iterations would
result in N equally spaced points covering the whole mea-
surement range according to the method in subsection IV-C4.
Therefore, if i is the number of iterations, i = N will be one
termination criteria.

Next, suppose the hyper-parameters resulting after i itera-
tions 2 ≤ i < N are α∗

i , η∗i , and σ∗
i . The following measures

are defined:

γα =
|αi − αi−1|
|αi−1|

(10)

γη =
|ηi − ηi−1|
|ηi−1|

(11)

γσ =
|σi − σi−1|
|σi−1|

(12)

Ideally, γα, γη , and γσ should all tend to zero to imply mod-
el convergence. Therefore, the termination criteria is set with
respect to a threshold γhyp, γhyp ∈ <+, γhyp << 1, such that
termination would occur if the three conditions γα < γhyp,
γη < γhyp, and γσ < γhyp will be satisfied simultaneously,
and would remain satisfied for Nhyp consecutive instances
(iterations). For the demonstrative example, γhyp = 0.05 and
Nhyp = 10 values are set.

D. Estimating Polynomial Models

The GP model (i.e., ˆygp|x ∼ N ( ˆygp, σy)) resulting from
the Active Learning scheme, would itself serve as a model
describing the static nonlinear element of interest. However,
GP models as such are known to be computationally expensive
[11], and therefore are not very likely to be usable as control-
oriented computationally efficient models at present. As such,
the ultimate solution this paper endeavors to obtain is a model

of polynomial architecture in the form of: ŷ =

m∑
k=0

φkx
k.

Unknowns of this architecture can be included into a set
φ = [m,φ1, φ2, ..., φm]T , where m is the polynomial order,
and the set φc = [φ1, φ2, ..., φm]T contains the polynomial
coefficients.

For an assumed order m, φc can be found by minimizing
the norm ||ŷ− ˆygp||, where ŷ would be a vector containing N
polynomial model output points, and ˆygp would be a corre-
sponding vector containing corresponding GP model outputs.
When the polynomial model is expressed in its matrix form:
ŷ = Xpφc, φc can be found by linear least squares as:

φc = (XT
p Xp)

−1XT
p ˆygp. (13)

Thus, by assuming a polynomial order m, and solving for
φc using (13) would yield a polynomial model describing
the static nonlinear element, solving the problem which this
paper focused on. It is proposed to improve the polynomial
model by starting from m = 1, and recursively increasing the
polynomial order while solving for coefficients φc. Such an
approach aligns with the Weierstrass approximation theorem
[21] and can produce polynomial models having a low residual
error. The termination criteria in (14) is proposed for the
recursion to stop. As a result of this termination criteria,
recursion would stop when the MARE (expressed in (15))
between the polynomial model and the GP model falls below
a threshold γp, γp ∈ <+, and γp << 1. The flowchart in
Fig. 2 will be helpful to grasp the polynomial model fitting
scheme.

MARE < γp (14)

MARE =
1

N

N∑
i=1

|ŷi − ˆygpi |
| ˆygpi |

(15)

For the purpose of the demonstrative example, γp is set to
be 0.01.



Fig. 1. Flowchart depicting the proposed Active Learning scheme.

Fig. 2. Flowchart depicting the polynomial fitting scheme.

V. RESULTS

The parameter values used for the demonstrative example
involving the static nonlinear element in (7), are summarized
in Table I, and the proposed termination criteria can be
summarized as follows:

TABLE I
PARAMETERS USED FOR THE DEMONSTRATIVE EXAMPLE

Parameter Symbol Value
Minimum of x xmin 0
Maximum of x xmax 1
Noise Threshold γ 0.05
Repetitions per measurement (to
start the Active Learning scheme)

M 10

Number of prior measurements n 2
Number of function evaluation
points

N 1000

Convergence threshold for hyper-
parameters

γhyp 0.05

Number of consecutive instances
γhyp has to be met

Nhyp 10

Convergence threshold for poly-
nomial models

γp 0.01

• The Active Learning scheme terminates when either the
number of iteration i becomes equal to the maximum
number of function evaluation points N , or when γα,
γη and γσ (described in (10), (11), and (12)) satisfy the

conditions γα < γhyp, γη < γhyp, and γσ < γhyp,
for an Nhyp number of consecutive instances (iterations).

• The polynomial fitting terminates when MARE (de-
scribed in (15)) satisfies MARE < γp.

The identification exercise was repeated 50 times to as-
sess the performance of the methodology. Fig. 3 shows the
histogram of the number of iterations taken for the Active
learning scheme to converge. Fig. 4 shows measurements
taken in a trial which converged in 164 Active Learning
iterations and Fig. 5 shows the performance of the GP and
polynomial models estimated from this data, alongside the
noisy (γ = 0.05) static element. How termination criteria for
both the Active Learning scheme and the polynomial fitting
scheme are met for this example are illustrated in Fig. 6 and
Fig. 7.

Fig. 3. Histogram over 50 trials, showing number of iterations taken for
the Active Learning scheme to converge, mean = 164 iterations, std = 76
iterations.

Fig. 4. Measurements taken in a trial which converged in 164 Active Learning
iterations.

VI. CONCLUSIONS

An approach unifying Active Learning, over-fit avoidance,
and model structure determination (polynomial architecture)
for system identification of static nonlinear elements was
proposed. The approach includes two steps: (1) Using a GP-
based Active Learning scheme to estimate a smooth nonlinear
model while collecting an optimal set of measurements in
a sense—such a method constitutes a framework for data
collection which guides users about the sufficiency or insuffi-
ciency of measurements collected; (2) A polynomial model



Fig. 5. Estimated GP and polynomial models alongside the noisy (γ = 0.05)
system.

Fig. 6. Variation of the natural logarithm of γα, γη , and γσ values against
iterations with zoomed view of convergence region satisfying the termination
criteria for the Active Learning scheme described in subsection IV-C5.

fitting scheme using the estimated GP model. Estimating
the smooth GP model avoids over-fitting; the subsequent
polynomial fitting delivers a model that is computationally
efficient and control-oriented than the GP model. Techniques
relevant for parameter initialization and algorithm termination
were introduced and the effectiveness of the approach was
demonstrated for the SISO case via an example. Since this
work focused only on static elements, future work can focus
on extending similar schemes to be generalized over dynamical
systems as well as MIMO cases. Another interesting question
to focus on will be to eliminate the use of GP (as it can
be computationally expensive for large data sets) and propose
Active Learning schemes based on more computationally
efficient means while being model-free (i.e., not relying on an
assumed model or a set of assumed models). Relaxing some
assumptions made in this paper will also be interesting.
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