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Abstract

Hyper-parameter optimization is an essential task in the use of machine learning techniques. Such optimizations are typically

done starting with an initial guess provided to hyperparameter values followed by optimization (or minimization) of some cost

function via gradient-based methods. The initial values become crucial since there is every chance for reaching local minimums in

the cost functions being minimized, especially since gradient-based optimizing is done. Therefore, initializing hyper-parameters

several times and repeating optimization to achieve the best solutions is usually attempted. Repetition of optimization can be

computationally expensive when using techniques like Gaussian Process (GP) which has an O(n3) complexity, and not having

a formal strategy to initialize hyperparameter values is an additional challenge. In general, reinitialization of hyper-parameter

values in the contexts of many machine learning techniques including GP has been done at random over the years; some

recent developments have proposed some initialization strategies based on the optimization of some meta loss cost functions.

To simplify this challenge of hyperparameter initialization, this paper introduces a data-dependent deterministic initialization

technique. The specific case of the squared exponential kernel-based GP regression problem is focused on, and the proposed

technique brings novelty by being deterministic as opposed to random initialization, and fast (due to the deterministic nature)

as opposed to optimizing some form of meta cost function as done in some previous works. Although global suitability of this

initialization technique is not proven in this paper, as a preliminary study the technique’s effectiveness is demonstrated via

several synthetic as well as real data-based nonlinear regression examples, hinting that the technique may have the effectiveness

for broader usage.
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Abstract—Hyper-parameter optimization is an essential task in
the use of machine learning techniques. Such optimizations are
typically done starting with an initial guess provided to hyper-
parameter values followed by optimization (or minimization)
of some cost function via gradient-based methods. The initial
values become crucial since there is every chance for reaching
local minimums in the cost functions being minimized, especially
since gradient-based optimizing is done. Therefore, initializ-
ing hyper-parameters several times and repeating optimization
to achieve the best solutions is usually attempted. Repetition
of optimization can be computationally expensive when using
techniques like Gaussian Process (GP) which has an O(n3)
complexity, and not having a formal strategy to initialize hyper-
parameter values is an additional challenge. In general, re-
initialization of hyper-parameter values in the contexts of many
machine learning techniques including GP has been done at
random over the years; some recent developments have proposed
some initialization strategies based on the optimization of some
meta loss cost functions. To simplify this challenge of hyper-
parameter initialization, this paper introduces a data-dependent
deterministic initialization technique. The specific case of the
squared exponential kernel-based GP regression problem is
focused on, and the proposed technique brings novelty by being
deterministic as opposed to random initialization, and fast (due
to the deterministic nature) as opposed to optimizing some form
of meta cost function as done in some previous works. Although
global suitability of this initialization technique is not proven in
this paper, as a preliminary study the technique’s effectiveness
is demonstrated via several synthetic as well as real data-based
nonlinear regression examples, hinting that the technique may
have the effectiveness for broader usage.

Index Terms—Gaussian Process, hyper-parameters, kernel,
machine learning, nonlinear regression, optimization, squared
exponential.

I. INTRODUCTION

Gaussian Processes (GP)s are a strong machine learning
tool used for solving multi-dimensional nonlinear regression
problems as well as classification problems [1], [2]. It is used
for numerous applications varying from modeling and calibra-
tion to forecasting and predictive control-related applications
[3]–[8]. GP is considered a non-parametric approach, and
works by means of finding some optimized hyper-parameter
values. Learning suitable hyper-parameter values for GP is

typically done via gradient-based optimization (targeted at
minimizing the negative log marginal likelihood, described
in Section II) which utilizes training data and user-specified
initial values given for hyper-parameters, and GP learning
is known to be O(n3) complex. Usually, optimizing starting
from multiple initialization points can be required to avoid
reaching local minimums of the cost function and achieve the
best solutions. GP related hyper-parameter initializing as such
has conventionally been done at random [2], and this paper
contributes to this space by introducing a more formal data-
dependent deterministic initialization technique.

Speeding up GP due to its O(n3) complexity has been
of interest over the years, and sparse GP approaches that
use a subset of training data to estimate hyper-parameters
have been proposed and studied as a solution [9], [10].
Hyper-parameter optimization algorithms have been studied
separately to be general for many machine learning techniques
[11]–[14]; however, strategies for initializing hyper-parameters
have not been a primary focus. The work on initializing hyper-
parameters has mainly revolved around some form of meta
learning [15], [16]. In contrast to such previous works, this
paper contributes by introducing a hyper-parameter initial-
ization technique that is data-dependent and deterministic in
relation to GP-based regression. The specific case of using
the squared exponential kernel is considered as a preliminary
study, focusing on producing nonlinear regression models
for processes exhibiting continuous and smooth functional
behavior. The initialization technique relies on the absolute
difference between adjacent training data points. This paper
presents the mathematical formulation of the initialization
technique along with some demonstrative examples that show
the technique’s effectiveness in producing regression models
having low residual errors and reasonable uncertainty.

The structure of the paper is as follows: Section II describes
the principles of GP-based regression; Section III proposes the
hyper-parameter initialization technique; Section IV presents
the effectiveness of the proposed technique via some synthetic
and real data-based regression examples, and Section V con-
cludes the paper by discussing the implications of results and



potential avenues for future work.

II. RELATED KNOWLEDGE: GAUSSIAN PROCESS
FORMULATION FOR REGRESSION

Reference [1] is useful to study GPs in detail while this sec-
tion summarizes the GP regression formulation for nonlinear
regression. Works [17]–[25] provide some examples for the
use of GP for solving nonlinear regression problems.

Suppose S = {(x(i), y(i))}mi=1, i,m ∈ Z+ is a training set
of independent identically distributed (i.i.d.) examples having
some unknown distribution, drawn from the noisy process:

y(i) = f(x(i)) + ε(i), (1)

i = 1, 2, ...,m, where ε(i) are i.i.d. ‘noise’ variables with
independent N (0, σ2) distributions. A ‘prior distribution’ over
functions f(·) is assumed; in particular, a zero-mean GP prior,

f(·) ∼ GP(0, k(·, ·)) (2)

is assumed, for some valid covariance function k(·, ·). Now,
suppose T = {(x(i)∗ , y

(i)
∗ )}m∗

i=1 is a set of i.i.d. testing
points drawn from the same unknown distribution as S. For
notational simplicity, the following are defined.

X =


−(x(1))T−
−(x(2))T−

...
−(x(m))T−

 ∈ Rm×n, −→y =


y(1)

y(2)

...
y(m)

 ∈ Rm,

−→
f =


f(x(1))
f(x(2))

...
f(x(m))

 ∈ Rm, −→ε =


ε(1)

ε(2)

...
ε(m)

 ∈ Rm,

X∗ =


−(x

(1)
∗ )T−

−(x
(2)
∗ )T−
...

−(x
(m∗)
∗ )T−

 ∈ Rm∗×n, −→y∗ =


y
(1)
∗

y
(2)
∗
...

y
(m∗)
∗

 ∈ Rm∗ ,

−→
f∗ =


f(x

(1)
∗ )

f(x
(2)
∗ )
...

f(x
(m∗)
∗ )

 ∈ Rm∗ , −→ε∗ =


ε
(1)
∗

ε
(2)
∗
...

ε
(m∗)
∗

 ∈ Rm∗ .

For any f(·) drawn from the GP prior in (2), the marginal
distribution[−→

f
−→
f∗

]∣∣∣∣∣X,X∗ ∼ N
(
−→
0 ,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(3)

holds where K(X,X) ∈ Rm×m, K(X,X∗) ∈ Rm×m∗ ,
K(X∗, X) ∈ Rm∗×m, and K(X∗, X∗) ∈ Rm∗×m∗ , such that
(K(X,X))i,j = k(x(i), x(j)), (K(X,X∗))i,j = k(x(i), x

(j)
∗ ),

(K(X∗, X))i,j = k(x
(i)
∗ , x(j)), (K(X∗, X∗))i,j =

k(x
(i)
∗ , x

(j)
∗ ).

From the i.i.d. noise assumption we have[−→ε
−→ε∗

]
∼ N

(
−→
0 ,

[
σ2I

−→
0

−→
0 T σ2I

])
(4)

where I denotes identity matrices of corresponding size. Since
the sum of two independent Gaussian random variables is also
Gaussian, we get[−→y

−→y∗

]∣∣∣∣X,X∗ =

[−→
f
−→
f∗

]
+

[−→ε
−→ε∗

]
(5)

by summing (3) and (4), which yields[−→y
−→y∗

]∣∣∣∣X,X∗ ∼ N
(
−→
0 ,

[
Σ K(X,X∗)

K(X∗, X) K(X∗, X∗) + σ2I

])
.

(6)
where Σ = K(X,X) + σ2I . Now, following the rules for
conditioning Gaussians, this yields y∗|y,X,X∗ ∼ N (µ∗,Σ∗)
where

µ∗ = K(X∗, X)Σ−1−→y (7)

Σ∗ = K(X∗, X∗) + σ2I −K(X∗, X)Σ−1K(X,X∗) (8)

which provides the prediction, or the regression model.
In this paper, we focus explicitly on the squared exponential

kernel-based regression. The squared exponential kernel is
given by

k(xi, xj) = α2 exp

(
− 1

2η2
||xi − xj ||2

)
(9)

When the squared exponential kernel function is used,
θ ∈ R3, θ = {α, η, σ} becomes the set of hyper-parameters.
Predictions µ∗,Σ∗ are done using an optimized set θ∗ obtained
by means of minimizing the negative log marginal likelihood
[1]; i.e.,

θ∗ = arg min
θ

(− log[p(−→y |X, θ)]) (10)

where

− log[p(−→y |X, θ)] =
1

2
XTΣ−1X +

1

2
log |Σ|+ m

2
log(2π);

(11)
p(−→y |X, θ) is the conditional probability of −→y given X ,
|Σ| is the determinant of Σ. Solving (10) is typically done
via gradient-based optimization, and this is the point where
initializing the hyper-parameter values becomes a concern.

III. METHODOLOGY: INITIALIZING HYPER-PARAMETER
VALUES

A. Pre-Processing Data (Normalizing).

Prior to performing GP regression, normalizing X,X∗ and
−→y is proposed. Suppose µx = [µ1, µ2, ..., µj , ..., µn] is a row
vector where µj , j = 1, 2, ..., n is the mean of the jth column
of X , and σx = [σ1, σ2, ..., σj , ..., σn] is a row vector where
σj , j = 1, 2, ..., n is the standard deviation (std) of the jth

column of X . Now suppose (X)i,j = x
(i)
(j) and (X∗)i,j =

x
(i)
∗(j), and normalization is done for all i and j as follows.

x
(i)
(j) ←

x
(i)
(j) − µj
σj

(12)

x
(i)
∗(j) ←

x
(i)
∗(j) − µj
σj

(13)



Similarly, suppose µy and σy are the mean and standard
deviation respectively, of the vector −→y . Now, normalization
of −→y is done by performing (14) ∀ y(i) ∈ −→y .

y(i) ← y(i) − µy
σy

(14)

Note: GP regression is performed on normalized data and
from this point onward, X,X∗ and −→y would represent the
normalized data.

B. Hyper-Parameter Initialization.

The set of hyper-parameter initial values is denoted as
θini = {αini, ηini, σini}, and the method this paper proposes
to determine those initial values is described in this subsection.

To start with, constructing sets S1, S2, ..., Sn is proposed
where Sj = {−→y , (X):,j} for j = 1, 2, ..., n. (X):,j is the jth

column of X . All Sj , j = 1, 2, ..., n are to be rearranged such
that (X):,j will be sorted to be in ascending order, and −→y will
be sorted correspondingly.

Note: From this point onward, X:,j would represent the sort-
ed jth column of X , and −→yj would represent correspondingly
sorted −→y , and Sj would represent a sorted set.

Next, constructing the set dx = [dx1, dx2, ..., dxj , ..., dxn] is
proposed where dxj for j = 1, 2, ..., n is given by

dxj =
1

kxj

m−1∑
i=1

|(X)i,j − (X)i+1,j | (15)

where kxj is the number of instances that (X)i,j 6= (X)i+1,j

for i = 1, 2, ...,m− 1. Then, ηini is set to be the mean of dx
and naturally ηini > 0 condition would hold.

To determine αini and σini, constructing the set dy =
[dy1, dy2, ..., dyj , ..., dyn] is proposed where dyj for j =
1, 2, ..., n is given by

dyj =
1

kyj

m−1∑
i=1

|(−→yj )i − (−→yj )i+1| (16)

where (−→yj )i is the ith element of −→yj and kyj is the number of
instances where (−→yj )i 6= (−→yj )i+1 for i = 1, 2, ...,m− 1. Then
αini is set to be the mean of dy and σini is set to be σini =
γαini+δmin(dy) where min(dy) denotes the minimum value
of the array dy and γ, δ ∈ R+; γ, δ < 1.

There lies a possibility of αini = 0 occurring, and if α in (9)
becomes zero, the covariance function values would become
zero. Therefore, α 6= 0 should hold for the covariance function
to produce meaningful values. This imposes that an exception
handling routine should come to effect in the rare event of
αini = 0 occurring, to indicate that the available training data
set is unsuitable to proceed with GP regression, and that more
training points are required to be added to make sure αini 6= 0
results. Furthermore, the correct choice of values for γ and δ
is an open question, and for the initial investigation done in
this paper, the authors set γ = δ = 0.5.

IV. DEMONSTRATIVE EXAMPLES AND RESULTS

A. Example 1: One Dimensional Regression Example in (3c)
of [26].

This example (i.e., (3c) of [26]) can be considered a
benchmark exercise. Tables I and II show the initial conditions
used in [26] and the initial conditions resulting from the
technique proposed in this paper, along with the final hyper-
parameter values reached. The same training data set (i.e., the
20 training data points shown in Fig. 1) was used with the
two initial conditions, and it can be seen from Tables I and
II that the same final solution could be reached starting from
both initial conditions. The resulting regression model along
with the uncertainty and training data are plotted in Fig. 1.
The noisy process is given by

y(i) = sin(3x(i)) + ε(i) (17)

where x(i), y(i), ε(i) ∈ R; −0.1373 < ε(i) < 0.1853, ∀i.

Fig. 1. Final results of Example 1.

B. Example 2: One Dimensional Regression Example in (4a)
of [26].

In [26], (4a) is solved using a variant of the Matern
covariance function. In this paper, we attempted to approx-
imate a regression model for the same data of (4a) using
the squared exponential covariance function in conjunction
with the proposed hyper-parameter initialization technique.
The results shown in Table III and Fig 2 could be achieved.

TABLE I
HYPER-PARAMETER VALUES FROM (3C) OF [26], EXAMPLE 1

Hyper-Parameter Initial Value Final Value
α 1 0.5976
η 1 1.0856
σ 0.3679 0.1104

TABLE II
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE 1

Hyper-Parameter Initial Value Final Value
α 0.4154 0.5976
η 0.1701 1.0856
σ 0.2100 0.1104



TABLE III
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE 2

Hyper-Parameter Initial Value Final Value
α 0.4170 0.3721
η 0.2027 1.1636
σ 0.2307 0.1177

Fig. 2. Final results of Example 2.

C. Example 3: One Dimensional Regression Example (Syn-
thesized Example).

This subsection presents a synthesized example in finding a
regression model for the process shown in (18) with the aim
of assessing the impact of noise on the performance of the
proposed hyper-parameter initialization technique.

y(i) = exp(−2x(i)) sin(7πx(i)) + exp(−3x(i)) + 0.5 + ε(i)

(18)
x(i), y(i), ε(i) ∈ R, ∀i. To assess the impact of noise, we define
the operators | ∗ |e and max(∗), where | ∗ |e replaces each
element of an array ‘∗’ with the element’s absolute value, and
max(∗) picks the maximum value in an array ‘∗’ . The criteria
in (19) which sets a threshold γnoise for the maximum noise
amplitude is then defined. γnoise ∈ R+, γnoise << 1.

max(|−→ε |e)
max(|

−→
f |e)

≤ γnoise (19)

The impact of noise is studied by varying the threshold
γnoise. Three cases where γnoise = 0.05, 0.15 and 0.25 are
considered where a lower γnoise enforces a lower noise am-
plitude and a higher γnoise enforces a higher noise amplitude.

Tables IV, V and VI show the impact of noise amplitude
on hyper-parameter initialization and also the end result. It is
evident from the tables that noise does understandably impact
the hyper-parameters, however, the resulting regression models
and uncertainty margins plotted in Fig. 3, 4 and 5 exhibit that
the resulting models are still able to characterize the process
behavior.

D. Example 4: One Dimensional Regression Example (A Case
With Some Real Data).

In this subsection the initialization technique is experiment-
ed on some Pulsed Eddy Current (PEC) sensor data published
in [22]. A nature of this data set is that x becomes noisy for

TABLE IV
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE

3, γnoise = 0.05 CASE

Hyper-Parameter Initial Value Final Value
α 0.2188 0.3800
η 0.0358 1.8160
σ 0.1104 0.1357

Fig. 3. Final results of Example 3, γnoise = 0.05 case.

coinciding values of y, and when the value of y increases, the
variation in x becomes larger. This attribute can be observed
in Fig. 6.

The hyper-parameter initializing technique was once again
effective as shown by the results in Tables VII and VIII, and
Fig. 6. The initial values shown in Table VII are the ones
used in [22], and the initial values resulting from the proposed
technique are given in Table VIII. It can be seen from those
tables that the same final result has been reached starting from
both sets of initial values. It can also be seen from Fig. 6 that
the estimated hyper-parameters have been able to capture a
nonlinear model characterizing the underlying data.

TABLE V
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE

3, γnoise = 0.15 CASE

Hyper-Parameter Initial Value Final Value
α 0.4204 0.2684
η 0.0358 1.0623
σ 0.2172 0.3375

Fig. 4. Final results of Example 3, γnoise = 0.15 case.



TABLE VI
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE

3, γnoise = 0.25 CASE

Hyper-Parameter Initial Value Final Value
α 0.6308 0.2756
η 0.0358 0.9807
σ 0.3252 0.5208

Fig. 5. Final results of Example 3, γnoise = 0.25 case.

E. Example 5: One Dimensional Regression Example (A
Noise-Free Case With Some Real Data).

In this subsection, a noise-free case with minimal data (just
7 data points) is examined using some PEC data published in
[27]. Hyper-parameter values along with the regression model
that resulted following the proposed initialization technique
are shown in Table IX and Fig. 7. Fig. 7 demonstrates how
the underlying process has been captured by the regression
model.

F. Example 6: A Higher Dimensional Case.

Modeling the surface given by (20) is attempted in this
subsection. x

(i)
1 , x

(i)
2 , y(i), ε(i) ∈ R, x(i) = {x(i)1 , x

(i)
2 },

0 ≤ x
(i)
1 , x

(i)
2 ≤ 1, −0.1 ≤ ε(i) ≤ 0.1, ∀i.

y(i) = exp(−2x
(i)
1 ) sin(7x

(i)
2 ) + ε(i) (20)

Hyper-parameters initialized following the proposed tech-
nique were able to tackle this problem as well. Table X, Fig. 8

TABLE VII
HYPER-PARAMETER VALUES FROM [22], EXAMPLE 4

Hyper-Parameter Initial Value Final Value
α 7.3891 1.4965
η 2.7183 1.8361
σ 0.1 0.2674

TABLE VIII
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE 4

Hyper-Parameter Initial Value Final Value
α 0.2417 1.4965
η 0.1428 1.8361
σ 0.1209 0.2674

Fig. 6. Final results of Example 4.

Fig. 7. Final results of Example 5.

and Fig. 9 present the results. Fig. 8 shows the regression
model surface along with training data; Fig. 9 shows how the
uncertainty captures the noise in the data.

V. CONCLUSIONS

A hyper-parameter initialization technique for squared ex-
ponential kernel-based GP regression was introduced. The
technique includes a data normalization and sorting step, and
an absolute difference-based (between adjacent data points)
initialization step. In contrast to conventional random initial-
ization and meta cost optimization techniques, the proposed
technique brings a degree of novelty by being deterministic;
i.e., an exact determination of suitable initial values is possible
from training data. Numerous examples going up to higher
dimensions were examined, and in all the cases the determined

TABLE IX
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE 5

Hyper-Parameter Initial Value Final Value
α 0.4789 1.1412
η 0.4574 1.5293
σ 0.4085 0.1342

TABLE X
HYPER-PARAMETER VALUES FROM THE PROPOSED METHOD, EXAMPLE 6

Hyper-Parameter Initial Value Final Value
α 0.8023 1.1977
η 0.0175 2.1047
σ 0.4020 0.1641



Fig. 8. Regression Model of Example 6 with Training Data.

Fig. 9. Uncertainty and Training Data against Regression Model.

initial values were able to lead to final solutions that describe
the underlying processes satisfactorily, avoiding the require-
ment of re-initializing and repeating optimization. Although a
guarantee that initializing in the proposed manner would lead
to global optimums was not proven in this paper, the results
hold evidence for the effectiveness of the regression models
produced following this technique. Since this paper studied
only the squared exponential kernel-based case, future work
can focus on investigating similar initialization techniques for
other kernels in relation to GP, and also other machine learning
techniques in general. Studying such initialization techniques
more deeply will also be interesting to learn whether any
failure cases can occur and ways for improvement.
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