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Abstract

COVID-19, an infectious disease caused by the SARS-CoV-2 virus, was declared a pandemic by the World Health Organisation
(WHO) in March 2020. At the time of writing, more than 2.8 million people have tested positive. Infections have been growing
exponentially and tremendous efforts are being made to fight the disease. In this paper, we attempt to systematise ongoing
data science activities in this area. As well as reviewing the rapidly growing body of recent research, we survey public datasets
and repositories that can be used for further work to track COVID-19 spread and mitigation strategies.

As part of this, we present a bibliometric analysis of the papers produced in this short span of time. Finally, building on these

insights, we highlight common challenges and pitfalls observed across the surveyed works.
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Abstract—COVID-19, an infectious disease caused by the
SARS-CoV-2 virus, was declared a pandemic by the World Health
Organisation (WHO) in March 2020. At the time of writing, more
than 1.8 million people have tested positive. Infections have been
growing exponentially and tremendous efforts are being made to
fight the disease. In this paper, we attempt to systematise ongoing
data science activities in the area. As well as reviewing the rapidly
growing body of recent research, we survey public datasets and
repositories that can be used for further work to track COVID-
19 spread and mitigation strategies. As part of this, we present
a bibliometric analysis of the papers produced in this short span
of time. Finally, building on these insights, we highlight common
challenges and pitfalls observed across the surveyed works.

I. INTRODUCTION

The SARS-CoV-2 virus and the associated disease (desig-
nated COVID-19) was first identified in Wuhan city (China)
in December 2019 [1]–[3], and was declared a pandemic by
the World Health Organisation (WHO) on 11 March 2020.1

At the time of writing,2 the Centre for Systems Science and
Engineering at Johns Hopkins University reports 1,846,963
confirmed cases, 114,185 deaths, and 421,728 recovered.

Since December 2019, over 24,000 research papers from
peer-reviewed journals as well as sources like medRxiv are
available online [4]. Understanding this rapidly moving research
landscape is particularly challenging since much of this
literature has not been vetted through a peer-review process
yet. This paper tries to overcome this challenge by presenting a
detailed overview and survey of data science research related to
COVID-19. It is intended as an (evolving) community resource
to facilitate accessibility to the large volume of data and papers
published in recent months. We use the term ‘data science’ as an

Email: siddique.latif@usq.edu.au
1https://tinyurl.com/WHOPandemicAnnouncement
21:57 am Monday, 13 April 2020 Coordinated Universal Time (UTC)

umbrella term that encompasses all techniques that use scientific
methods, algorithms, and systems to learn from structured and
unstructured data. In examining this growing landscape of data
science research around COVID-19, we make the following
five contributions. First, we present pressing research problems
related to COVID-19, for which data scientists may be able to
contribute. Second, we summarise publicly available COVID-
19 datasets that are being used to drive research, and list how
they could be utilised to address some of the aforementioned
problems. Third, we survey some of the ongoing research
in the area, highlighting the main topics covered. As our
primary audience is computer scientists and engineers, we
theme our discussion around types of data analysis. Fourth, we
broaden our analysis and present a bibliometric study of the
rapidly growing literature on COVID-19. Bringing together our
observations, fifth, we highlight some of the common challenges
in this fast-moving space. We intentionally cast a wide net,
covering research from several technical areas surrounding data
science.

This paper builds upon recent reviews and perspective
papers [5], [6] to help systematise existing resources and
support the research community in building solutions to the
COVID-19 pandemic. We have attempted in this review to
be comprehensive and provide an up to date literature review
and highlight important applications, community resources,
publication trends, and challenges of data science research in
COVID-19. However, in a dynamic rapidly-evolving field such
as this, it is not possible for us to aim for exhaustiveness.
Nonetheless we hope that our work will provide a solid
introduction to the field for all researchers interested in this
area.

The rest of paper is organised as follows. In Section II, we
present the possible use cases that can help address COVID-19
challenges. In Section III, we present the details of available

****Accepted in IEEE Transactions on Artificial Intelligence (TechRxiv extended version). Copyright may be transferred without notice, after which this version may no longer be accessible.****
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datasets and resources. In Section IV, we review contributions
made by data scientists including image analysis, textual data
mining, audio analysis, and embedded sensing. In Section V we
present a bibliometric analysis of the COVID-19 related papers.
Next, we discuss common challenges facing this research in
Section VI. Finally, Section VII concludes the paper.

II. APPLICATIONS OF DATA SCIENCE FOR COVID-19

Data science is a broad term covering topics such as Machine
Learning (ML), statistical learning, time-series modelling,
data visualisation, expert systems and probabilistic reasoning.
Van der Schaar et al. [6] identify five major healthcare
challenges where such technologies could help address in
the fight against COVID-19: (i) managing limited health-
care resources; (ii) developing personalised plans for patient
treatment/management; (iii) informing policies and enabling
effective collaboration; (iv) understanding and accounting for
uncertainty; and (v) expediting clinical trials. Building on this,
we start by summarising some of the key research use cases
that data scientists may be able to contribute to.

A. Risk Assessment and Patient Prioritisation

Healthcare systems around the world are facing unprece-
dented pressures on their resources (e.g., availability of inten-
sive care beds, respirators). This creates the need to rapidly
assess and manage patient risk, while allocating resources
appropriately. In periods of peak load, this must be done rapidly
and accurately, creating a substantial challenge for healthcare
professionals who may not even have access to historical patient
data. Various studies have already proposed algorithmic risk
assessments of diseases such as cancer [7], diabetes [8], and
cardiac-related diseases [9] with Artificial Neural Networks
(ANNs). Due to diverse symptoms and disease trajectories,
researching technologies for data-driven risk assessment and
management in individual COVID-19 patients would be useful.
For instance, traits like age, gender, or health state can be
utilised to provide an estimate of mortality risk. This is
particularly important when resources are limited, e.g., for
patient prioritisation when Intensive Care Unit (ICU) resources
are insufficient.

B. Screening and Diagnosis

A major issue facing countries with growing COVID-19
infection rates is the lack of proper screening and diagnosis
facilities. This further complicates capacity management as well
as social distancing measures, since those with mild symptoms
are often unaware they carry the disease. A key use case is to
develop remote computational diagnosis tools. Some already
exist, which could be expanded, e.g., Babylon is a mobile app
that provides medical advice via questioning. More advanced
solutions could also rely on audio, e.g., COVID-19 Sounds
is a mobile app collecting audio of breathing symptoms to
help perform diagnosis.3 We posit that such research will
be particularly useful in developing countries that have a
shortage of healthcare facilities [10]. Automated tools can

3http://www.covid-19-sounds.org/

also be developed to facilitate screening in larger groups of
people (e.g., at airports), e.g., using computer vision based
thermal imaging to detect fever [11].

C. Epidemic Modelling

Healthcare systems require accurate epidemic models to
perform capacity management and public policy formulation.
In epidemiology, compartmental models are the most widely
used for this [12]. In these models, populations are divided into
compartments and the flow of people among compartments is
modelled using ordinary differential equations. For example,
COVID-19’s spread has recently been modelled using the
SEIR model [13], which models the flow of people between
four states (or compartments): susceptible (S), exposed (E),
infected (I), and recovered (R). Generative models define
another broad class of models that generate consequences
(i.e., data) from causes (i.e., hidden states and parameters). An
example generative model, developed at University College
London, is based upon ensemble or population dynamics
that generate outcomes (new cases of COVID-19 over time)
[14]. This approach captures the effects of interventions (e.g.,
social distancing) and differences among populations (e.g.,
herd immunity) to predict what might happen in different
circumstances. For interested readers, websites offering COVID-
19 forecasting have emerged,4 each using a different model
(although they should be treated with caution due to the
uncertainty of such predictions [15] [16]).

Parameterising the above models requires up-to-date informa-
tion of the virus spread. Thus, an important use case is finding
ways to better capture such data. For instance, this could
be done by processing social media information to identify
people who have been infected, or even analysing ambulance
call out data [17]. Another beneficial use case would be to
develop ways to more accurately evaluate “what-if ” scenarios
with these models [15]. As an example, the initial policy of
the UK government (of adopting almost no social isolation
measures) was later changed based on results from an extended
SEIR model from Imperial College London [18]. This model
projected that without interventions there would be up to half
a million fatalities, highlighting the importance of accurate
predictions. More generally, a comprehensive review focused
on modelling infectious disease dynamics in the complex
landscape of global health can be seen at [19].

D. Contact Tracing

Most countries reacted to the early stages of COVID-19
with containment measures. This typically involves rapidly
identifying infected individuals, followed by quarantine and
contact tracing. Countries, such as South Korea, conducted
rigorous testing campaigns, which allowed other potentially
infected contacts to be quickly quarantined. This approach has
been seemingly successful in containing the outbreak [20]. A
valuable use case can be therefore facilitating more rapid and
comprehensive contact tracing at scale [21]. Smartphone contact

4For example: (1) COVID-19 worldwide peak forecasting method (https:
//www.people.vcu.edu/∼tndinh/covid19/en/) and (2) COVID-19 forecasting
(http://epidemicforecasting.org/)

http://www.covid-19-sounds.org/
https://www.people.vcu.edu/~tndinh/covid19/en/
https://www.people.vcu.edu/~tndinh/covid19/en/
http://epidemicforecasting.org/
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Table I: Organisation of paper and summary of different sections.

Sections Subsection

(§II) Applications of Data Science for COVID-19

This section highlights different use cases related to the application of
data-driven methodologies for addressing COVID-19. It also discusses
some examples of these use cases.

(§II-A) Risk Assessment and Patient Prioritisation
(§II-B) Screening and Diagnosis
(§II-C) Epidemic Modelling
(§II-D) Contact Tracing
(§II-E) Logistical Planning
(§II-F) Automated Primary Care
(§II-G) Supporting Drug Discovery and Treatment
(§II-H) Understanding Social Interventions
(§II-I) Supporting Economic Recovery

(§III) Datasets and Resources

This section provides information about numerous datasets related to
COVID-19. It also gives information about ongoing data science
competitions, and online resources.

(§III-A) COVID-19 Case Data
(§III-B) COVID-19 Textual Data
(§III-C) COVID-19 Biomedical Data
(§III-D) Other Supportive Datasets
(§III-E) COVID-19 Competition Datasets

(§IV) Survey of Ongoing Research

This section surveys ongoing work across several types of data.
It also provides brief summaries of outcomes and methodologies.

(§IV-A) Image Data Analysis
(§IV-B) Textual Data Analysis
(§IV-C) Voice Sound Data Analysis
(§IV-D) Embedded Data Analysis
(§IV-E) Pharmaceutical Research

(§V) Bibliometric Analysis of COVID-19 Research

This section presents a bibliometric analysis of COVID-19 research.

(§V-A) Bibliometric Data Collection
(§V-B) Peer-reviewed vs. Non-peer-reviewed publications
(§V-C) Research Topics
(§V-D) COVID-19 vs. Earlier Epidemics

(§VI) Cross-Cutting Challenges

This section highlights challenges that researchers may face
when performing data-driven research related to COVID-19.

(§VI-A) Data Limitations
(§VI-B) Correctness of Results vs. Urgency
(§VI-C) Security, Privacy, and Ethics
(§VI-D) The Need For Multidisciplinary Collaboration
(§VI-E) New Data Modalities
(§VI-F) Solutions for the Developing World

(§VII) Conclusions

sensing, online surveys and automated diagnosis have all
been proposed to rapidly identify exposure [22]. For example,
there are ongoing efforts to survey general populations via
social media to learn of symptoms within individuals’ social
networks [23]. Even prior to COVID-19, FluPhone [24] used
Bluetooth communications to identify contacts between people,
and BlueDot monitors outbreaks of infectious diseases to alert
governments, hospitals, and businesses [25].

E. Logistical Planning

COVID-19 has created serious challenges for healthcare sup-
ply chains and provisioning. This includes personal protective
equipment such as masks and gowns, alongside intensive care
equipment like test kits, beds, and ventilators. There is a history
of applying machine learning to logistical planning, e.g., by
Amazon Fulfilment.5 A simple use case would be to apply
data science techniques to help supply chain management for
healthcare provisioning. This can also be used to preemptively
allocate resources, e.g., researchers from the University of
Cambridge are using depersonalised data (like lab results
and hospitalisation details) to predict the need for ventilation
equipment.6 This use case could be critical for ensuring
appropriate equipment is available on time.

F. Automated Patient Care

The pandemic has triggered a shortage of healthcare workers
(e.g., in primary care). To alleviate this, automated primary

5https://services.amazon.co.uk/services/fulfilment-by-amazon/
features-benefits.html

6https://tinyurl.com/CambridgeCenterAIMedicineCOVID

care tools, such as remote chatbots and expert systems,
could be developed and/or improved. Such systems can help
people in providing information about the outbreak, symptoms,
precautionary measures, etc. For instance, an interactive chatbot
by the WHO and Rakuten Viber aims to provide accurate
information about COVID-19 to people in multiple languages
[26].

Automated healthcare methods could also be utilised to help
monitor the conditions of COVID-19 patients in emergency
care [27]. Another use case would be to gather and collate
observational data to monitor (and then generalise) the efficacy
of treatments for certain patient types. Similarly, physical
and psychological (self) recordings could be used to scalably
generate personal plans. Due to the need to rapidly discharge
patients from hospitals, further monitoring could continue
remotely. For instance, AliveCor [28] has launched Kardia
Mobile 6L, which allows healthcare professionals to measure
QTc (heart rate corrected interval). Similarly, TeleICU has been
used to identify respiratory deterioration [29].

G. Supporting Drug Discovery and Treatment

The international effort to discover or re-purpose drug
treatments and vaccines can also benefit from extensive
data science work predating COVID-19 [30]. For example,
computational methods can reduce the time spent on examining
data, predicting protein structures and genomes [31], [32]. It can
also assist in identifying eligible patients for clinical trials [33],
an often costly and time consuming part of drug development.
There is also substantial scope for applying advanced methods
to managing trials, such as applying Bayesian clinical trials to
adapt treatments based on information that accrues during the

https://services.amazon.co.uk/services/fulfilment-by-amazon/features-benefits.html
https://services.amazon.co.uk/services/fulfilment-by-amazon/features-benefits.html
https://tinyurl.com/CambridgeCenterAIMedicineCOVID
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trial [34]. This may be critical in expediting the delivery of
drug treatments, and we argue this is another area where data
scientists can contribute.

H. Understanding Social Interventions

Governments have taken steps to manage social interactions
as part of their response to COVID-19. We highlight two main
use cases of relevance.

1) Monitoring of Social Distancing: Many governments
have implemented social distancing strategies to mitigate the
spread of COVID-19. This is a non-pharmaceutical intervention
that reduces human contact within the population [35] and
therefore constrains the spread of COVID-19 [36]. Data science
can support contact tracing the monitoring of social distancing,
for instance by extracting social media data and using language
processing techniques [37], [38]. These analyses could also
help in keeping record of interactions to be used as individuals
develop symptoms. Furthermore, these could be used for
general population tracking to understand compliance with
social distancing. This could then be complemented with other
datasets (e.g., cellular trace data or air pollution monitoring
[39]) to better understand human mobility patterns in the
context of social distancing.

2) Controlling Misinformation & Online Harms: The spread
of misinformation can undermine public health strategies [40]
and has potentially dangerous consequences [41], [42]. For
example, online rumours accusing 5G deployments of causing
COVID-19 led to mobile phone masts being attacked in the UK
[43]. Wikipedia maintains an up-to-date list of misinformation
surrounding COVID-19 [44]. This confirms the spread of a
number of dangerous forms of misinformation, e.g., that vinegar
is more effective than hand sanitiser against the coronavirus.
Naturally, users who believe such misinformation could proceed
to undermine public health. One important use case would
therefore be to develop classifiers and techniques to stem this
flow. For example, Pennycook et al. [45] are testing simple
interventions to reduce the spread of COVID-19 misinformation.
An infodemic observatory analysing digital response in online
social media to COVID-19 has been created by CoMuNe lab
at Fondazione Bruno Kessler (FBK) institute in Italy and is
available online.7 The observatory uses ML techniques based
on Twitter data to quantify collective sentiment, social bot
pollution, and news reliability and displays this visually.

I. Supporting Economic Recovery

Social distancing measures are having a major impact on
the global economy [46], [47]. As organisations emerge from
economic hibernation they will be challenged to return to
normal levels of service and operation given disruptions to their
workforce. Data scientists might be able to assist in identifying
problems limiting recovery. For instance, governments can
use data science techniques to identify optimal economic
interventions at a high level of granularity and companies
can use data science to detect unusual patterns of behaviour
in the market or in their own customer base.

7COVID19 Infodemics Observatory: https://covid19obs.fbk.eu/

III. DATASETS AND RESOURCES

To enable research by the community, it is vital that datasets
are made available. Next, we survey public datasets, some of
which we summarise in Table II.

A. COVID-19 Case Data

The number of COVID-19 cases along with their geo-
locations can help to track the growth of the pandemic and
the geographical distribution of patients. Many countries are
collecting and sharing infection information. One of the most
used datasets is collated by John Hopkins University, which
contains the daily number of positive cases, the number of
cured patients and the mortality rates at a country as well as
state/province level [48]. A further source of daily COVID-
19 case data is available at Kaggle [49]. This dataset is
annotated with other attributes such as patient demographics,
case reporting date and location. Another epidemiological
dataset, nCOV2019 [65], contains national and municipal health
reports of COVID-19 patients. The key attributes are geo-
location, date of confirmation, symptoms, and travel history.
Similarly, the New York Times is compiling a state-wise dataset
consisting of the number of positive cases and death count
[54]. Whereas the above datasets are mostly based on statistics
compiled by governmental administrations, other datasets are
being collated using community surveys, requesting people
to report infection rates among their social networks [23].
Common data science applications used with such data in the
literature include data visualisation and predictive analytics
[70].

A key limitation in these datasets is the divergence of testing
regimes,8 which makes it challenging to compare results across
countries. It is estimated in one study9 that the average detection
rate of SARS-CoV-2 infections is a meagre 6 percent worldwide.
Similarly, variations in interventions, population densities and
demographics have a major impact, as can be seen when
contrasting, for example, Japan vs. USA.10 As such, regional
prediction tasks are non-trivial, and we posit that temporal
models such as Auto Regressive Integrated Moving Average
(ARIMA) [71] and Long Short Term Memory (LSTM) [72]
neural networks may be effective here.

B. COVID-19 Textual Data

The availability of rich textual data from various online
sources can be used to understand the growth, nature and
spread of COVID-19.

One prominent source is social media, for which datasets
are already available covering COVID-19 discussions. There
are open Twitter datasets covering Tweet IDs [55] and tweet
text data [56]. These were gathered using Twitter’s Streaming
API to record tweets containing a series of related keywords,
including “Coronavirus”, “COVID-19”, “N95”, “Pandemic”,
etc. Another dataset of 2.2 million tweets, alongside the code
to collect more data is available [73]. This data could be

8https://tinyurl.com/theconversationCoronaVirus
9https://tinyurl.com/cov6percent
10http://nrg.cs.ucl.ac.uk/mjh/covid19/index.html

https://covid19obs.fbk.eu/
https://tinyurl.com/theconversationCoronaVirus
https://tinyurl.com/cov6percent
http://nrg.cs.ucl.ac.uk/mjh/covid19/index.html
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Table II: A List of Prominent COVID-19 Datasets

Dataset Name Country/Region Modality Attributes Ref.
JHU CSSE COVID-19 Data All Countries Case statistics Number of infections, number of cured patients, total

mortality count, location
[48]

Novel Corona-virus 2019 dataset All Countries Case statistics Patient demographics, case reporting date, location, brief
history

[49]

Coronavirus Source Data All Countries Case statistics Time series of confirmed daily COVID-19 cases for coun-
tries around the world

[50]

CHIME All Countries Case statistics Daily number of susceptible, infected and recovered pa-
tient

[51]

COVID-19 Korea Dataset Korea Case statistics Patient routes, age, gender, diagnosed date [52]
hCOV-19 All Countries Genomic epidemiology Genetic sequence and metadata [53]
New York Times dataset USA State-wise cumulative cases Date, state name, number of cases, death count [54]
Public Corona-virus Twitter Dataset All Countries Tweet IDs Twitter ID with location [55]
Coronavirus COVID19 Tweets All Countries Public Tweets on COVID-19 UserID, location, hashtags, tweet text [56]
COVID-19 Open Research Challenge All Countries Research articles dataset Published date, author list, journal name, full text [57]
LitCovid All Countries Dataset of research articles Up-to-date research topics and geographic locations [58], [59]
Global research on COVID-19 All Countries Database of research articles Date, location, authors and journal [60]
COVID-19 Community Mobility Reports 131 Countries Mobility statistics with textual

reports
Presence of people at grocery stores, pharmacies, recre-
ational spots, parks, transit stations, workplaces, and resi-
dences

[61]

COVID-19 DATABASE Italy Radiology data Xrays and demographics [62]
RKI COVID19 Germany Cases data Number of infection cases [63]
BSTI Imaging Database United Kingdom CT scans data Patient CT scans [64]

nCoV2019 Dataset

China, Japan,
South Korea,
Hong Kong, Taiwan,
Thailand, Singapore

Epidemiological data Patient demographics, case reporting date, location, brief
history

[65]

COVID Chestxray Dataset Italy Chest X-ray scans and reports X-Ray Image, date, patient, demographics, findings, loca-
tion and survival information

[66]

COVID-19 CT segmentation dataset Italy Lungs CT scans JPG image scans with segmentation and label report [67]
COVID-CT-Dataset All Countries Chest CT-scans Scans with associated labels [67]
RCSB Protein Data Bank All Countries Clinical and pathology Gemonic sequences [68]
Kinsa Smart Thermometer Weather Map USA U.S. Health Weather Map Temperature readings from internet-connected thermome-

ters made by Kinsa Health.
[69]

used to monitor the spread of COVID-19, as well as people’s
reactions (e.g., to social distancing measures) using existing
natural language processing techniques [74]–[76]. Sharma et
al. [77] also made a public dashboard11 available summarising
data across more than 5 million real-time tweets.

The wealth of academic publications in recent weeks is
also creating a deluge of textual information. Information
extraction from clinical studies is already being performed
[78] using language processing models such as [79]. These
bibliometric datasets can easily be collected from pre-print
services such as arXiv, medRxiv, and biorXiv [80]–[82]. The
White House has also released an open research articles dataset
[57]. This dataset contains nearly 45, 000 articles related
to COVID-19, SAR-CoV-2 and other coronaviruses. These
activities are mirrored across other organisations. For instance,
in the US, The National Center for Biotechnology Information
(NCBI) is providing up-to-date COVID-19 scientific literature
[58], and WHO is compiling a database of recent research
publications [60]. Closely related is the wealth of activity on
Wikipedia, a community-driven encylopedia, which already
contains substantial information about COVID-19. The entirety
of Wikipedia can be downloaded for offline analysis [83], and
there are already pre-processed Wikipedia datasets focussing
on COVID-19 available.12

C. COVID-19 Biomedical Data

Biomedical data can be used to support diagnosis, prognosis
and treatment. A major source of data are physical medical

11https://usc-melady.github.io/COVID-19-Tweet-Analysis/
12http://covid-data.wmflabs.org/

reports (such as X-rays) or clinical pathology reports (genomic
sequencing). As the current diagnosis and prognosis of COVID-
19 often requires human interpretations, there is potential
for applications of computer vision research, e.g., automated
diagnosis from chest X-rays. Currently, there are some open-
source COVID-19 X-ray scans such as the COVIDx dataset
[84]. These can be used for training COVID-19 infection
assessment and diagnosis models (exploiting known computer
vision techniques [85]). Other X-ray datasets that are publicly
available for research are [66], [86]. The latter contains
date, patient, demographics, findings, location and survival
information. However, there are some intrinsic challenges
related to these X-ray datasets, such as the requirement of
radiologists or clinicians for data labelling and annotation
(before training models). As such, the datasets are still small,
limiting the application of methods like convolutional neural
networks.

Lung Computed Tomography (CT) scans can also be used
for COVID-19 diagnosis and prognosis. Currently, there are
datasets of lungs CT scans available. One of the datasets
[67] covers 60 patients and comprises three class labels:
ground glass, consolidation, and pleural effusion. The dataset
is collected from 6, March to 13 March, 2020. A larger dataset
of 288 CT scans collected from 19 January to 25 March, 2020
[87]. The dataset has 275 CT scans of COVID-19 patients,
which to the best of our knowledge, is the largest publicly
available.

Besides the above physical scans, there are important
genomic sequencing datasets available. The study of drug
impact, protein-protein interactions and RNA structure in
genomic data is an essential part of diagnosis test evaluations.

https://github.com/CSSEGISandData/COVID-19
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://ourworldindata.org/coronavirus-source-data
https://github.com/CodeForPhilly/chime
https://github.com/ThisIsIsaac/Data-Science-for-COVID-19
https://www.gisaid.org/epiflu-applications/next-hcov-19-app/
https://github.com/nytimes/covid-19-data
https://arxiv.org/abs/2003.07372
https://www.kaggle.com/smid80/coronavirus-COVID19-tweets
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.google.com/covid19/mobility/
https://www.sirm.org/category/senza-categoria/covid-19/
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/data
https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/
https://github.com/beoutbreakprepared/nCoV2019
https://github.com/ieee8023/COVID-chestxray-dataset
http://medicalsegmentation.com/COVID19/?fbclid=IwAR3renB2nuN2pNt0yRwrwExQfJfzvHbz16PwDbLCTv5N5fR1-m9o9kndomE
https://github.com/UCSD-AI4H/COVID-CT
https://www.rcsb.org/pdb/home/sitemap.do
https://healthweather.us/?mode=Atypical
https://usc-melady.github.io/COVID-19-Tweet-Analysis/
http://covid-data.wmflabs.org/


6

Available datasets related to epidemiological and clinical
data include RCSBdata [68] and GHDDI [88]. However, as
COVID-19 has emerged very recently, these datasets are mostly
incomplete or too small. For example, the biomedical datasets
(see [87]) range from just a few up to 300 patients.

D. Other Supportive Datasets

As part of monitoring secondary factors related to COVID-
19 and the surrounding interventions, there are several other
relevant datasets. For example, air quality index statistics can
be used as an indirect measure of social distancing polices,
i.e., if movements are restricted there will be fewer vehicles
(and pollution). A recent study showed that the air quality
of six populous world cities has improved between February
and March 2020 due to the measures to combat COVID-19
[39]. The data is publicly available [89] as well as the related
COVID-19 case data [48]. Mobility trace data [90] can also
serve a similar purpose—a collection of such logs is available
here [91]. Note that mobility datasets have already been re-
purposed: Google has released community mobility reports for
public health officials in 131 countries [61]. These reports are
compiled using Google Maps and describe how busy places
such as grocery stores, transit stations, and workplaces are.

E. COVID-19 Competition Datasets

To facilitate and promote research in this area, there are
several recent open data science competitions established on
Kaggle (summarised in Table III). These are mostly based on
the previously discussed data. For instance, the White House
in coalition with some leading research groups (e.g., Kaggle
and SGS Digicomply) has opened a new challenge using the
earlier mentioned dataset of 45, 000 research articles [57]. For
this, there a few questions posed; for example, “What do we
know about virus genetics, origin, and evolution?” For each
task, there is an associated prize of $1000.

Table III: COVID-19 Related Kaggle Competitions

Challenges Aims

Answer 9 key questions
This challenge asks data scientists to understand
COVID-19 faster by exploring 47,000 scholarly
articles about COVID-19 and related coronaviruses.

COVID19 Global Forecasting
This challenge asks data scientists to predict
the number of cases and fatalities by city between
April 9 and May 7.

UNCOVER COVID-19
This challenge asks data scientists to use exploratory
analysis to answer research questions that help support
frontline responders .

The Roche Data Science Coalition (RDSC) also established
the challenge “Uncover COVID19” [92]. RDSC has rolled-out
a multi-modal dataset collected from 20 sources and has posed
questions prepared by front-line healthcare experts, medical
staff, WHO and governmental policymakers. This dataset is
mainly collected from John Hopkins, the WHO, New York
Times and the World Bank. It includes local and national
COVID-19 cases, geo-spatial data and social distancing polices.
Participants are required to design solutions to address questions
like ”Which populations are at risk of contracting COVID-19?”
and ”Which populations have contracted COVID-19 and require
ventilators?”.

Finally, the White House Office of Science and Technology
Policy (OSTP) has opened a weekly challenge to predict the
number of COVID-19 cases and fatalities at particular locations
around the world [93]. Competitors are also required to unveil
the factors associated with COVID-19 transmission rate. At
the time of writing, participants are required to forecast the
number of COVID-19 cases and deaths between 1-April-20 to
07-May-20.

For those wishing to engage in these competitions, there
are several helpful tools and guideline blogs available. These
resources provide support for data preprocessing, visualisations,
and the implementation of different frameworks. We provide a
list in Table IV.

Table IV: Prominent COVID-19 Community Resources.

Resources Details

AI against COVID-19
This webpage contains information related to recent papers,
projects, and datasets for COVID-19.

AitsLab-Corona
This is an NLP toolbox and related text processing resources
for SARS-CoV-2 and COVID-19 NLP research.

Amazon AWS Amazon AWS public data lake for COVID-19 data analysis

CDC, USA
Centers for Disease Control and Prevention (CDC)
COVID-19 research articles downloadable database.

COVID-19 Graphs
This repository provides the tools to visualise the different
statistics of COVID-19 using case data.

MATLAB resource
MATLAB based tutorial on deep learning based
techniques for detecting COVID-19 using chest radiographs
(in MATLAB).

ChemML [94]
ChemML is a machine learning and informatics program
that support and advance the data-driven research in the
domain of chemical and materials.

JHU’s CSSE
Coronavirus COVID-19 Resource Page by the
Center for Systems Science and Engineering (CSSE)
at Johns Hopkins University (JHU).

MONTREAL.AI
This contains the details of multiple open source codes
and tools to model different aspects of COVID-19.

NIH NLM LitCovid
LitCovid is a curated literature hub for tracking up-to-date
scientific information about COVID-19. It provides central
access to more than 3558 relevant articles in PubMed.

Vector Institute
This is a webpage that provides information about various
resources and research tools for COVID-19.

WHO resource
This is a webpage of the WHO which contains updated
details on the global research on COVID-19.

IV. SURVEY OF ONGOING DATA SCIENCE RELATED
COVID-19 RESEARCH

The above provides an overview of publicly available datasets
that could be used by researchers wishing to contribute to the
COVID-19 crisis. Next, we detail some of the ongoing research
in this space. We theme this section around the above datasets
and summarise key studies in Table V.

A. Image Data Analysis

Various studies ( [95]–[97]) have used computer vision
algorithms to speed up the process of disease detection across
several imaging modalities with some studies demonstrating
that image analysis techniques have the potential to outper-
form expert radiologists [98], [99]. To diagnose COVID-19,
two medical imaging modalities (CT and X-ray) have been
experimented with, which we discuss below.

1) Computed Tomography (CT) Scans: Recent studies have
found that radiologists can diagnose COIVD-19 using Chest
CT scans with lower false positive rates [100], [101] than
other imaging modalities such as X-ray and Ultrasound scans.
Thus, many deep learning (DL) techniques related to CT scans

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks
https://www.kaggle.com/c/covid19-global-forecasting-week-3
https://www.kaggle.com/roche-data-science-coalition/uncover
https://ai-against-covid.ca/datasets/?fbclid=IwAR0jxbo_d14HbP0tNOeHnhP7ndOaA2U3TGv8tKh9JtUXqxGgNFYyOOb76xM
https://github.com/Aitslab/corona
https://aws.amazon.com/blogs/big-data/a-public-data-lake-for-analysis-of-covid-19-data/
https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researcharticles.html
https://github.com/mhandley/COVID19/blob/master/graphs/covid-eu-linear-lp.png
https://blogs.mathworks.com/deep-learning/2020/03/18/deep-learning-for-medical-imaging-covid-19-detection/
https://hachmannlab.github.io/chemml/
https://coronavirus.jhu.edu/
https://montrealartificialintelligence.com/covid19/?fbclid=IwAR3At2VifUPKYqFN29yWctHT-SzqDUf_XzNjvv00rUVBn_VeRSIDcKNGtsA
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://vectorinstitute.ai/covid-19-updates/?fbclid=IwAR3UIi1uC92oqCt_thHBZ4Td4e59tQ_e03aypHMqa0qmdt1e0Lj7QZ-6tmw
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov?fbclid=IwAR0dsByp3Tv33cFfzMXFvoB11GjFGASyvHF6oE_8UG97rgt_tT7PY1nFzAI


7

have been proposed to expedite the diagnosis process. Wang et
al. [102] utilise DL methods to detect radiographical changes
in COVID-19 patients. They evaluate the proposed model on
the CT scans of pathogen-confirmed COVID-19 cases and
show that DL can extract radiological features suitable for
COVID-19 diagnosis. Xiaowei et al. [103] present a method
for the automatic screening of COVID-19 in pulmonary CT
scans using a 3D DL model with location-attention. They
achieve promising accuracy to identify COVID-19 infected
patients scans from other well-known infections. Chen et
al. [104] exploit the UNet++ architecture [105] to detect
suspicious lesions on CT scans. They trained their model on
289 scans and test on 600 scans. They achieve 100% accuracy
in identifying the suspicious areas in CT scans of COVID-
19 patients, which suggests their techniques have potential
for clinical utilisation. Ophir et al. [106] employ 2D and 3D
convolutional neural networks (CNNs) to calculate the Corona
score (which represents the evolution of the disease in the
lungs). They estimate the presence of the virus in each slice of
CT scan with a 2D CNN and detect other lung diseases (i.e.,
lung nodule) by using a 3D CNN. Similarly in [107], a neural
network (COVNet), is developed to extract visual features
from volumetric chest CT exams for the detection of COVID-
19. The study suggests that DL-based models can accurately
detect COVID-19 and differentiate it from community acquired
pneumonia and other lung diseases.

2) X-ray Scans: Ongoing image processing work is not
limited to CT scans, and there has been work on other
modalities, namely X-rays. Ezz et al. [108] propose a DL-based
framework (COVIDX-Net) to automatically diagnose COVID-
19 in X-ray images. COVIDX-Net includes seven different
CNN models, such as VGG19 [109] and Google MobileNet
[110]. The models can classify the patient status as either
COVID-19 negative or positive. However, due to a lack of data,
the technique is validated on only 50 X-ray images, among
which 25 were of confirmed corona patients. Linda et al. [84]
introduce another DL-based solution tailored for the detection
of COVID-19 cases from chest X-ray images. They also develop
a dataset named COVIDx and leverage it to train a deep CNN.
In [111], three different CNN-based models (i.e., ResNet-50,
Inception and InceptionResNet) are employed to detect COVID-
19 in X-rays of pneumonia infected patients. The results show
that the pre-trained ResNet-50 model [112] performs well,
achieving 98% accuracy. Similarly, Farooq et al. [113] provide
the steps to fine-tune a pre-trained ResNet-50 [112] architecture
to improve model performance for detecting COVID-19 related
abnormalities (called COVID-ResNet). Prabira et al. [114] use
DL to extract the meaningful features from chest X-rays, and
then trained a support vector machine (using the extracted
features) to detect infected patients.

We also briefly note that several companies have released
commercial solutions, some of which are freely available, e.g.,
VUNO Med [115] for chest CT and X-ray scans, which help
diagnosis.

B. Textual Data Analysis
Researchers are currently utilising text mining to explore

different aspects of COVID-19, mainly from social media

and bibliometric data. To assist in this, Kazemi et al. [148]
have developed a toolbox for processing textual data related to
COVID-19. This toolbox comprises English dictionaries related
to the disease, virus, symptoms and protein/gene terms.

In terms of social media research, Lopez et al. [149]
explore the discourse around the COVID-19 pandemic and
government policies being implemented. They use Twitter data
from different countries in multiple languages and identify the
popular responses to the pandemic using text mining. Similarly,
Saire and Navarro [150] use text mining on Twitter data to show
the epidemiological impact of COVID-19 on press publications
in Bogota, Colombia. Intuitively, they find that the number
of tweets is positively correlated with the number of infected
people in the city. Schild et al. [134] inspect Twitter and
4Chan data to measure how sinophobic behaviour, driven by the
pandemic, has evolved. This includes studying the impact that
real world events, such as regional containment measures, have
on online hate. Cinelli et al. [151] analyse Twitter, Instagram,
YouTube, Reddit and Gab data about COVID-19. They find
different volumes of misinformation on each platform. Singh
et al. [152] are also monitoring the flow of (mis)information
flow across 2.7M tweets, and correlating it with infection
rates to find that misinformation and myths are discussed, but
at lower volume than other conversations. For those seeking
easy acceess to this information, FBK institute is collecting
COVID-19 related tweets to visualise the presence of bots and
misinformation.13

In terms of bibliometric analysis, Li et al. [153] analyse
research publications on other coronaviruses (e.g, SARS,
MERS). This is used to build a network-based drug re-
purposing platform to identify drugs for the treatment of
COVID-2019. Using module detection and drug prioritisation
algorithms, the authors identify 24 disease-related human
pathways, five modules and suggest 78 drugs to re-purpose.
The rapid growth in COVID-19 related literature further led
Hossain et al. [154] to perform a bibliometric analysis of
COVID-19 related studies published since the outbreak. They
review relationships, citations and keywords, which could be
useful to new researchers in the area.

Finally, there is work processing text data from patient
records. Roquette et al. [155] train a deep neural network to
forecast patient admission rates using the unstructured text data
available for triage. There are also other studies that utilise
text data mining techniques to explore the important aspect of
current situation.

C. Voice Sound Data Analysis

The most common symptoms of COVID-19 are linked
to pneumonia, and the main mortality risk is cardiovascular
disease followed by chronic respiratory disease. Hence, audio
analysis has been considered a potential means for lightweight
diagnosis. There is work performing diagnosis with respiratory
and lung sound analysis [156], which can work even with low-
cost smartphones [157]. High mortality risk groups, including
the elderly, can also be continuously monitored using speech
analysis [158]. The patterns of coughs [159], [160] and sneezing

13https://covid19obs.fbk.eu/

https://covid19obs.fbk.eu/
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Table V: Summary of data science work related to COVID-19. Papers are categorised based on the dataset used.

Authors Area Modality/Data Type Technique Methodology

Wang et al. [102]

Image Analysis

Chest CT scans InceptionNet
on random ROIs

InceptionNet is used to detect the anomalies related
to COVID-19 infection in lungs CT scan.

Xu et al. [103] Chest CT scans 3D CNNs 3-D CNN models used to classify the COVID-19
infected regions in CT scans

Chen et al. [104] Chest CT scans UNet++ UNet++ architecture has been used to identify
the suspicious areas in CT scans

Gozes et al. [106] Chest CT scans 2D + 3D CNNs 2D and 3D CNNs models have been simultaneously employed
to quantify the infection in the lungs of COVID19 patients.

Lin et al. [107] Chest CT scans CNN COVNet; CNN-based model is developed to detect
COVID-19 in chest CT scans

Shan et al. [116] Chest CT scans DNN DL-based segmentation system is developed
to quantify infected ROIs lung CT scans

Zhang et al. [117] Chest CT scans DenseNet Used DenseNet-like architecture and optimised it for
classification task to detect COVID-19 infection.

Wang et al. [118] Chest CT scans Pre-training + DNN Pre-trained DNN has been used
to improve detection of COVID-19 in lungs scans.

Mucahid et al. [119] Chest CT scans Conventional Feature
Extraction techniques + SVM

GLCM, LDP, GLRLM, GLSZM, and DWT algorithms are used
as feature extraction and SVM for classification

Zhao et al. [87] Chest CT scans CNN Developed a public dataset and employed CNN
for COVID-19 detection on chest CT scans.

Gozes et al. [120] Chest CT scans U-Net + ResNet Used UNet for lung segmentation, ResNet for 2D slice classification
and fine grain localisation for detection of infected regions in lungs

Asnaui et al. [121] Chest X-rays
and CT images Fine tuning + CNNs Various CNN-based models used for binary classification in

COVID-19 detection on pneumonia affected X-ray and CT images.

Ezz et al. [108] Chest X-rays CNN-based models Introduced COVIDX-Net, which includes seven different CNN
models for classification of COVID-19 infected X-rays

Linda et al. [84] Chest X-rays ResNet Open source solution (COVID-Net), which detects COVID-19.

Narin et al. [111] Chest X-rays ResNet50, InceptionV3
and InceptionResNetV2

Different CNN-based models are used to detect COVID-19
pneumonia infected patients chest X-rays

Prabira et al. [114] Chest X-rays DNN + SVM Used DNN to extract meaningful information from X-rays
and SVM for classification of corona affected X-rays.

Farooq et al. [113] Chest X-rays Fine-tuning + ResNet Devised multi-stage fine-tuning scheme to improve
performance and training time.

Abbas et al. [122] Chest X-rays Transfer learning (TL) + CNN Employed TL and used previously developed CNN,
called Decompose, Transfer, and Compose (DeTraC)

Chowdhury et al. [123] Chest X-rays CNN + Image
argumentation

An image argumentation technique has been
proposed to create the chest X-ray images for training

Alqudah et al. [124] Chest X-rays CNN, SVM, and
Random Forest (RF)

Applied various ML techniques for
classification of COVID-19 infected X-rays.

Goshal et al. [125] Chest X-rays Bayesian Convolutional
Neural Networks (BCNN) Investigated the significance of dropping weights BCNN

Fatima et al. [126] Chest X-rays CNN Trained CNN for COVID-10 detection in X-rays
Xin et al. [127] Chest X-rays DenseNet Used DenseNet Architecture [128] for COVID-10 detection in X-rays
Karim et al. [129] Chest X-rays DNN Used neural ensemble method for classification

Ioannis et al. [130] Chest X-rays TL + CNN TL is used for extracting patterns from common bacterial
pneumonia patients X-rays using CNN to detect COVID-19

Jahanbin et al. [131]

Text data
Mining

Twitter data Evolutionary
algorithm

In this work, authors used the unstructured data from Twitter
and used a fuzzy rule-based evolutionary algorithm to timely detect
outbreaks of the COVID-19

Zhao et al. [132] Sina Microblog
hot search list

Content mining
algorithms

This work investigates the public’s response at the beginning
(December 31, 2019, to February 20, 2020) of the
COVID-19 epidemic in China.

Li et al. [133] Weibo data
SVM,
Naı̈ve Bayes (NB),
Random Forest (RF)

Authors performed a case study on Weibo data to characterise
the propagation of situational information in social
media during COVID-19.

Schild et al. [134] Twitter & 4Chan data word2vec Authors look at rise of COVID-19 related sinophobic abuse on
Twitter and 4Chan.

Prabhakar et al. [135] Twitter data Topic modelling In this work, the information flow on twitter during
COVID-19 pandemic was studies using topic modelling.

Stephany et al. [136] Risk reports data Multiple text
mining algorithms

In this work, authors used a data mining approach to identify
industry-specific risk assessments related to COVID-19
in real-time.

Zhavoronkov et al. [88]

Pharmaceutical
Research

Crystal structure,
homology modelling,
and co-crystallised
ligands

Generative models
The authors utilised generative models ( [137], [138]) to
generate the molecules for the 3C-like protease that can act
as potential inhibitors for SARS-CoV-2.

Hofmarcher et al. [139] Drug-discovery
databases DNNs

In this work, authors utilise ChemAI [140], [141], a DNN trained
on million of data pints across 3.2 million of molecules, for
screening favourable inhibitors from the ZINC database [142]
for SARS-CoV-2.

Beck et al. [143]
SMILES strings,
amino acid
sequences

Deep learning model Authors utilise a pre-trained drug-target interaction model
to predict commercially available antiviral drugs for COVID-19.

Kim et al. [144]
SMILES strings,
amino acid
sequences

AI-based prediction
platform

A binding affinity prediction platform is used
to detect available FDA approved drugs that can block
SARS-CoV-2 from entering cells.

Richardson et al. [145] Biomedical data AI-driven knowledge
graph

Authors use BenevolentAI to search for approved
drugs that can block the viral infection process.

Stebbing et al. [146] Biomedical data AI-driven knowledge
graph

This study examines approved antiviral and anti-inflammatory
treatments for COVID-19.

Vijil et al. [147] SMILES Generative models
Design drug candidates specific to a
given target protein sequence. They release around 3000
novel COVID-19 drug candidates.
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[159], throat clearing and swallowing sounds [161] can all
be analysed using speech and sound processing. At present,
COVID-19 related speech data has limited availability, although
the potential benefits are highlighted in [156]. Thus, mobile
apps like COVID-19 Sounds are attempting to collect large
audio datasets. In [162], the authors present an app called
AI4COVID-19 for the preliminary diagnosis of COVID-19. It
requires a 2 second cough sample and provides the preliminary
diagnosis within a minute. This work confirms the feasibility
of COVID-19 detection using cough samples with promising
results (90% detection rate).

D. Embedded Sensor Data Analysis

Embedded data (e.g., from smartphones and sensors) is
being used for remote patient care and diagnosis [163]. This
can include mobility data, physiological vital signs, blood
glucose, body temperature, and various other movement-related
signals. In [164], the authors develop a system utilising real-
time information, including demographic data, mobility data,
disease-related data, and user-generated information from social
media. The proposed system, called α-Satellite, can provide
hierarchical community-level risk assessment that can inform
the development of strategies against the COVID-19 pandemic.
Google has also been using location data from smartphones to
show people’s movement during the pandemic [165]. Another
study [166] presents the design of a low-cost framework for
the detection of COVID-19 using smartphone sensors. They
propose the use of the mobile phones of radiologists for virus
detection. They highlight that the proposed framework is more
reliable as it uses multi-readings from different sensing devices
that can capture symptoms related to the disease.

Another recent study [21] concluded that COVID-19’s
“spread is too fast to be contained by manual contact tracing”.
To address this, disease tracking apps [24] use contact/location
sensor data. The simplest ones aim to understand the spread
of the disease, particularly mild cases that are not routinely
lab tested. For example, the COVID Symptom Tracker app14

and COVID Near You15 service. Others, like Hong Kong’s
StayHomeSafe and Poland’s Home Quarantine app [167], try
to monitor if people obey quarantine rules (via geofencing).
More advanced solutions can notify users if they have come
into contact with somebody infected. Examples include China’s
Close Contact Detector app [168], China’s complementary QR
health code system [169]), Singapore’s TraceTogether [170]
app, and Israel’s HaMagen [171] app. At the time of writing in
early April 2020, the UK is also planning to launch a similar
app [172].

We note that one critical challenge in the above apps is
protecting user privacy [173], [174]. For instance, uploading
contact data for server-side computation could create a nation-
wide database of social relationships, particularly in countries
where usage is mandatory. Recently, Decentralised Privacy-
Preserving Proximity Tracing (DP-3T) [175] was proposed by
the the Pan-European Privacy-Preserving Proximity Tracing

14https://covid.joinzoe.com/
15https://www.covidnearyou.org/

(PEPP-PT) [176] consortium.16 This is a mobile app that offers
privacy-preserving alerts for people who may have recently
been in contact with an infected person. TraceSecure [177]
supports similar features based on homomorhpic encryption,
whereas [178] offers privacy guarantees via private set inter-
section. Apple and Google have announced a partnership to
develop their own privacy-preserving contact tracing specifica-
tions based on Bluetooth.17

E. Pharmaceutical Research

There is extensive ongoing work in using new experimental
technologies to support the search for COVID-19 pharmaceuti-
cals. This has received substantial attention in recent months
in an attempt to build models to explore the 3D structure of
SARS-CoV-2 (the virus that causes COVID-19). In [179], the
authors use the AlphaFold model to predict the structures of
six proteins related to SARS-CoV-2. AlphaFold [180] is a DL
model based on a dilated ResNet architecture [112], which
predicts the distance and the distribution of angles between
amino acid residing on protein structure. In [181], the authors
use a DNN-based model for de novo design of new small
molecules capable of inhibiting the chymotrypsin-like (3CL)
protease—the protein targets for corona-viruses. Based on the
results they were able to identify 31 potential compounds as
ideal candidates for testing and synthesis against SARS-CoV-2.
Studies also attempt to improve the RT-PCR test by utilising
ML and novel genome technologies. Metsky et al. [182] employ
CRISPR18 to develop assay designs for the detection of 67
respiratory viruses including SARS-CoV-2.

As well as the above, studies have utilised ML models to
speed up drug development. Hu et al. [183] exploit a multi-task
DNN for the prediction of potential inhibitors against SARS-
CoV-2. They aim to urgently identify existing drugs that can
be re-purposed. Based on the results, they list 10 potential
inhibitors for SARS-CoV-2. Zhang et al. [184] perform DL-
based drug screening against 4 chemical compound databases
and tripeptides for SARS-CoV-2. Based on the results, they
provide a list of potential inhibitors that can help facilitate
drug development for COVID-19. Tang et al. [185] propose the
use of reinforcement learning (RL) models to predict potential
lead compounds targeting SARS-CoV-2. Similarly, in [186] the
authors propose a collaborative and open antiviral discovery
approach using deep RL technique to discover new molecules
to fight COVID-19.

Finally, pharmaceutical interventions must go through
clinical trials before being deployed. Accelerated clearance
pathways for COVID-19 studies have been established by
several regulators including the WHO, the European Medicines
Agency, the UK Medicines and Healthcare products Regulatory
Agency and the US Food and Drug Administration [187]. As
of March 24, 2020, 536 relevant clinical trials were registered.
A major barrier though is recruiting suitable patients. Data-
driven solutions are available to rapidly identify eligible trial

16See also the European Commission’s recommendation at https://ec.europa.
eu/info/files/recommendation-apps-contact-tracing en

17https://www.apple.com/covid19/contacttracing/
18A tool that uses an enzyme to edit genomes by cleaving specific strands

of genetic code

https://covid.joinzoe.com/
https://www.covidnearyou.org/
https://ec.europa.eu/info/files/recommendation-apps-contact-tracing_en
https://ec.europa.eu/info/files/recommendation-apps-contact-tracing_en
https://www.apple.com/covid19/contacttracing/
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participants [33], [188], and data collection platforms already
exist for monitoring symptoms remotely [189]

V. BIBLIOMETRIC ANALYSIS OF COVID-19 RESEARCH

We next augment the survey in the previous section with
a brief bibliometric analysis of the research literature related
to COVID-19. This gives a broader understanding of how
publications have evolved across the short lifespan of the
pandemic.

A. Bibliometric Data Collection

There are many data repositories which contain COVID-19
research articles, both peer-reviewed [58], [190], [191] and
non-peer reviewed [80]–[82]. We use Scopus to crawl peer
reviewed articles, and arXiv, medRxiv, and biorXiv for non-peer
reviewed articles. Peer-reviewed articles in our dataset are from
top venues in science, including Nature [192], Science [193],
the Lancet [194], and the British Medical Journal (BMJ) [195].
See Table VI for a complete list of peer-reviewed articles and
the number of articles in our dataset of COVID-19 publications.
We developed scripts to gather this data from pre-print archives
and database queries to fetch data from the Scopus database.
Each entry includes title, authors, journal, publication date,
etc. Our dataset covers papers on COVID-19 from all of the
mentioned sources till April 9th, 2020. We extracted these
papers from the corpus of papers using keyword matching on
titles and abstract of the paper. We use “COVID-19”, “COVID”,
“CoronaVirus”, “Corona Virus”, “Pandemic”, “Epidemic”, and
“SARS-CoV-2” as candidate keywords. Finally we did a manual
check to confirm that extracted papers do not include any
unrelated papers. In total, the dataset covers 2752 publications,
of which 1469 are pre-prints and 1283 are from peer reviewed
journals.

B. Peer-reviewed vs. Non-peer-reviewed publications

The pandemic has resulted in the rapid production of
academic material, much of which is yet to go through the
peer review process due to the urgency of dissemination. Due
to the need for rapid information, COVID-19 researchers are
also looking towards preprint articles. For example, Wynants
et al. [196] have presented a systematic review and critical
appraisal of prediction models for diagnosis and prognosis of
COVID-19 infection that considered both preprint and peer
reviewed articles.

Figure 1 presents the cumulative number of COVID-19
related papers published since December, 2020 including non-
peer-reviewed COVID-19 literature. We see that the number
of papers has increased dramatically since the beginning of
January. To date, non-peer-reviewed articles are the most nu-
merous (bioRxiv, medRxiv and arXiv combined), whereas peer
reviewed articles are substantially fewer (although growing).
By far the most active outlet is medRxiv, which has published
61% of all non-peer reviewed papers in our dataset. Table VI
presents the number of publications from each journal covered.
We see a highly skewed distribution: The Lancet, Nature, the
BMJ, Science and Journal of Medical Virology contain more

Table VI: Peer-reviewed journals and the number of COVID-19
articles in our dataset.

Journal Name Article
Count

The Lancet 228
Nature 204
BMJ 183
Science 113
Journal of Medical Virology 102
New England Journal of Medicine 58
JAMA 55
Clinical Infectious Diseases 49
Journal of Infection 39
Travel Medicine Infectious Disease 35
International Journal of Infectious Diseases 26
Eurosurveillance 25
Emerging Infectious Diseases 20
Radiology 19
Viruses 19
Infection Control Hospital Epidemiology 18
Emerging Microbes Infections 17
Journal of Hospital Infection 16
Annals of Internal Medicine 13
International Journal of Antimicrobial Agents 9
Journal of Clinical Medicine 8
Journal of the American Academy of Dermatology 4
European Respiratory Journal 4
Journal of Travel Medicine 4
Journal of Virology 4
Methods in Molecular Biology 2
Circulation 2
Canadian Journal of Anaesthesia 1
American Journal of Transplantation 1
Anaesthesia 1
Chinese Journal of Laboratory Medicine 1
American Journal of Roentgenology 1
European Review for Medical Pharmacological Sciences 1
Indian Journal of Medical Research 1
Chinese Journal of Hospital Administration 1
Anesthesia Analgesia 1

publications than all other journals combined. Of course, we
anticipate this will change in the long-term, as more pre-prints
move into peer reviewed journals.

Figure 2 complements the above analysis by presenting the
geo-distribution of both groups of publications. As the initial
epicentre of COVID-19 pandemic, a major part of COVID-19
research has been contributed by China. The USA holds the
second position in terms of research contributions. Both hold
roughly the same ratio of peer reviewed vs. non peer reviewed
articles (2/3 are pre-print), e.g., China has 368 peer reviewed
article and 735 non peer reviewed articles on COVID-19 in
our dataset.

C. Research Topics

We next use topic modelling to identify core sub-topics
within the publications. For this, we use Latent Dirichlet
Allocation (LDA) [197]. This algorithm extracts and clusters
abstract topics that exist within the papers. We divide our
dataset into two groups: (1) all papers, and (2) data science
related paper. We have tagged these papers manually based on
their title and abstract.

Table VII shows the latent clusters of topics discussed in all
papers in our dataset. Note that we split the results into peer
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Figure 1: Cumulative distribution of publications per month
on COVID-19 (data gathered till April 9th, 2020).

reviewed vs. pre-print publications. The results are intuitive,
covering many important aspects of COVID-19 research, e.g.,
disease cure, transmission of COVID-19, the role of different
animals, social distancing, the impact of COVID-19 on crime
rates, and the impact of age on COVID-19 positive patients.
In contrast, Table VIII, shows the list of topics observed in
data science related COVID-19 papers. These topics show
that data science research on COVID-19 is being carried out
using many important techniques and algorithms. Noteworthy
algorithms and techniques include multidimensional kernel es-
timation, Bayesian learning, and deep learning based epidemic
forecasting with synthetic information (TDFESI). We hope that
these results will be useful to the community in identifying
key topics receiving coverage.

D. COVID-19 vs. Earlier Epidemics

We conclude our bibliometric analysis by briefly comparing
the rate of publication for COVID-19 research vs. prior
epidemics. For this, we select Ebola and SARS-CoV-1. Figure
3 presents a time series for the first 3 years of publications.
Note that the X-range differs and, naturally, we only have data
since December 2019 for COVID-19.

We see that COVID-19 literature is growing faster than
any prior epidemic. There have been more peer-reviewed
publications (∼1000) in around 3 months for COVID-19 than
there were in 3 years for SARS-COV-1 and Ebola. Furthermore,
as noted in the earlier subsection, there are even more pre-
prints being released which means that COVID-19 has rapidly
overtaken other epidemics in terms of academic attention. Of
course, this is driven in-part by the wider geographic coverage
of COVID-19, impacting numerous highly research active
countries (e.g., China, USA, UK, Germany)

VI. CHALLENGES IN DATA SCIENCE RELATED COVID-19
RESEARCH

In this section, we highlight some of the most important
data science challenges. We specifically focus on cross-cutting

(a) Peer reviewed papers

(b) Pre-print (non-peer-reviewed) papers

Figure 2: Publication count of different countries on COVID-
19.

challenges that impact all of the previously discussed use cases.

A. Data Limitations

Machine learning models are demanding in terms of data.
Ideally, the data should be of high fidelity and voluminous.
For many of the above use cases, extensive labelled datasets
are not yet available, e.g., for speech analysis. Although there
are few publicly available datasets for medical images and
textual analysis, these datasets are small compared to the
requirements of deep learning models. For example, in the
case of biomedical data, sample sizes range from a few up
to 60 patients (see [67]). The scarcity of measured data is
frequently due to the distributed nature of many data sources.
For example, electronic healthcare records are often segregated
on a national, regional, or even per-hospital level. A key
challenge is therefore federating these sources, and overcoming
practical differences across each source, e.g., in terms of
schemas. Thus, better and more automated approaches to data
munging, data wrangling etc. may be critical in attaining fast,
reliable and robust outcomes.

Beyond these challenges regarding availability of data, there
are also major challenges within the data itself. The time-critical
nature of this research is causing hurdles in developing certain
types of high-quality dataset. For instance, by the time social
media data is collected, curated and annotated it can become
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Table VII: Top topics discussed in overall COVID-19 research
literature

(a) Top topics discussed in non-peer-reviewed papers on COVID-19

Topic No. Extracted Topics

1 (risk, grade, shed, infect, effect, strong,
parturients, viral, favipiravir, arbidol, monkey, glucose)

2 (coronavirus, sequence, genome, virus, infect, viral, bat,
human, novel, outbreak)

3 (antibodies, patient, sample, infect, detect, serology,
assay, negative, serum, swab)

4 (estimate, transmission, countries, outbreak, number,
infect, epidemic, spread, travel, reproduction)

5 (specimen, sputum, influenza, throat, nasal, heat, primer-prob,
respiration, inactive, psychiatry)

6 (virus, vaccine, epitope, genome, coronavirus, mutate, sequence,
strain, differ, region, viral, human, immune, high, peptide, develop)

7 (intervention, health, public, social, populate, reduce, quarantine,
epidemic, outbreak, distance)

8 (temperature, treatment, hypoxemia, meteorology, coronavirus,
effect, degree, receive, progress, screen)

9 (drug, effect, virus, antivirus, potential, inhibitor,
protease, coronavirus, model, compound )

10 (positive, age, data, negative, differ, rate,
older, associate, variant, fatal)

(b) Top topics discussed in peer-reviewed papers on COVID-19

Topic No. Extracted Topics

1 (patient, pneumonia, severe, infect, treatment, lung, symptom,
coronavirus, chest, hospital)

2 (coronavirus, sequence, virus, human,bat, genome, respiration, gene,
animal, origin)

3 (health, medic, care, patient, staff, pandemic, social,
service, score, protect)

4 (infect, coronavirus, disease, outbreak, case, spread,
virus, health, transmission, respiratories)

5 (infect, effect, strong, viral, glucose, genome, virus,
antibodies, patient, sample)

6 (viral, bat, human, novel, outbreak, nasal, sequence,
strain, inhibitor, infect)

7 (patient, sample, infect, detect, serum, swab, antibodies,
influenza, test, sputum)

8 (countries, outbreak, number, infect, epidemic, spread,
travel, reproduction)

9 (effect, virus, protease, coronavirus, model, compound, degree,
receive, potential, inhibitor)

10 (intervention, health, public, social, data, negative, differ,
rate, outbreak, distance)

out-of-date. Due to this, real-time datasets often contain poorly
quantified biases. For example, daily infection rates in Japan
exhibit few similarities to those in the Italy. Training models on
unrepresentative datasets will lead to poor (and even dangerous)
outcomes. Whereas techniques such as transfer learning could
allow models to be specialised with regional characteristics,
the fast-moving nature of the problem can make it difficult to
perform informed model selection and parameterisation. A key
challenge is devising analytical approaches that can work with
these data limitations.

B. Correctness of Results vs. Urgency

There is a clear need for rapid results, yet the methods
surveyed in this paper are largely based on statistical learning
on (quickly produced) datasets. In a recent systematic review
of prediction models for diagnosis and prognosis of COVID-
19 infection, Wynants et al. [196] have reported that all
31 reviewed prediction models had a high risk of bias
(due to non-representative selection of control patients and
model overfitting) and presently lacked external validation
(which would require time). The reported models are therefore
susceptible to errors. This is an inherent risk in all scientific
work but, given the fast-moving nature of the situation, errors
can have severe consequences. It should be remembered that

Table VIII: Top topics discussed in COVID-19 data science
based research papers

(a) Top topics in non-peer-reviewed data science based COVID-19
papers

Topic No. Extracted Topics

1 (model, number, use, countries, passengers, access, china,
reduction, outbreak, result)

2 (dimensions, kernel, complex, structure, spectral, time, network,
distance, base, infection-link)

3 (learn, image, covid-19, detect, dataset, feature, patient,
predict, risk, death)

4 (sample, network, estimate, image, detrace, mean, transfer,
covid-19, x-ray, medics)

5 (epidemic, risk, data, detect, method, health, influence,
outbreak, measure, covid-19)

6 (model, graph, number, mixture, rate, predict, infect,
algorithm, china, covid-19)

7 (sepsis, learn, feature, clinic, severe, treatment, differ,
disease, auroc, automate)

8 (forecast, data, epidemic, high-resolute, tdefsi, method, ili, disease,
mds, perform)

9 (data, world, period, trend, death, register, pandemic,
epidemic, model, covid-19)

10 (crime, virus, sars-cov-2, genotype, isolate, mutate, global,
genome, public, policies)

(b) Top topics in peer-reviewed data science based COVID-19 papers

Topic No. Extracted Topics

1 (estimate, number, outbreak, model, epidemic, method, data, rate,
dynamics, coronavirus)

2 (infect, estimate, death, risk, disease, quarantine, asymptomatic,
coronavirus, intervene, individual)

3 (number, case, infect, model, data, epidemic, patient, control,
peak, forecast)

4 (report, forecast, use, cumulative, predict, growth, data,
outbreak, transmission, improve)

5 (coronavirus, quarantine, countries, data, suspect, measure,
effect, ratio, intervention, transmission)

6 (outbreak, coronavirus, period, transmission, peak, predict,
reproduction, mean, intervention)

7 (case, cities, model, number, outbreak, fit, dynamics,
prevent, trend, predict)

8 (outside, travel, cause, viral, range, detect, phase,
pneumonia, incubate, quarantine)

9 (case, estimate, epidemic, global, export, forecast,
risk, incident, reproduction, severe)

10 (control, outbreak, trace, isolate, transmission, symptom,
prevent, model, onset, strategies)

the outcomes of research may impact healthcare policy. For
example, predictions may be used by governments to decide
social distancing policies. Yet political actors are often less
well placed to understand the nuance of scientific studies. We
therefore posit that a key challenge is balancing exigency vs.
the need for well-evidenced and reproducible results that can
inform policy.

A clear challenge is finding ways to capture the uncertainty
of conclusions produced within this flurry of research. Bayesian
methods can be used to capture uncertainty, although we have
seen limited quantification of uncertainty in studies so far
[198]. To ensure the correctness of data analysis, researchers
must also facilitate reproducible conclusions, e.g., sharing code,
data and documentation. This, again, can create challenges as
such requirements are balanced against the need for urgency.
Another promising avenue is ‘Explainable AI’ [199], which
can be used to provide context to results. That said, it is not
clear if this will protect against problems such as unintentional
bias [200] or even adversarial scenarios [201].

C. Security, Privacy, and Ethics

Most works discussed imply the sharing and/or use of
potentially personal and sensitive data. Devising solutions
that exhibit good results but also protect privacy and adhere
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Figure 3: Cumulative publication rates for peer-reviewed
publications in COVID-19, SARS-CoV-1, Ebola. Note the
different X-ranges.

to high ethical standards is a key challenge. We argue that
this could be vital for encouraging uptake among populations,
particularly as infrastructure setup may persist beyond the
pandemic [202]. There are already substantial efforts to build
privacy-preserving medical analytics. For example, MedCo
[203] uses homomorphic encryption to allow sites to federate
datasets with privacy guarantees. Drynx [204] supports privacy-
conscious statistical analysis on distributed datasets. This links
closely into the quality of data (see §VI-A), as often data can
only be shared when robust privacy guarantees are in place.

Broadly speaking, there is some consensus as outlined in
Floridi et al. [205] on the five main “AI ethics principles”: (1)
beneficence, (2) non-maleficence, (3) autonomy, (4) justice, and
(5) explicability. However, in the situation imposed by COVID-
19, decisions may balance between these AI ethics virtues
[206]. For example, to what extent does the current situation
warrant the prioritisation of “public health” and “beneficence”
over “individual privacy” and “autonomy”. And even if this
is warranted in the short-term, how can we ensure that these
compromises do not become permanent and it is possible to
roll back these tradeoffs in the future as the situation changes.
Other difficult questions include the question of allocation
of scarce resources and the tradeoffs involved therein. As
highlighted in the Call of Action presented in March 2020 by
a coalition of experts on data governance [207], there is also a
needed for data sharing between public and private sectors to
ensure that data is used for “beneficence” where it is needed.
In effect, the failure to share data in such contexts may be
considered maleficence since withholding critical data may
block an opportunity that data science models can leverage to
bring potential benefit. That said, good governance mechanisms
with suitable regulations should be in place to oversee ethical
use of data as much as possible.

Privacy may become particularly challenging when con-
sidering the roll-out of interventions (e.g., targeted social
distancing measures) as the intervention itself may expose

sensitive information. This, for example, may apply to contact
tracing apps, which strive to notify users when they have
been in contact with an infected person. Although privacy-
preserving implementations exist (e.g., DP-3T, TraceSecure),
notification may still allow users to guess who the infected
person is (see [208] for a discussion of security issues in
tracing apps). To move ahead, simple measures can be adopted
to help ensure ethical data science research. For example, data
collected should be transparent (the users should be informed
about what data is being collected) and stewarded with a limited
purpose (even when it is anonymised) and governed with
ethical oversight and appropriate safeguards (e.g., with time
limits and sunset provisions). Interested readers are referred
to comprehensive resources on data ethics [205], [209]–[213],
and to a recent report from the TUM Institute for Ethics in
Artificial Intelligence on the ethical challenges involved in
using AI for managing the COVID-19 outbreak [206].

D. The Need For Multidisciplinary Collaboration

Our understanding of COVID-19’s long-term impact is still
limited. Contributing serious insights will require a mix of
domain expertise from multiple fields, and there is already
a push for better international collaboration and tracking of
COVID-19 [214]. For example, the use of black-box models
might yield a superficially practical solution, but could be
useless without the involvement of (international) medical
and biotechnology expert interpretations. This will further
have implications for licensing technologies and engendering
uptake (as healthcare professionals are unlikely to engage with
technologies developed without medical expertise). Rapidly
bringing together cohorts of complementary expertise is there-
fore important. This also brings many further challenges, e.g.,
ensuring a team’s interpretation of things like ethics, benefits
and risks are coherent.

E. New Data Modalities

The data science community has limited exposure to certain
modalities of data that may prove critical in combating COVID-
19. A natural challenge is rapidly adapting existing techniques
to reflect these new data types. For example, whereas the
community has substantial expertise in computer vision tasks,
there is less experience in processing ultrasound scans. Yet
these have shown good results that are similar to chest CT scans
and superior to standard chest radiography for the evaluation
of pneumonia and/or acute respiratory distress syndrome in
corona patients [215], [216]. They also have the benefit of
greater ease of use, absence of radiation, and low cost. Despite
these advantages, to the best of our knowledge, no study has
yet explored the potential of automatically detecting COVID-19
infections via ultrasound scans. Similarly, magnetic resonance
imaging (MRI) is considered the safest imaging modality as it
is a non-invasive and non-ionising technique, which provides
a high resolution image and excellent soft tissue contrast [96].
Some studies like [217] have described the significance of
MRI in fighting against COVID-19 infections. Yet the modality
remained under-explored by the computer vision community
due to a lack of sufficient training data. Thus, a challenge is
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to rapidly develop a well-annotated dataset of such medical
imaging modalities.

F. Solutions for the Developing World

The COVID-19 pandemic poses unique challenges to popula-
tions that have limited access to healthcare (e.g. in developing
countries), particularly as such people are disproportionately
affected by limited access to information [218]. A key challenge
is therefore developing technologies that are designed so that
they are globally inclusive. These should expressly consider
how such technologies could be deployed in both rural and
economically deprived regions [219]–[221], as well as how they
might be misused in certain contexts. This subsumes several
practical challenges that naturally vary based on the specific
use case. For example, if building a mobile app for contact
tracing, it should be low cost and require limited resources; it
should be designed with limited network connectivity in-mind;
it should also support multiple languages and be accessible to
illiterate users or those with disabilities. We emphasise that
ensuring wide accessibility of technological solutions is critical
for addressing this global pandemic.

VII. CONCLUSIONS

Data scientists have been active in addressing the emerging
challenges related to COVID-19. This paper has been written
to rapidly make available a summary of ongoing work for
the wider community. We have attempted to make five broad
contributions. We first presented relevant use cases of data
science, which have the potential to help in the pandemic. This
is by no means a comprehensive list and we expect the set to
expand in the coming months. We then focused on summarising
publicly available datasets for use by researchers. Again, this
is intended as a community resource to shorten the time taken
to discover relevant data. Following this, we surveyed some
of the ongoing research in this area. As the paper is mainly
intended for a computer science and engineering audience,
we again themed our analysis around the different types of
datasets available. Following this, we broadened our analysis
and presented a bibliometric study of thousands of publications
in recent months. Finally, we highlighted some of the common
challenges we observed as part of our systematic review, e.g.,
availability of data and privacy concerns. We also note that
many of the systems discussed in this paper are not operational
yet. In view of this, we intend to update the paper repeatedly
with new information.
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