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Abstract

Low-rank matrix factorization problems such as non negative matrix factorization (NMF) can be categorized as a clustering

or dimension reduction technique. The latter denotes techniques designed to find representations of some high dimensional

dataset in a lower dimensional manifold without a significant loss of information. If such a representation exists, the features

ought to contain the most relevant features of the dataset. Many linear dimensionality reduction techniques can be formulated

as a matrix factorization. In this paper, we combine the conjugate gradient (CG) method with the Barzilai and Borwein

(BB) gradient method, and propose a BB scaling CG method for NMF problems. The new method does not require to

compute and store matrices associated with Hessian of the objective functions. Moreover, adopting a suitable BB step size

along with a proper nonmonotone strategy which comes by the size convex parameter $\eta k$, results in a new algorithm

that can significantly improve the CPU time, efficiency, the number of function evaluation. Convergence result is established

and numerical comparisons of methods on both synthetic and real-world datasets show that the proposed method is efficient in

comparison with existing methods and demonstrate the superiority of our algorithms.
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sional dataset in a lower dimensional manifold without a signifi-
cant loss of information. If such a representation exists, the fea-
tures ought to contain the most relevant features of the dataset.
Many linear dimensionality reduction techniques can be formu-
lated as a matrix factorization. In this paper, we combine the
conjugate gradient (CG) method with the Barzilai and Borwein
(BB) gradient method, and propose a BB scaling CG method for
NMF problems. The new method does not require to compute
and store matrices associated with Hessian of the objective func-
tions. Moreover, adopting a suitable BB step size along with a
proper nonmonotone strategy which comes by the size convex
parameter ηk, results in a new algorithm that can significantly
improve the CPU time, efficiency, the number of function eval-
uation. Convergence result is established and numerical com-
parisons of methods on both synthetic and real-world datasets
show that the proposed method is efficient in comparison with
existing methods and demonstrate the superiority of our algo-
rithms.

Introduction
Matrix completion and factorization algorithms that do not re-
quire non-negativity on their components, such as principal
component analysis (PCA) or independent component analysis
(ICA), often do not provide interpretable decompositions. In
contrast, non-negative matrix factorization (NMF) is a method
that promotes relatively spatial representation and has gained
a lot of attention recently within both the computer science
and optimization communities due to its applications in data
science problems [1]. By imposing non-negative structures si-
multaneously in data reconstruction and basis identification,
NMF has shown great potential in unravelling important struc-
tures in the data from a lot of applications, including data clus-
tering [4], protein sequence motif discovery [3], and etc. NMF
is based on the assumption that a m × n data matrix (dataset)
X with n data and m features, can be represented by a small
sets of k basis vectors [2]. A non-negative data matrix X (m
features by n data) into two non-negative sub-matrices W and
H , such that

X ≈ {WH
∣∣ X ∈ Rm×n+ ,W ∈ Rm×k+ , H ∈ Rk×n+ } (1)

The rank, k typically is much smaller than the dimensions and
data (k � m,n). There exist many different methods to solve

min
W,H≥0

f(W,H) =
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Abstract the NMF problem. Since (1) is an approximation problem,
one should look for a suitable cost function to measure the

Low-rank matrix factorization problems such as non negative goodness of fit. The most common loss function used in the
matrix factorization (NMF) can be categorized as a clustering literature is the squared Frobenius norm loss:or dimension reduction technique. The latter denotes tech-
niques designed to find representations of some high dimen- 1

2
‖X −WH‖2F . (2)

While other loss functions are available, using the Frobenius
norm is well-motivated due to its compatibility with the Sin-
gular Value Decomposition (SVD). By defining the cost func-
tion as in (2), the next step would be choosing the optimiza-
tion method. So far, different algorithms have been suggested.
Early proposed methods mainly concentrated on multiplicative
update rules. For instance, [2] proposed the following algo-
rithm.

W k+1
ia = W k

ia

(XHkT )ia

(W kHkHkT )ia
, ∀i, a; (3)

Hk+1
bj = Hk

bj

(W k+1TX)bj

(W k+1TW k+1Hk)bj
, ∀b, j. (4)

This method updates W and H individually, such that the
Frobenius norm loss in NMF above is guaranteed to decrease
on each iterations. However, since multiple matrix products
need to be calculated on each iterations, potential computa-
tion savings might be available by modifying the algorithm.
More variations of multiplicative update rules can be seen
in [5]. Since the NMF is not jointly convex in W and H,
many other optimization algorithms has been proposed, such
as block-coordinate descent, projected gradient descent, and
non-negative least squares (ANLS). In particular, ANLS mod-
ifies the problem in (2) into two convex optimization problems:

W k+1 = min
W≥0

f(W,Hk) = min
W≥0

1

2
‖V −WHK‖2F , (5)

Hk+1 = min
H≥0

f(W k+1, H) = min
H≥0

1

2
‖V −W k+1H‖2F (6)

which can be solved using standard convex optimization
solvers. An important characteristic of this method is that,
since the constraints are built directly into the subproblems, the
limit points of any algorithm that solves the subproblems will
also be stationary points for the NMF problem [6]. The pro-
posed algorithms for solving this problem is quite diverse. For
instance, one method, known as the active set method [6] and
an additional method, Hierarchical Alternating Least Squares
(HALS), simplifies the nonnegative subproblem by updating



each column of W and row of H individually [7]. On a sim-
ilar note, much attention has been put in prior works to solve
these problems [8] by employing variants of steepest descent
algorithm for unconstrained problems. In [9, 10], the so-called
Rank-one Residue Iteration (RRI) algorithm for solving the
NMF problem was studied. This algorithm was independently
proposed by Cichocki, Zdunek, and Amari in [11], where it
is named the Hierarchical Alternating Least Squares (HALS)
algorithm. A helpful feature of this algorithm is that the solu-
tion to (5), and (6) have explicit formulas which make it easy
to implement. Simulation experiments in [10, 11] show that
the HALS/RRI algorithm is much faster than the Lee–Seung
method and also some other methods based on ANLS meth-
ods. Using Newton or quasi–Newton methods to solve the
subproblems can have a faster rate of convergence [12]. How-
ever, these methods require to determine a suitable active set
for the constraints at each iteration [13]. Another approach for
solving the NMF problem is to apply the CG method. This
strategy has very fast and has global convergence.

In this paper, motivated by the success of the prior works
of projected gradient method and good performance of the BB
method for optimization, we propose a novel non-monotone
CG method that uses BB method to overcome the aforemen-
tioned problems for NMF. By considering that the objective
function of each NMF subproblem is a convex function whose
gradient is Lipchitz continuous, we optimally minimize one
matrix factor with another fixed. In particular, we update two
sequences recursively for optimizing each factor, the step size
is determined by the BB method, and the search point is con-
structed by CG method. This algorithm accelerates the op-
timization based on the problem structure. Therefore, this
method converges much faster than other NMF solvers by al-
ternatively performing the optimal gradient method on the two
matrix factors.

Preliminary experiments on both synthetic and real-world
datasets suggest the efficiency of the proposed method. Face
recognition experiments on popular real-world and synthetic
datasets confirm the effectiveness of PNBB. In addition, we
show that PNBB can be naturally extended to handle several
versions of NMF that incorporates varients of BB step sizes.

BB Step Size and Nonmonotone Algorithm
To begin, in this paper we deal with solving the following min-
imization problem as:

min
x∈Rn

+

f(x)

where f(x) stands for f(W,H) for short. There are various
optimization algorithms for solving this problem. Indeed, they
compute the search direction and find a suitable step size and
move to next point. One of the most popular choices for the
search directions is generated by the Newton method or the
quasi-Newton method [14]. Although these methods have su-
perlinear convergence, they are not suitable for solving large-
scale optimization problems, since it is difficult to compute
and store the (approximate) Hessian matrices of function at
each iteration [15]. To overcome the drawbacks in the Newton-
type or the quasi-Newton-type methods, numerous spectral
gradient methods [16] and CG methods [15] have been pre-
sented so far. Numerical experiments are often employed to
show the advantages of their numerical efficiency in solving
large-scale optimization problems. With that in mind, herein
we make use of CG method. In particular, at kth iteration the
new point is computed as

xk+1 = xk + αkdk, (7)

where αk and dk are named the step size and search direction
respectively. The search direction is obtained by using the fol-
lowing strategy:

dk+1 =

{
g1 = −g0 if k = 1
−gk+1 + βkdk if k > 1.

(8)

where βk =
gTk (gTk −gk−1)
‖gk−1‖2 and gk = ∇f(xk).

To find αk, the traditional monotone line search approaches
depart from xk along the search direction dk such that f(xk +
αdk) < f(xk). In exact line search method, the step size is
obtained by solving the following minimization problem:

φ(α) = min
α>0

φ(xk + αdk). (9)

According to [17], this strategy is expensive and impractical
when the cost of the minimization problem with multiple vari-
able required. On the other hand, inexact methods such as
Armijo condition, the Wolfe condition and the Goldstein con-
dition are other alternative methods for finding an acceptable
step size αk. For instance, the Armijo line search finds the step
size αk such that

f(xk+1) < f(xk) + αkγ∇f(xk)T dk, (10)

where γ ∈ (0, 1) is a constant. By using the fact that dk is
a descent direction i.e. gTk dk < 0, we can conclude that the
traditional Armijo rule guarantees the monotonicity of the se-
quence {fk}. While all the above-mentioned algorithms are
monotone, Chamberlain et al. [18] suggested an interesting
nonmonotone line search technique namely “watchdog tech-
nique” for improving the iterative algorithms. Since then,
the nonmonotone technique has been exploited by many re-
searchers. In detail, their method finds a step size α satisfying
the following condition:

f(xk + αkdk) ≤ flk + γαkg
T
k dk, k ≥ 0, (11)

where

flk = max0≤j≤nk
{fk−j}, (12)

n0 = 0, 0 ≤ nk ≤ min{nk−1 + 1, N}

where N ≥ 0 is a fixed number and flk is the so-called non-
monotone term and allows the objective function to increase
in some iterations when its convergence is guaranteed. Em-
ploying the nonmonotone strategy with other approaches such
as Newton’s method, trust region method and CG method
has led to a significant improvement [19]. Later on, Grippo
and Sciandrone in [20] proposed a non-monotone line search
technique for Newton’s method. However, Grippo’s non-
monotone technique has some drawbacks [21], for example,
the iterative method may generate R-linear convergent itera-
tions for strongly convex function, the iterations may not sat-
isfy the condition (11) for k sufficiently large, for any fixed
bound N on the memory. Also, in some cases, the perfor-
mance of the algorithm highly depend on the choice of N .
Further, in their proposed method, the algorithm takes a con-
stant value as the step length in the first iteration and cannot be
adjusted according to the characteristics of the objective func-
tion in the current iteration.

Zhang and Hager [22] proved that the best convergence re-
sults are always obtained by using a stronger non monotone
strategy when iterations are far from the minimizer point, and
by using a weaker non monotone strategy when iterations are



close to it. In this regard, Ahookhosh et al. [21] suggested a
new non-monotone condition as:

f(xk + αkdk) ≤ Rk + γαkg
T
k dk, (13)

where Rk is defined by

Rk = ηkflk + (1− ηk)fk, (14)
ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1), ηmax ∈ [ηmin, 1].

The drawback of (14) is that the value of step size in initial
steps of inner loop is one and close to one which increases
the number of iterations of the inner loop. To cure this issue,
we apply a new and efficient Barzilai-Borwein (BB) which is
motivated by Newton’s method but is Hessian free at almost
no extra cost over the standard gradient method. Also, the
algorithm often significantly outperform the standard gradient
method. In particular, for computing the BB step size, we need
to define sk = xk−xk−1, yk = gk− gk−1 based on which we
are able to present the BB step sizes as follows

α1 =
sTk yk
yTk yk

and α2 =
sTk sk
sTk yk

.

Inspired by the BB methods step sizes, an extended BB step
size which is obtained by

√
α1α2 is also employed in this pa-

per. In the next section we will discuss the algorithm in detail.

The Optimization Algorithm
Here in this section, we will focus on the proposed algorithm
for solving problems (5) and (6). As mentioned in [19], to
obtain the best convergence results, we need a stronger non-
monotone strategy whenever the iterates are far from the min-
imizer and a weaker non-monotone strategy for those iterates
that are close enough to that. To this end, here we introduce
a new parameter ηk that can address the mentioned drawbacks
in the preceding section. The parameter ηk is estimated by the
algorithm at each iteration as bellow:

ηk+1 = 1− exp (−‖gk‖) . (15)

It is clear that in the first iterations that are far away from the
minimizer, the values of parameter ηk are closed to 1. On
the other hand, when the ‖gk‖ goes to zero, the values of the
parameter ηk goes to zero. Much faster convergence is usu-
ally observed in the above-mentioned algorithm compared to
its peer, although the cost function does not decline signifi-
cantly at initial stages which is due to way that ηk is defined in
their formulations. To be more concrete, ηk should be defined
such that to be contingent upon the behavior of the gradient
of the cost function. Therefore, it is advantageous to design
monotone parameters to be close to one in initial stages of the
algorithm and vanishes at the final iterations. This will be the
underpinning motivation of our algorithm design.

One of the other parameters that can influence the perfor-
mance of the algorithm is N which was defined in the non-
monotone term in (12). It should be noted thatN is assumed to
be fixed in almost all non-monotone optimization algorithms.
In this paper, we consider an adaptive value of N which de-
pends on the value of the gradient at each step. The update of
N in each iteration is done as follows

Nk+1 =

 Nk + 1, 10−1 < ‖gk‖;
Nk, 10−3 ≤ ‖gk‖ ≤ 10−1;
Nk − 1, otherwise.

(16)

By taking (16) into account, when the sequence of iterations
is located in a narrow valley, that is, the norm of gradient is

large, to avoid creeping along the bottom of a narrow curved
valley, it is better that we increase the value of Nk. Besides,
when the norm of gradient is moderate and satisfies the second
condition, it would be better not to change the value of the
Nk. In the last case, where the norm of gradient is small that
is the current iteration is in a flat area, to further decrease the
function value, it is better for the algorithm to shrink the value
of Nk.

Now, we in position to focus on designation of the algo-
rithm for updating one of these matrices (W and H) and the
same process can be applied to update the other matrix. Let the
algorithm update the matrixW . As such, we deal with solving
the following problem:

min
W≥0

fk(W ) := f(W,Hk) =
1

2
‖V −WHk‖2F , (17)

For simplicity, we use f(W ) := fk(W ) for short. It is clear
that f(W ) is a convex function, therefore the optimal point
can be found.

Now, in order to obtain the new point, we first need to de-
fine a quadratic form of the objective function f(W ). For this
purpose, we consider the quadratic form of the function φ for
any fixed U ≥ 0 as:

φ(U,W ) := f(U) + 〈∇f(U),W − U〉+ 1

2
‖W − U‖2F .

It is obvious that the function φ(U,W ) is strictly convex in
term W for any fixed U ≥ 0. Therefore, the optimal solu-
tion for this function can be obtained. At the current itera-
tion j, a new point is generated by solving the strongly convex
quadratic minimization problem as:

min
W≥0

φ(Wk,W ). (18)

Now, by using some calculations, we can derive a unique so-
lution for (18) as:

Dk = −∇f(W ) + βDk−1. (19)

Therefore, the new point is constructed as:

Wj+1 = P [Wk + αkDk], (20)

where all the negative entries of X are projected to zero by
using the projection operator P [.]. Finally, by using the BB
method, the step size αk is computed by:

αk+1 ← min
{
αmax,max

{
αmin, α

3
}}

(21)

where α1 = 〈Sk−1,Yk−1〉
〈Yk−1,Yk−1〉 , α

2 = 〈Sk−1,Sk−1〉
〈Sk−1,Yk−1〉 , and α3 =

√
α1α2.
We outlined the mentioned procedure in Algorithm 1 named

as projected nonmonotone BB (PNBB) algorithm.

Convergence Analysis
The aim of this section is two folds: first, we prove that the
proposed nonmonotone strategy is a descent method which
can be proved according to the structure of the nonmonotone
equation. Second, we prove the convergence of the algorithm.
In doing so, we obtain a lower bound for the step size and
then will demonstrate that for enough number of iterations,
the norm of the search direction goes to zero implying that the
convergence occurs. To begin, we establish two assumptions
thereby we will investigate the convergence analysis. After-
wards, we delineate some properties of the new proposed non-
monotone term which leads us to prove that the sequence Wt

generated by the Algorithm 1 converges to a stationary point
of (5). The so-called assumptions are as follows:



Algorithm 1 Algorithm of PNBB
1: Initialization and Input 0 < αmin ≤ αmax, η0 ∈

(0, 1], γ ∈ (0, 1),W0 ∈ Rm×k, ρ = 0.25, N0 = 5
k ∈ {1, ..., stopping criteria}

2: While (‖P [Wk −∇f(Wk)]−Wk‖ ≥ ε
3: Generate a descent direction Dk

4: Compute the new point
5: While Eq. (13) is False
6: α← ρα
7: end
8: αk ← α
9: Wk+1 ←Wk + αkDk

10: Compute the αk+1 by (21)
11: Calculate ηk+1 by using (15)
12: Calculate Nk+1 by using (16)
13: k ← k + 1
14: end
15: return W

A1: The level sets, i.e., the sequence {Wk} generated by Al-
gorithm 1 is contained in the level set

L(W ) = {W |f(W ) ≤ f(W0), W ≥ 0}.
A2: The gradient of this function, that is:

∇f(W ) = (WHk − V )(Hk)T (22)
is Lipschitz continuous with constant L = ‖Hk(Hk)T ‖F .

Next, we elaborate on some lemmas that delineates some prop-
erties of the new non-monotone line search proposed in this
paper.
Lemma 1. Let {Wk} be the sequence obtained by Algorithm
1, then, fl(k) is a diminishing sequence.

Proof. The proof comes by taking into account the definition
of Rk and (12), which renders that
Rk = ηkfl(k)+(1− ηk)fk ≤ ηkfl(k)+(1− ηk)fl(k) = fl(k).

(23)
It can be followed by
fk+1 ≤ Rk + λγ〈∇f(Zk), Dk〉 ≤ fl(k) + λγ〈∇f(Zk), Dk〉.
Due to the negativity of 〈∇f(Wk), Dk〉 < 0, we can conclude
that

fk+1 ≤ fl(k). (24)
Besides, from (12) we have the following result.

fl(k+1) = max0≤j≤m(k+1) {fk+1−j}
≤ max0≤j≤m(k)+1 {fk+1−j} = max

{
fl(k), fk+1

}
. (25)

From (24) and (25) we reach fl(k+1) ≤ fl(k) which demon-
strate that the sequence fl(k) is a diminishing sequence.

Lemma 2. For the sequence {Wk} generated by Algorithm 1
and for all k ≥ 0, we have Wk ∈ L(W0).

Proof. By the definition of fl(k+1) in mind, we can posit
fk+1 ≤ fl(k+1) for any k ≥ 0. Thus, we have:

fk+1 = ηk+1fk+1 + (1− ηk+1)fk+1 ≤ ηk+1fl(k+1)

+(1− ηk+1)fk+1 = Rk+1,∀ k ∈ Nk (26)
Now, by making use of the definition of Rk, we can conclude
that R0 = f0. Next, by induction, assuming Wi ∈ L(W0), for
all i = 1, 2, . . . , k, we show that Wk+1 ∈ L(W0). Equations
(12) and (23) along with Lemma 1 is followed by fk+1 ≤
fl(k+1) ≤ fl(k) ≤ f0, which implies that the sequence Wk is
contained in L(W0).

In order to establish the convergence, Karush-Kuhn-Tucker
(KKT) optimality conditions require to hold for problem (17)

W ≥ 0; ∇f(W ) ≥ 0; ∇f(W )⊗W = 0,

where ⊗ stands for the Hadamard product. Further, prior to
talking about the stationary points, we need to define the scaled
projected gradient direction as follows.

Dα = −∇f(W ) + βD, (27)

where α > 0 and W ≥ 0. Now, we are in position to investi-
gate the stationary point and some facts about scaled projected
gradient direction by the following lemmas.

Lemma 3. Let α ∈ (0, αmax] and W ≥ 0. Thus, we have:

• 〈∇f(W ), Dα(W )〉 ≤ − 1
α‖Dα‖2 ≤ − 1

αmax
‖Dα‖2

• W is a stationary point of (17) if and only if Dα(W ) = 0.

Proof. The proof is provided in [26].

Lemma 4. Assuming the first part of Lemma (3) and (H1) hold
and Algorithm 1 produces the sequence {Wk}, the sequence
{fl(k)} will be convergent.

Proof. Lemma 1 along with the fact that fl(0) = f0 it will be
straightforward to conclude that the sequence {Wl(k)} remains
in level set L(W0). In addition, f(Wk) ≤ f(Wl(k)) shows that
the sequence {Wk} remains in L(W0). Thus, (A1) along with
Lemma 1 imply that the sequence {fl(k)} is convergent.

Lemma 5. With (A1) and that the direction Dk satisfies the
first item of Lemma 1 in mind, for the sequence {Wk} gener-
ated by Algorithm 1, we get limk→∞ fl(k) = limk→∞ fk.

Proof. The proof can be done in the same fashion as in Lemma
2 of [21].

Lemma 6. Assume that (A1) holds and the direction Dk sat-
isfies the first item of Lemma 1. Then, for the sequence {Wk}
generated by Algorithm 1, we can show

lim
k→∞

Rk = lim
k→∞

fk.

Proof. The proof comes by making use of (23) and (26) which
leads us to fk ≤ Rk ≤ fl(k). Then, by employing Lemma 5,
the proof is there.

Lemma 7. Let assume that Wk is not a stationary point of
(17). Then, there exists a constant

λ̃ = min

{
1,

2ρ(1− γ)
Lαmax

}
, such that λk ≥ λ̃

Proof. In order to prove the lemma, we consider two condi-
tions: the first one is If λk ≥ 1, which completes the proof.
So, let λk < 1. Now by using the definition of λk and (26), we
argue that:

f(Wk +
λk
ρ
Dk) > Rk +

λk

ρ γ〈∇f(Wk), Dk〉 ≥

fk +
λk

ρ γ〈∇f(Wk), Dk〉 (28)

where the second inequality is due to the fact that Rk ≥
fk∀k ∈ Nk ∪ {0}. Since ∇f(W ) is L-Lipschitz continuous,



we have

f(Wk + λDk)− f(Wk) =

λ〈∇f(Wk), Dk〉+
∫ λ

0

〈∇f(Wk + sDk)−∇f(Wk), Dk〉ds

≤ λ〈∇f(Wk), Dk〉+
∫ λ

0

Ls‖Dk‖2ds

= λ〈∇f(Wk), Dk〉+
L

2
λ2‖Dk‖2 (29)

Now, by having (29) and (28) in hand, we can conclude that

λk
ρ
γ〈∇f(Wk), Dk〉 ≤

λk
ρ
〈∇f(Wk), Dk〉+

L

2

λ2k
ρ2
‖Dk‖2,

it follows that:

λk ≥ min

{
1,

2ρ(γ − 1)

1

〈∇f(Wk), Dk〉
‖Dk‖2

}
. (30)

Due to the fact that 〈∇f(Wk), Dk〉 ≤ − 1
αmax
‖Dk‖2, we get

the proof.

Henceforth, our next goal is to prove that Algorithm 1 has
a global convergence. The following theorem summarizes the
global convergence.
Theorem 8. Equipped with assumption (A1) and the first part
of lemma 1 for the sequence {Wk} returned by Algorithm 1,
we have:

lim
k→∞

‖Dk‖ = 0. (31)

Proof. To prove lemma, we need to show that

fk+1 ≤ Rk − θ‖Dk‖2, (32)

where β is given by θ = min
{

γ
αmax

, 2γρ(1−γ)Lα2
max

}
. If λk ≥ 1,

then we have:

fk+1 ≤Rk + γλk〈∇f(Wk), Dk〉 ≤ Rk −
γλk
αmax

‖Dk‖2

≤ Rk −
γ

αmax
‖Dk‖2, (33)

which proves (32). Now, assuming λk < 1 and knowing
fk+1 ≤ Rk + 2γρ(1−γ)

Lαmax
〈∇f(Wk), Dk〉 we have

fk+1 ≤≤ Rk −
2γρ(1− γ)
Lαmax

‖Dk‖2

αmax
, (34)

which demonstrate that (32) holds. Since β is a positive real
number, (32) implies that Rk − fk+1 ≥ θ‖Dk‖2 ≥ 0. This
fact along with Lemma 6 proves that limk→∞ ‖Dk‖ = 0. This
completes proof and shows that Algorithm 1 benefits from
global convergence.

Experiment Results
Here our aim is to confirm the theoretical results and investi-
gate the practical behaviour of Algorithm 1, we also compare
the performance of PNBB (two methods i.e., N.M.BB2 and
N.M.BB3) with monotone Armijo line search, nonmonotone
Armijo suggested in [19], non-monotone algorithm suggested
by Grippo [20], the BB method monotone algorithm and the
BB non-monotone algorithm suggested by Ahookhosh et.al
[19] using synthetic and real datasets. In what follows, we
evaluate the perfomance of the proposed PNBB in terms of
face recognition ability and efficiency of the algorithm (error,
CPU time, the number of objective function evaluations, and
gradient behavior).

Implementation Details
There are several methods to calculate the initial point, for
example, random, stochastic random Acol, SVD. In order to
speed up the convergence rate of NMF, Boutsidis and Gal-
lopoulos in [28], suggested Non-negative Double Singular
Value decomposition (NNDSVD), which is a new method
based on two SVD processes, one to approximate the initial
data matrix X and the other to approximate the positive sec-
tions of the resulting partial SVD factors but we found empir-
ically that it was too computationally heavy when the num-
ber of components k was fairly high (k > 100). Herein
we used random and SVD initialization. The results for ran-
dom strategy is obtained by averaging of 10 time of per-
forming that algorithm. In addition, we measure the accu-
racy of the algorithm in face recognition by Accuracy :=
The num of faces recognized correctly

The total num of test data × 100.

Stopping Criterion
There are several strategies for stopping condition, for exam-
ple, the number of iterations, the value of the gradient, CPU
Time, and error. In this paper, here apply the following stop-
ping condition for all algorithms:

‖[∇HF (W k, Hk),∇WF (W k, Hk)]‖F
≤ ε‖[∇HF (W 1, H1),∇WF (W 1, H1)]‖F , (35)

where ε is a tolerance. Moreover, for both problems (5) and
(6), the following stopping condition is used.

‖∇WF (W k+1, Hk)‖F ≤ εW (36)
‖∇HF (W k+1, Hk+1)‖F ≤ εH , (37)

where

ε̃ = max(10−3, ε)‖[∇HF (W 1, H1),∇WF (W 1, H1)]‖F
and ε̃ = εH = εW . Notice that, when each of the algorithms
that solve (5) without any iterations, the stopping tolerance is
reduced by εW = 0.1εW . Moreover, we use the same strategy
for solving (6). Besides, we used 1000 as the maximal num-
ber of iterations and 150 seconds as the maximal CPU time for
solving sub-problem (5) and (6) in all algorithms. Moreover,
we use the following abbreviations for short:
The monotone Armijo method is denoted by “M.Ar.”; We use
“N1.M.Ar.” for non-monotone algorithm suggested by Grippo
[20]; The monotone algorithm that uses BB method is pre-
sented by “N.MBB2”; The non-monotone algorithm suggested
by Ahookhosh et.al [19] that use BB step size is denoted by
“N2.M.BB2”; For the new algorithm, we consider two cases
for choosing step size, that “BB2” and “BB3”. We denoted
two cases with “N.M.BB2” and “N.M.BB3” respectively.

Reconstruction Error Results and Discussions
In this experiment we run the algorithms on a synthetic dataset.
Also, we provide all codes in the same subroutine. For com-
parison of iterative algorithms, Dolan and More [29] proposed
a measure comparing the considered algorithms with statistical
process by demonstration of performance profiles. In this re-
gard it is known that the performance profile disclose all of the
major performance characteristics, which is a common tool to
graphically compare the efficiency of the algorithms. We can
use two measures which are, the number of function evalua-
tion and the number of iterations to compare these algorithms.
Hence, we use these two indexes for all of the present algo-
rithms separately. Fig. 1 shows the performance of the above
algorithms relative to these metrics, respectively. We also can
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Figure 1: Performance profile for the number of function eval-
uations.

see that PNBB algorithm grows up faster than the other algo-
rithms.

We did the next experiment on the ORL image dataset which
contains 400 facial images of 40 different people with 10 im-
ages per person. The size of each image is 92 × 112 pixels,
with 256 grey levels per pixel. The matrix X whose columns
represent these images has 92 × 112 = 10, 304 rows and 400
columns. In this experiment, the algorithm use 280 images for
training and 120 images for test. We run the algorithm on this
dataset and measure the accuracy of the face recognition for
various algorithms. The comparison of the accuracy results is
presented in Fig. 2 for two different datasets.

In the second set of experiments, we evaluate the perfor-
mance of the PNBB algorithm in terms of the accuracy of face
recognition and the number of times that objective function
(the number of inner iterations) is evaluated by the algorithm,
CPU time, and the behavior of the gradient. We do the exper-
iment on the ORL dataset and to implement the algorithm, we
use the SVD strategy for denoting the starting point and matrix
rank. In Fig. 3, we present the CPU time to run PNBB versus
different values of tolerances, ε on the full dataset. The results
reveals that the CPU time of Armijo line search grows fast for
low values of the tolerance compared to our PNBB.

The objective function evaluation is another important mea-
sure in optimization. Indeed, this term denotes the number
of inner iterations. Fewer inner iterations of an algorithm is
certainly a true index of its efficiency and showing that it can
achieve the solution in less time. Here in Fig. 4, we plotted
comparison of different algorithms in terms of the number of
objective function evaluation vesus tolerance. As is evident
from the figure, the number of inner iteration of the proposed
PNBB algorithm is less than that of the Armijo by several or-
ders of magnitude. Further, we plotted the gradient behaviour
of our nonmonotone algorithm compared with that of a mono-
tone one versus the number of iterations in Fig. 5. In our
studies the gradient behavior implies the convergence speed of
the algorithm. As can be seen from the figure, PNBB as a non-
monotone method converges fast (after around 15 iterations)
while the monotone method is still zigzagging after around 30
iterations.

Finally, we now turn our attention to Fig. 6 which shows the
error versus the number of iterations. Here error is defined as
the difference between the original matrix, X and WH matrix
which is indeed the value of the objective function. This figure
also reveals that the proposed PNBB outperforms the Armijo
algorithm.

A B C D E F
40

50

60

70

80

90 ORL
Jaffe

Figure 2: Accuracy results of ORL and Jaffe dataset where
both initial point and the matrix rank obtained by SVD ap-
proach. Here in this figure, “A”, “B”, “C”, “D”, “E” and “F”
stand for “M-Ar.”, “NM-Ar.”, “M-BB2”, “NM1-BB2”, “NM1-
BB3”, “NM-BB2”, respectively.
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Figure 3: CPU time versus the tolerance (ε).

e-01 e-03 e-05 e-07 e-09 e-010

0

0.5

1

·106

M.Ar.
N.M.BB3

N.M1.BB2

Figure 4: The number of function evaluation versus tolerance
(ε).

A
cc

ur
ac

y

Algorithm

C
PU

 T
im

e

Tolerance

Tolerance

N
um

 o
f 

fu
nc

tio
n 

ev
al

ua
tio

ns



5 10 15 20 25 30

Iteration

0

2000

4000

6000

8000

10000

12000

G
ra

d
ie

n
t

M.Ar.

N.M.BB3

Figure 5: Gradient behaviour of our nonmonotone algorithm
compared with that of a monotone one versus the number of
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Conclusion
In this paper, we presented a new efficient nonmonotone BB
CG method using the idea of the BB method and some prop-
erties of the linear CG method for NMF problems which se-
quentially optimizes one matrix factor with another fixed. We
also develop a generalized Wolfe line search, which is non-
monotone and can avoid a numerical drawback of the original
Wolfe line search. Experiments on both synthetic and real-
world datasets show that PNBB outperforms existing NMF al-
gorithms in terms of efficiency and overcomes their deficien-
cies. The face recognition experiments on real-world datasets
confirm the effectiveness of PNBB. Since PNBB exploits a
suitable nonmonotone method and a proper step size, it accel-
erates the NMF optimization which is due to the fact that it
decreases the number of inner loops for function evaluations.
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