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Abstract

Recently, the low-rank and sparse decomposition

problem has attracted attention in several applications, especially surveillance videos. Due to the physical limitations in
acquisition systems, measured frames are blurred by a low-pass filter.

In this article, we aim to decompose blurred videos’ frames

into low-rank and sparse components, in order to extract the

background. Unlike conventional methods, we simultaneously take into account the blurring effect, as well as the missing data.

Our simulation results confirmed the advantage of this approach in extracting low-rank components in surveillance videos.
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Abstract—Recently, the low-rank and sparse decomposition
problem has attracted attention in several applications, especially
surveillance videos. Due to the physical limitations in acquisition
systems, measured frames are blurred by a low-pass filter.
In this article, we aim to decompose blurred videos’ frames
into low-rank and sparse components, in order to extract the
background. Unlike conventional methods, we simultaneously
take into account the blurring effect, as well as the missing data.
Our simulation results confirmed the advantage of this approach
in extracting low-rank components in surveillance videos.

Index Terms—Low-rank recovery, background, modeling ,
video, video surveillance

I. INTRODUCTION

With the growth in population and public transportation,
moving object detection and background extraction have be-
come an essential problem in video surveillance systems [1].
Furthermore, the problem of separating the background and
the foreground [2]–[5] has several applications such as safety
and security, retail, and home automation [6]. One of the well-
studied approaches to deal with this issue is the low-rank and
sparse decomposition (LRSD), that are based upon reshaping
the video into low-rank and sparse structures. Indeed, by
vertically embedding the consecutive frames inside a matrix,
we have a matrix composed of low-rank and sparse parts.
The background in each frame can be seen as a low-rank
structure, while the moving parts form a sparse one. Principle
component analysis is the first attempt used for extracting the
low-rank background of a video stream from Gaussian noise
[7]. In [8], the authors considered the sparse part as noise
and they exploited the robust principal component analysis
(RPCA) method. This was done by conventional algorithms
such as singular value thresholding and inexact augmented
Lagrangian method. In another work [9], a stable version of
the RPCA method was deployed to deal with noisy data.

In some cases, due to the perturbation of read or write pro-
cesses during the recording of the frames; frame pixels might
be either corrupted or missed. In [5], [10] and [11], algorithms
were proposed to solve the LRSD problem with missing data.
Also, in [12], [13], fast singular value decomposition (SVD)
free methods were proposed. Indeed, the RPCA method in [14]
could solve foreground and background extraction via gradient
descent (RPCA-GD).

Due to physical limitations in imaging systems such as lens
effect, lengthy shutter exposure, high-speed motions, etc. the
measured images are blurred [15], [16]. Hence, this problem
obliges us to consider the blurring effect in the LRSD problem
model.

In this paper, we aim to solve the background extraction
problem from blurred and sub-sampled frames (of surveillance
videos), where the blurring kernel is assumed to be known.
First, we assume each frame to be convolved with a blurring
kernel (typically a low-pass filter); Next, the sub-samples of
the blurred frames are measured. This model differs from [13]
as we consider missing data. Unlike the methods in [5], [10],
we take into account the blurring effect at each frame of the
video. Furthermore, our simulation results demonstrate that
our model can achieve better low-rank background estimation
in surveillance videos than other conventional models in the
LRSD problem.

Our paper is organized as follows: In Section II, we explain
our problem model and propose the algorithm to solve it. Next,
in Section III experimental results are presented. Finally, in
Section IV, we conclude the paper.

II. PROBLEM MODEL

Let I1, I2, . . . , It ∈ Rn1×n2 be t frames of the target
video. A blurring kernel φ is convolved with each frame Ii to
model the lens effect. Next, the resulting images are uniformly
sampled to reach measured matrices B1,B2, . . . ,Bt ∈ Rm as
follows:

Bi = PΩ(φ ∗ Ii) ∀ i ∈ [t], (1)

where Ω is the index set, uniformly chosen in [n1] × [n2]
with size |Ω| = m, and PΩ(Z) : Rn1×n2 7→ Rm is the
sampling operator which measures the observed elements in
Ω. By concatenating each vectorized image frame vec(Ii), we
can build the frames matrix FI ∈ Rn1n2×t. Therefore, one
can rewrite (1) in matrix format as:

Mo = PΩ(ΦFI), (2)

where Φ is a block Hankel structure corresponding to the 2-D
convolution of the blurring kernel φ with each frame. Also,
Mo represents the matrix of measured frames.
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Fig. 1: Comparison result of the background and foreground extraction between our method and other state of the art methods
on the Highway data set

In the surveillance videos, for the frames matrix, one can
see that FI = LI + SI , where LI ,SI ∈ Rn1n2×t are low-
rank and sparse matrices, respectively. The recovery problem
here refers to extracting LI and SI from their mixture FI .
Although the main goal is to achieve an estimate of the low-
rank component LI , the sparse matrix SI might also contain
other information, such as the moving objects in the video
surveillance example.

We consider the following convex optimization problem to
extract the low-rank and the sparse parts:

minimize
L,S∈Rn×t,

‖L‖∗ + λ‖S‖1

subject to PΩ(ΦL + ΦS) = Mo,
(3)

where L,S ∈ Rn×t are the low-rank and the sparse desired
matrices in which n = n1n2, and Φ ∈ Rn×n is a block
Hankel structured matrix. ‖.‖∗ denotes the nuclear norm which
equals to the sum of the singular values and ‖.‖1 is the `1
norm. Also, λ > 0 is a weighting factor, regularizing the
sparsity and the rank. There are many suggested approaches
to tackle the nuclear norm in optimization 3 such as smooth
rank approximation [11], [17], [18].

A. Algorithm

Regarding the upper bound of the nuclear norm of an
arbitrary matrix A in [19], [20], we are using the following
SVD free structure:

‖A‖∗ = minimize
U∈Cr×n,V∈Cr×t,A=UVH

1

2
(‖U‖2F + ‖V‖2F). (4)

Therefore, problem (3) can be rewritten in the following
setting:

minimize
S,U,V,L=UVH

‖U‖2F + ‖V‖2F + λ‖S‖1

subject to PΩ(Φ(L + S)) = Mo.
(5)

We use the alternating direction method of multipliers
(ADMM) technique for solving the problem (5). By combin-
ing the two constraints, we reach the following Augmented
Lagrangian cost function:

L(U,V,L,S,Λ1,Λ2) :=
1

2
(‖U‖2F + ‖V‖2F + 2λ‖S‖1)+

µ1

2
‖L−UVH + Λ1‖2F +

µ2

2
‖PΩ(Φ(L + S))−Mo + Λ2‖2F

Now, the update rules of L(k+1), U(k+1), V(k+1), and
S(k+1) in k−th iteration can be obtained by sequentially
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Fig. 2: Comparison result of the background and foreground extraction between our method and other state of the art methods
on the Mall data set

solving the following alternative optimization problems:

L(k+1) =arg min
L∈Cn×t

µ1

2
‖L−U(k)V(k)H + Λ

(k)
1 ‖2F

+
µ2

2
‖Mo − PΩ(ΦL)− PΩ(ΦS(k)) + Λ

(k)
2 ‖2F,

(6)

U(k+1) =arg min
U

1

2
‖U‖2F

+
µ1

2
‖L(k+1) −UV(k)H + Λ

(k)
1 ‖2F, (7)

V(k+1) =arg min
V

1

2
‖V‖2F

+
µ1

2
‖L(k+1) −U(k+1)VH + Λ

(k)
1 ‖2F, (8)

S(k+1) =arg min
S∈Cn×t

λ‖S‖1

+
µ2

2
‖Mo − PΩ(ΦL(k+1))− PΩ(ΦS) + Λ

(k)
2 ‖2F.

(9)

Then, the update rules of Lagrangian multipliers is given by

Λ
(k+1)
1 =Λ

(k)
1 + L(k+1) + S(k+1) −U(k+1)V(k+1)H,

Λ
(k+1)
2 =Λ

(k)
2 + Mo − PΩ(ΦL(k+1) + ΦS(k+1)). (10)

Next, the sub-problems on L, U, V, and S can be solved by
taking the gradient concerning each variable and setting the
gradients to zero. Hence,

L(k+1) = J−1
(
µ1(U(k)V(k)H −Λ

(k)
1 )+

µ2Φ
TPΩ(Mo + Λ

(k)
2 −ΦS(k))

)
, (11)

where the linear operator J : Cn×t 7→ Cn×t is defined as:

J (Z) = µ1Z + µ2Φ
TPΩ(ΦZ). (12)

Afterward, we update S by

S(k+1) = Sλ/µ2
(Mo + Λ

(k)
2 − PΩ(ΦL(k+1))) (13)

where Sλ/µ2
: Rn×t 7→ Rn×t is the soft-threshold function

which is defined as:

[Sτ (Z)]i,j =

sgn(zi,j)(|zi,j | − τ) |zi,j | ≥ τ

0 o.w.

where zi,j is the (i, j)-th element of matrix Z. Next, for U
and V we have:

U(k+1) = µ1

(
L(k+1) + Λ

(k)
1

)
V(k)·(

It×t + µ1V
(k)HV(k)

)−1
, (14)

V(k+1) = µ1

(
L(k+1) + Λ

(k)
1

)
U(k+1)·(

In×n + µ1U
(k+1)HU(k+1)

)−1
, (15)

where In×n and It×t represent identity matrices with size n×n
and t×t, respectively. The initial values of L(0) and S(0) come
from the least square problem solution, i.e.,

F(0) = argmin
X∈Rn×t

‖Φ(Mo −X)‖2F, (16)

where F(0) = L(0) + S(0). Then, U(0) and V(0) can be
computed by the polar decomposition of L(0). Also, we set
Λ

(0)
1 = ∅ and Λ

(0)
2 = ∅. The convergence analyses of the



ADMM algorithm for minimizing the sum of multi non-
smooth convex separable functions have been studied in [21],
[22], in which it is shown that if the penalty parameters are
chosen to be sufficiently large, the classical ADMM converges
to the set of stationary solutions.

III. SIMULATION RESULTS

In this section, we apply our model to the foreground and
background of real video data. We compare methods such as
Grassmannian Robust Adaptive Subspace Tracking Algorithm
(GRASTA) [23], Grassmannian Rank-One Update Subspace
Estimation(GROUSE) [24], and Robust PCA via Non-convex
Gradient Descent (RPCA-GD) [14] with each other. These
algorithms and ours are implemented in MATLAB. We used
three types of real surveillance videos in our simulations
(i.e. traffic data, shopping center data, and escalator data). In
addition, Gaussian filters are used to simulate blurring effect
in datasets. The videos in these datasets have different frame
sizes, but we used 100 frames of each one. Moreover, the
input data is generated by randomly setting 90% of the pixels
of each frame as missing data.

Figure 1 demonstrates the foreground and background sep-
aration for the Highway dataset by applying the mentioned
methods. The original image is in the first row, and other rows
show the outputs of the other algorithms. Figures 2, 3 show
the same results for Escalator, and Mall data set, respectively.
The results show that the accuracy of our method is higher
than those of the other tested methods.

IV. CONCLUSION

In this paper, we investigated the background and fore-
ground separation problem on blurred surveillance video
datasets. Moreover, we proposed a problem considering the
blurring kernel effects. Next, we developed an ADMM algo-
rithm to solve the sparse and low-rank matrix decomposition
problem. At last, we compared our method with state-of-the-
art methods. Numerical simulation results that came from real-
world datasets demonstrates that our method works better than
the other simulated approaches.
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Fig. 3: Comparison result of the background and foreground extraction between our method and other state of the art methods
on the escalator data set
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