
P
os
te
d
on

21
J
u
n
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
21
81
49
4.
v
3
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

C
S
II
.2
02
0.
3
00
89
32

Low-Cost and Programmable CRC Implementation based on

FPGA (Extended Version)

Huan Liu 1,1,1, Zhiliang Qiu 2, Weitao Pan 2, Jun Li 2, Ling Zheng 2, and Ya Gao 2

1Xidian University
2Affiliation not available

November 8, 2023

Abstract

Cyclic redundancy check (CRC) is a well-known error detection code that is widely used in Ethernet, PCIe, and other transmis-

sion protocols. The existing FPGA-based implementation solutions are faced with the problem of excessive resource utilization

in high-performance scenarios. The padding zeros problem and the introduction of programmability further exacerbate this

problem. In this brief, the stride-by-5 algorithm is proposed to achieve the optimal utilization of FPGA resources. The pipelin-

ing go back algorithm is proposed to solve the padding zeros problem. The method of reprogramming by HWICAP is proposed

to realize programmability with a small and constant resource utilization. The experimental results show that the resource

utilization of proposed non-segmented architecture is 84.1% and 37.6% lower than those of two state-of-the-art FPGA-based

CRC implementations, and the proposed segmented architecture has a lower resource utilization by 83.9% and 8.9% compared

wtih the two state-of-the-art architectures; meanwhile, the throughput and programmability are guaranteed. We made the

source code available on GitHub.

1

1

Low-Cost and Programmable CRC Implementation
based on FPGA (Extended Version)

Huan Liu, Zhiliang Qiu, Weitao Pan, Jun Li, Ling Zheng and Ya Gao

Abstract—Cyclic redundancy check (CRC) is a well-known
error detection code that is widely used in Ethernet, PCIe,
and other transmission protocols. The existing FPGA-based
implementation solutions are faced with the problem of excessive
resource utilization in high-performance scenarios. The padding
zeros problem and the introduction of programmability further
exacerbate this problem. In this brief, the stride-by-5 algorithm
is proposed to achieve the optimal utilization of FPGA resources.
The pipelining go back algorithm is proposed to solve the padding
zeros problem. The method of reprogramming by HWICAP is
proposed to realize programmability with a small and constant
resource utilization. The experimental results show that the
resource utilization of proposed non-segmented architecture is
80.7%-87.5% and 25.1%-46.2% lower than those of two state-
of-the-art FPGA-based CRC implementations, and the proposed
segmented architecture has a lower resource utilization by 81.7%-
85.9% and 2.9%-20.8% compared wtih the two state-of-the-art
architectures; meanwhile, the throughput and programmability
are guaranteed. We made the source code available on GitHub[1].

Index Terms—Cyclic redundancy check, FPGA, low cost,
programmable, HWICAP.

I. INTRODUCTION

As the throughput of networks is on a constant rise, in-
creasingly more packet processing tasks are being offloaded
to the FPGA-based SmartNIC[2], including the generation and
verification of cyclic redundancy check (CRC). The 400G
and the coming multi-terabit Ethernet demand faster CRC
caculations, and the implementation of high-performance CRC
calculations based on FPGAs needs to meet three require-
ments: 1) Reduce parallelization cost. The end of Dennard
scaling[3] results in a bottleneck for improving the frequency
of integrated circuits, and higher throughput means a wider
bus inside chips. The slicing-by-4 and slicing-by-8 algorithms
are proposed for parallel processing in[4], which is suitable
for CPU but not optimal for FPGA[5]. 2) Solve the padding
zeros problem. The parallelization means that the final word of
a transaction is composed of valid bytes along with padding

This work is supported in part by the National Key Laboratory Foundation
(HTKJ2019KL504012), National Natural Science Foundation (61502204).

H. Liu, Z. Qiu, and W. Pan are with the State Key Laboratory of
Integrated Service Networks, Xidian University, Xi’an 710071, China (e-mail:
huanliu@stu.xidian.edu.cn).

J. Li is with the National Key Laboratory of Science and Technology
on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an
710100, China.

Ling Zheng is with the School of Communication and Information Engi-
neering, Xi’an University of Posts and Telecommunications, Xi’an 710121,
China.

Ya Gao is with the School of Internet of Things Technology, Wuxi Institute
of Technology, Wuxi 214121, China.

Corresponding author: Weitao Pan (wtpan@mail.xidian.edu.cn)

zeros. The number of padding zeros is uncertain, and CRC
calculations using the complete final word would cause an
erroneous result, which is called the padding zeros problem.
Multiple tables can be used to process the final word, and every
table corresponds to a possible length of valid bytes[6]. The
scheme introduces an O

(
n2
)

resource utilization when the bus
width is n bits. [7][8] is one of the state-of-the-art schemes
for solving this problem. The tables for the final word are
organized in the manner of a pipeline, and each pipeline step
corresponds to one layer of a binary search tree. An O(n)
resource utilization is introduced. 3) Keep programmability.
A programmable implementation of the CRC algorithm can
achieve better reusability; thus, a wide range of applications
can be supported without circuit modification. The demand
can be found in iSCSI[9] and P4[10]. A specific circuit
architecture is used to guarantee programmability[11][12], but
it is not suitable for FPGA. [5] is one of the state-of-the-art
schemes that is suitable for FPGA, but it requires a complex
configuration circuit that leads to a large resource utilization
increase with the bus width.

All three of the aforementioned requirements lead to a con-
siderable resource utilization. Although slicing[4][5], aggres-
sive strides, simultaneous processing of multiple streams[7]
and many other principles behind CRC acceleration are well
known, they can’t achieve low cost, high performance and
programmability at the same time. A multi-core, multi-socket
system with Intel’s CRC instruction[13] can achieve high
throughput, but they suffer from high latency and high power
consumption in packet processing applications. In this brief,
two algorithms and a method corresponding to the three
requirements are proposed to decrease the resource utiliza-
tion with guaranteed throughput and programmability. First,
the stride-by-5 algorithm is proposed, which can reduce the
resource utilization by 79.69%-79.98% compared with the
slicing-by-4 and slicing-by-8 algorithms. Second, the pipelin-
ing go back algorithm is proposed to solve the padding zeros
problem, which will introduce an O (log2 n) resource utiliza-
tion. Finally, a hardware internal configuration access port
(HWICAP) is used to realize dynamic programmability, and
it leads to a small and constant resource utilization regardless
of the bus width.

The remainder of this brief is organized as follows. Section
II provides preliminaries to our proposals. Section III discusses
the system architecture and the three proposals. Section IV
shows the synthesis results and the board-level implementation
results. Section V concludes this brief.

2

D Q

1g

D Q

2g0g

D Q

2g

D Q

1gl

D Q

Data

Input

0c
1c 2c 1cl

0b kb...

Fig. 1: LFSR for CRC computing.

II. PRELIMINARIES

A. FPGA LUT Architecture

The basic logic resource of modern Xilinx FPGAs is look-
up tables (LUTs), which can be considered a RAM with five
inputs and two outputs[14]. A truth table can be stored in
a LUT, and two logical equations with the same five inputs
can be realized using it. This is an important property that
will be used in the stride-by-5 algorithm. LUT is the most
consumed resource in FPGA-based CRC implementations, and
the number of consumed LUTs is used as the indicator of the
resource utilization.

B. Serial and Parallel CRC Algorithms

Serial CRC Algorithm
The CRC algorithm is a long division performed with

modulo-2 arithmetic. The dividend is a polynomial B(x)
whose coefficient is the input data. The divisor is a given
polynomial G(x), and the coefficient of the remainder R(x)
is the wanted CRC value. Addition and subtraction can be
realized by the xor operation in GF(2), and “+” means xor in
the remainder of this brief. The aforementioned division can
be realized by the linear feedback shift register (LFSR), as
shown in Fig. 1.

The coefficient of G(x) is [gl, gl−1, . . . , g0]. The coeffi-
cient of B(x) is [b0, b1, . . . , bk], with b0 being the most
significant bit. The initial value of the LFSR is C(0) =[
c
(0)
l−1, c

(0)
l−2, · · · , c

(0)
0

]T
. The value of the LFSR is C(m) when

bit bm−1 enters the LFSR, and it will become C(m+1) after bit
bm enters the LFSR. We can obtain the relationship between
C(m) and C(m+1) from Fig. 1, which is

C(m+1) = TC(m) + Sbm (1)

where T is a matrix of size l × l. S is a column vector of
size l, and

T =

gl−1 1 0 · · · 0
gl−2 0 1 · · · 0
· · · · · · · · · · · · · · ·
g1 0 0 · · · 1
g0 0 0 · · · 0

 (2)

S = [gl−1, gl−2, . . . , g0]
T (3)

Parallel CRC Algorithm
The parallel CRC algorithm can process multiple data input

bits simultaneously[15], and its theoretical equation can be
derived from (1). The number of bits processed in parallel is
n, which is also the width of the inner bus in the remainder of
this brief. The parallel input data are Bn = [b0, b1, . . . , bn−1]

T .

The value of the LFSR is C(k) before Bn enters. The rela-
tionship between C(n+k) and C(k) is

C(n+k) = TC(n+k−1) + Sbn−1

= TnC(k) + Tn−1Sb0 + Tn−2Sb1 + · · ·+ Sbn−1

= TnC(k) +WlnBn

(4)
where Wln is a matrix of size l × n and

Wln =
[
Tn−1S, Tn−2S, . . . , TS, S

]
(5)

Tn and Wln can be calculated by equations (2), (3) and (5)
after G(x) is given, and parallel processing by n bits can be
achieved by equation (4).

C. Programmability and HWICAP

Tn and Wln are generally stored inside LUTs for the
FPGA-based implementation of CRC algorithms, and a pro-
grammable implementation requires the ability to modify the
content of the LUTs at runtime. Previous research using logic
resources (LUTs and registers) to realize configuration logic
would lead to several thousands of LUTs consumed when
n ≥ 1024[5].

HWICAP is an Xilinx IP core that can afford users with
access to ICAP primitives using the AXI4-Lite protocol[14].
It can modify the content of the LUTs dynamically. The
resource utilization of HWICAP is as low as 186 LUTs, and
it will not increase with increasing inner bus width. For the
Intel/Altera FPGAs, similar function can be achieved by using
PR-IP[16][17].

III. PROPOSED WORK

A. Non-Segmented System Architecture

The proposed non-segmented system architecture is shown
in Fig. 2. Non-segmented system architecture means that there
should be one frame in a single word, and segmented system
architecture can process multiple frames at the same time[18].
Region 1 and Region 2 correspond to the computation of
WlnBn in (4). Region 1 consumes most of the LUTs, and the
number of consumed LUTs linearly depends on the size of
Wln. The stride-by-5 algorithm, which is discussed in Section
B, is proposed to reduce the LUT consumption of Region 1.
Region 2 is implemented by the means of an xor tree instead
of a one-stage xor function to achieve higher performance.
Region 3 completes the computation of (4). It consumes few
LUTs for the small size of T n. The padding zeros problem
is solved by Region 4, and the pipelining go back algorithm,
which results in an O (log2 n) resource utilization, is proposed
and discussed in Section C. Region 5 is a HWICAP controller
that can modify the content of the LUTs dynamically. The
operation procedure is discussed in Section D. A segmented
system architecture is proposed in Section E. The packet
processing flow of the two system architectures are illustrated
in Section F.

3

stride-by-5 lookup table XOR Tree

HWICAP Controller
AXI-Lite

data_in

crc_out

region 1 region 2

region 4(go back pipeline)

region 5

computingln nW B

region 3

() computingn k

ln nT C W B+1R1R
2R

hR ...

Fig. 2: Proposed non-segmented system architecture.

item 1

item 2

item 3

item 4

item 256

item 255

item 1

item 2

item 16

item 1

item 2

item 16

key result

key1

key2
result2

result1

result

(a) (b)

Fig. 3: Function implementation with (a) stride-by-8 and (b)
stride-by-4.

B. Stride-by-5 Algorithm

In this section, the model of the resource utilization is
established, the stride-by-5 is proven to be the best stride for
various bus widths, and the stride-by-5 algorithm is described
in Algorithm 1.

Stride, as its name implies, means the number of bits
processed by a single logical table[19]. The logical table can
be realized using FPGA LUTs, and it can load the truth table
of a function. For example, an 8-input function is defined as

y = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 (6)

which can be transformed equivalently as y1 = x1 + x2 + x3 + x4

y2 = x5 + x6 + x7 + x8

y = y1 + y2

(7)

Equations (6) and (7), whose strides are 8 and 4, can be
implemented as shown in Fig. 3(a) and Fig. 3(b), respectively.
A smaller stride means that a smaller logical table can be
realized by a single LUT or cascaded LUTs. Can stride-by-
1 be considered the best stride for FPGA implementation?
We will establish the resource utilization model and find the
answer.

l equations with the same n inputs are required to realize
the computation of WlnBn in (4). n is also the bus width, and

n = ms+ r (8)

in which s is stride. m equals bn/sc. r means remainder,
which equals n mod s.

The function A(x) is defined as

A(x) =

{
0 x = 0
1 x > 0

(9)

Fig. 4: The relationship between KR1
(n, s, 32), n and s.

and the resource utilization function K(m, s, r, l) is defined
as

K(m, s, r, l) =

(l/2) · (m+A(r))
s ≤ 5

(l/2) · (m · 2s−5 +A(r))
s > 5, r ≤ 5

(l/2) · (m · 2s−5 +A(r) · 2r−5)
s > 5, r > 5

(10)
There are three equations corresponding to different s and

r. A single LUT is required to realize a logical table when s
is smaller than five, and cascaded LUTs are needed to realize
a logical table when s is larger than five. This is because a
single LUT has five inputs. The computation of the remainder
r is the same as that of the stride s. l is divided by 2 for the
two outputs of a single LUT. (10) can be simplified as

K(n, s, l) =

(l/2) · (bn/sc+A(n mod s)
s ≤ 5

(l/2) · (bn/sc · 2s−5 +A(n mod s))
s > 5, n mod s ≤ 5

(l/2) · (bn/sc · 2s−5 +A(n mod s)
·2(n mod s)−5) s > 5, n mod s > 5

(11)
We should determine the values of l and s before exploring

the relationship between K and s and find the best s. l
is related to the generator polynomial, and it is set to 32
here because CRC32 is the most widely used polynomial.
The value of n is set to [64, 128, 256 · · · 4096] to explore
the influence of the bus width. The value of s is set to
[1, 2, 3 · · · 8]. A stride larger than 8 will lead to an excessively
large resource utilization. The resource utilization of Region 1
is KR1(n, s, 32), and the relationship between KR1(n, s, 32),
n and s is illustrated in Fig. 4. As shown, stride-by-5 is optimal
for any bus width. Stride-by-5 reduces the resource utilization
by 79.69%-79.98% compared with stride-by-8, which is used
in the slicing-by-4 and slicing-by-8 algorithms[4].

The stride-by-5 algorithm is optimal for the 5-input LUTs
in FPGA. Because the cascaded LUTs are needed if the stride
is larger than 5, a single LUT cannot be fully used if the
stride is smaller than 5. For the FPGAs with non-5-input
LUTs (prior to Xilinx Virtex-5 or Altera Stratix-II), the stride
defined by the number of LUT inputs should be used, and
the LUT sharing mechanism should be exploited. The stride-

4

by-5 algorithm is described in Algorithm 1; it processes the
computation in Region 1 here, but the algorithm can also be
used in Regions 3 and Region 4.

Algorithm 1 Stride-by-5 algorithm.
Input: The bus width n. The stride s. The input vector B[n]. The computing

matrix W [l][n].
Output: The meta matrix MD[l][m+ 1], which is the input of Region 2.
1: Initialize s to 5;
2: Initialize m to bn/sc;
3: Initialize MD[l][m+ 1] to the null matrix;
4: for i = 0 to l − 1 do
5: for j = 0 to m− 1 do
6: for k = 0 to s− 1 do
7: MD[i][j] = MD[i][j]⊕ (B[j × s+ k] ·W [i][j × s+ k]);
8: end for
9: end for

10: end for
11: for i = 0 to l − 1 do
12: for j = s ·m to n− 1 do
13: MD[i][m] = MD[i][m]⊕ (B[j] ·W [i][j]);
14: end for
15: end for

C. Pipelining Go Back Algorithm

In this section, the pipelining go back algorithm is proposed
with an O (log2 n) resource utilization, and the derivation and
description of the algorithm are presented.

The padding zeros problem is discussed in Section I. p is
used to represent the number of valid bits in the final word.
q is used to represent the number of padding zeros. The data
vector of the final word is Bp+q = [b0, · · · ,bp−1, 0, · · · , 0]T .
Substitute Bp+q into (4), and then

C(p+q+k) = T p+qC(k) +W(p+q)nBp+q

= T q
(
T pC(k) + T p−1Sb0 + · · ·+ Sbp−1

)
= T qC(p+k)

(12)

The relationship between C(p+k) and C(p+q+k) is

C(p+k) = T−qC(p+q+k) (13)

There will be an O(1) resource utilization to realize the
computation of T−q because the size of T−q is l× l and has
no relation with n. However, q varies and 0 ≤ q < n, and if
we use the n table corresponding to every possible q, there
will be an O(n) resource utilization. We introduce a pipeline
to reduce the resource utilization to O (log2 n).

Inspired by the binary representation, q is represented as

q = 8 ·
(
xh−1 · 2h−1 + xh−2 · 2h−2 + · · ·+ x1 · 2 + x0

)
(14)

q and n are multiples of 8 because the data transfer in bytes.
The value of x can be 0 or 1, and h is the number of pipeline
stages, which can be represented as

h = log2 (n/8) (15)

(14) and (15) can be used to convert (13) to

C(p+k) =
((

T−8·2n−1
)xn−1

· · ·
(
T−8

)x0
)
C(p+q+k)

=
(
R

xn−1

1 ·Rxn−1

2 · · ·Rx0

h

)
C(p+q+k)

(16)

where [R1, R2, . . . , Rh] is the h matrices for the h-stage
pipeline, and the size of each matrix is l× l. [R1, R2, . . . , Rh]
can be used to convert C(p+q+k) to C(p+k). Stride-by-5
algorithm can be used to convert [R1, R2, . . . , Rh] to the
content of the LUTs. Using the resource utilization function
in (11), the resource utilization of the pipeline is KR4

=
h · K(l, s, l), where R4 means the Region 4 in Fig. 2. KR4

can be represented as

KR4
=

log2(n/8) · (l/2) · (bl/sc+A(l mod s))
s ≤ 5

log2(n/8) · (l/2) · (bl/sc · 2s−5 +A(l mod s))
s > 5, n mod s ≤ 5

log2(n/8) · (l/2) · (bl/sc · 2s−5 +A(l mod s)
·2(l mod s)−5) s > 5, n mod s > 5

(17)
As shown in (17), we can achieve an O (log2 n) resource

utilization using the pipelining go back algorithm. The algo-
rithm is described in Algorithm 2.

Algorithm 2 Pipelining go back algorithm.

Input: The temporary CRC value C(p+q+k), the bus width n, the number
of padding zeros q, the computing matrix T .

Output: The wanted CRC value C(p+k).
1: Initialize h to log2(n/8), q to q/8;
2: Initialize matrix R to null matrix, matrix C(p+k) to C(p+q+k);
3: for i = h− 1 to 0 do
4: if q ≥ 2i then
5: R = T−8·2i ;
6: C(p+k) = RC(p+k);
7: q = q − 2i;
8: else
9: continue ;

10: end if
11: end for

D. Reprogramming by HWICAP

Region 5 in Fig. 2 represents an HWICAP IP core, which
can dynamically modify the content of the LUTs. It consumes
186 LUTs for any bus width. In contrast, configuration logic
realized by logic resources leads to several thousands of
LUTs being consumed when n ≥ 1024 [5], and the resource
utilization increases with increasing bus width. The operation
procedure of reprogramming using the HWICAP IP core is
described as follows:

1) Complete the initial design, generate the bitstream using
Vivado, and download the bitstream into the FPGA;

2) Extract the locations of the LUTs used;
3) When reprogramming is needed, compute the new con-

tent of the LUTs using (4) and (16);
4) Map the content of the LUTs to the initial value of the

LUTs;
5) Write the initial value to the LUTs using the AXI Lite

interface of the HWICAP IP core.
The method of reprogramming by HWICAP is useful in

engineering. Our contributions are as follows:
1) We verify the feasibility of reprogramming the FPGA

implementation of the CRC algorithm using the HW-
ICAP IP core. It leads to a small and constant resource
utilization regardless of the bus width;

5

2) The proposed method can change the CRC polynomial
directly, without re-coding and re-synthesizing;

3) The code of the above procedure can be accessed in [1],
as a part of the entire project. To our best knowledge,
this is the �rst open source code covering the whole
procedure described above.

E. Segmented System Architecture

Non-segmented system architecture can't process multiple
frames in one word (clock), which decreases the throughput of
short or misaligned frames. It is called bus ef�ciency problem.
The segmented system architecture is proposed to solve the
problem. The bus format is just like that in [7], and theblock
in [7] is another name for thesegmentin [18]. For an example,
a 4096-bit bus can process 8 complete frames at the same time;
hence, the bus can be divided into 8regions[7]. The number
of regions only depends on the bus width. Different segment
widths are feasible, and if 64-bit segment width is chosen,
one region can be divided into 8 segments (blocks). The
proposed segmented system architecture is shown in Fig. 5.
Compared with the proposed non-segmented system archi-
tecture, proposed segmented system architecture has slightly
more complex Region 1 and Region 2, and multiple duplicates
of Region 3 and Region 4. The number of duplicates is just the
maximum number of the frames processed in a single word.

The comparison between the proposed segmented system
architecture and the proposed non-segmented system archi-
tecture can be found in Fig. 6. The red cuboid represent the
non-segmented system architecture. The blue cuboid repre-
sent the increment between the proposed segmented system
architecture and the proposed non-segmented system architec-
ture. The yellow slice (Bus width = 1024, Segment width =
512) represent the decrement between the two architectures.
Fig. 6a shows that the increment in resource utilization mainly
depends on the bus width instead of segment width. This is
because the increment in resource utilization mainly depends
the number of duplicates of Region 3 and Region 4, which only
depends on the bus width. Fig. 6b shows that the increment
in 65-byte-frame throughput is obvious for most cases. The
only decrese in throughput can be found when the bus width
is 1024 bits and the segment width is 512 bits, where the two
architectures have the same bus ef�ciency for 65-byte-frame
throughput and the non-segmented architecture has a slightly
higher frequency. 64 bits is chosen as the segment width in
the rest of the brief. The dataset of the Fig. 6 can be found at
[1].

F. Packet Processing Flow of Two System Architecture

In this section, the packet processing �ow of the two
system architectures are illustrated. The bus width of the
two architectures is 4096 bits, and the segment width of
the segmented system architecture is 64 bits (64 segments,
8 regions).

Non-Segmented System Architecture
The packet processing �ow of non-segmented system archi-

tecture is described as follows:

Fig. 5: Proposed segmented system architecture.

(a) Resource utilization. (b) 65-byte-frame throughput.

Fig. 6: Comparison between segmented architecture and non-
segmented architecture.

1) Region 1: Data input is composed of 512-bit frame
and 3584-bit padding zeros; Region 1 compute the
MD [l][m + 1] in Algorithm 1, where l = 32 and
m = 819;

2) Region 2: Data input is a32� 820 bit vector; Region 2
compute theWln Bn in (4);

3) Region 3: Data input is the 32-bitWln Bn ; Region 3
compute theTn C(k) + Wln Bn in (4);

4) Region 4: Data input is the 32-bitTn C(k) + Wln Bn ;
Region 4 eliminates the impact of padding zeros ((16)
is used here), and the correct CRC value is achieved.

Segmented System Architecture
The packet processing �ow of segmented system architec-

ture is described as follows:

1) Region 1: Data input is composed of 8 512-bit frames,
which can be divided into 64 segments; Every segment
has its own sub-region to compute theMD [l][m + 1]
in Algorithm 1; EveryMD [l][m + 1] is a 32 � 13 bit
vector, and a small xor function is use to convert the
MD [l][m + 1] to Wln Bn .

2) Region 2: Data input is 64Wln Bn of 64 segments;
Region 2 merge theWln Bn of the same frame; 8Wln Bn

of the 8 frames are achieved.
3) Region 3 and 4: Data input is the 8Wln Bn of 8 frames;

Every Wln Bn has its own Region 3 and 4, and the
Region 3 and 4 here do the same work as that of the
non-segmented architectures. Finally, 8 CRC values for
8 frames can be achieved.

