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Abstract

Background: At present, the gesture recognition using sEMG signals requires vast amounts of training data or limits to a
few hand movements. This paper presents a novel dynamic energy model that can decode continuous hand actions with force
information, by training small amounts of sEMG data.

Method: As activating the forearm muscles, the corresponding fingers are moving or tend to move (namely exerting force).
The moving fingers store kinetic energy, and the fingers with moving trends store potential energy. The kinetic and potential
energy of fingers is dynamically allocated due to the adaptive-coupling mechanism of five-fingers in actual motion. At this
certain moment, the sum of the two energies is constant. We regarded energy mode with the same direction of acceleration of
each finger, but likely different movements, as the same one, and divided hand movements into ten energy modes. Independent
component analysis and machine learning methods were used to model associations between sEMG signals and energy mode,
to determine the hand action, including speed and force adaptively. This theory imitates the self-adapting mechanism in the
actual task; thus, ten healthy subjects were recruited, and three experiments mimicking activities of daily living were designed to
evaluate the interface: (1) decoding untrained configurations, (2) decoding the amount of single-finger energy, and (3) real-time
control.

Results:(1) Participants completed the untrained hand movements (100 /100, p < 0.0001). (2) The test of pricking balloon
with a needle tip was designed with significantly better than chance (779 /1000, p < 0.0001).(3) The test of punching a hole in
the plasticine on the balloon was with over 95% success rate (97.67±5.04 %, p <0.01).

Conclusion: The model can achieve continuous hand actions with force information, by training small amounts of sEMG data,

which reduces trained complexity.
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Abstract

Background: At present, the gesture recognition using sEMG signals requires vast amounts of
training data or limits to a few hand movements. This paper presents a novel dynamic energy
model that can decode continuous hand actions with force information, by training small
amounts of sEMG data.
Method: As activating the forearm muscles, the corresponding fingers are moving or tend to
move (namely exerting force). The moving fingers store kinetic energy, and the fingers with
moving trends store potential energy. The kinetic and potential energy of fingers is
dynamically allocated due to the adaptive-coupling mechanism of five-fingers in actual
motion. At this certain moment, the sum of the two energies is constant. We regarded energy
mode with the same direction of acceleration of each finger, but likely different movements,
as the same one, and divided hand movements into ten energy modes. Independent
component analysis and machine learning methods were used to model associations between
sEMG signals and energy mode, to determine the hand action, including speed and force
adaptively. This theory imitates the self-adapting mechanism in the actual task; thus, ten
healthy subjects were recruited, and three experiments mimicking activities of daily living
were designed to evaluate the interface: (1) decoding untrained configurations, (2) decoding
the amount of single-finger energy, and (3) real-time control.
Results:(1) Participants completed the untrained hand movements (100 /100, p < 0.0001). (2)
The test of pricking balloon with a needle tip was designed with significantly better than
chance (779 /1000, p < 0.0001).(3) The test of punching a hole in the plasticine on the balloon
was with over 95% success rate (97.67±5.04 %, p <0.01).
Conclusion: The model can achieve continuous hand actions with force information, by
training small amounts of sEMG data, which reduces trained complexity.

Keywords: myoelectric interface, amputees, prosthetic hand, electromyogram, real-time systems, conservation of energy.

1. Introduction

Hand loss is a highly disabling event, and markedly
affects the quality of life [3]. In order to replace the
capabilities lost, the replacement should be designed to
faithfully mimic the native hands, providing the user with
intuitive control, sufficient feedback, and multiple functions
(Fig. 1) [3-6]. Sixty years ago, the advent of a myoelectric
prosthetic hand, an externally powered prosthesis extracting
motion intent from electromyogram (EMG) signals, brought
a promising approach [7]. However, myoelectric prosthetic

hands with intuitive control and multiple functions have not
been widely utilized in the commercial area.

The first or earliest type only has two motions, e.g., hand
open or close [8-10]. Two bipolar EMG electrodes are placed
at the flexors and extensors of the residual limb to record
information about the neuromuscular activity. The second
type is based on motion classification that assigns EMG
features to a discrete set of motions [11-13]. Tremendous
success has been achieved in this line of research. Recently,
Furui et al. have demonstrated that a mechanism classifying
unlearned combined motions from a dataset of learned
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motions [13]. In principle, it can be extended to the
classification of any hand motions. Despite its success in
research, classification in its basic form only allows for the
sequential activation of motions, precluding intuitive control
of smooth movements. An error may lead to an utterly
unwanted action that may compromise the full task [5].

Recently, to overcome the limitations of the
classification-based approaches, regression-based
approaches have been proposed. Most research has focused
on the estimation of kinematic joint angles of the wrist [14-
16]. Recently, Zhuang et al. succeed in the estimation of the
force of the single finger [17]. However, this technique
requires considerable training and experience due to the
mechanical coupling and physiological coupling of five-
fingers [1, 2, 11, 18, 19].
Here, this paper proposes a myoelectric interface based on

the conservation of energy (Fig. 2 and Fig. 3). For an instant,
muscular activation associated with hand movements is
constant, the five-fingers are in a state of motion, tending to
move or relaxation; In the view of energy, at some point in
time of muscular activation, the energy of the whole hand is
a constant. However, the form of five-fingers may be kinetic
energy, potential energy, or non-energy. If the five-fingers
state is in the same direction of acceleration, we regard it as
the same energy mode (Fig. 1). Therefore, one energy mode
can achieve multiple motor patterns. In this way, we can map
massive motor patterns from sEMG by small sample training
by this approach.
This paper consists of the proposed myoelectric interface,

three sets of exploratory operational experiments, and off-
line analysis. Section II introduces an overview of the bionic
interface. Section III describes the details of the interface and
experiments. Section IV shows the results of experiments
and off-line analysis. In Section V, we discuss the results and
limitations and conclude. Note that we provided
Supplementary Materials and Movies, and “Fig. S” can be
found in Supplementary Materials.

2. Bionic inspiration and interface overview

Inspired by the neuromuscular system of the human hand,
we propose a myoelectric interface based on energy
allocation. The scheme for the strategy is shown in Fig. 2.
We imitate two stages that the central nervous system (CNS)
activates muscles and that muscles control fingers to
complete the task adaptively (Fig. 2a). Strong evidence from
EMG of frogs [20], cats [21], primates [22], and humans [23]
has demonstrated the existence of muscle synergy in the
neuromuscular system. For the first stage, a group of
synergetic muscles instead of one is activated to perform a
certain task, which allows the CNS to achieve muscle
activation by controlling a few synergies. For the second
stage, the energy of muscles is transferred through
mechanical coupling to five-fingers, which performs manual

tasks by the conversion of kinetic energy and potential
energy adaptively [2, 24].

In light of this, we modularize the model of the
myoelectric interface (Fig. 2b). Firstly, control signals are
obtained using the filtered EMG recordings as input to a
synergy matrix that represents muscle activation strategies
from the individual muscles to muscle groups, which
highlight the information of synergies from CNS. Secondly,
controlling fingers through the muscles are regarded as an
energy transfer process based on energy conservation.

To unify the static force and motion condition, according
to Newton's Second Law, we assume that a fictitious
resistance exists in fingertip during flexion and extension of
each finger, and muscle activation aims to overcome the
resistance. Thus, according to energy conservation, the total
energy of a finger can be regarded as a sum of the kinetic and
potential energy , consisted of three forms: kinetic energy,
potential energy, or coexistence of kinetic energy and
potential energy. At a certain moment of muscle activation,
the energy allocation of five fingers is determined
accordingly. For a single finger, the total energy (kinetic
energy plus potential energy) is also determined. Resistance
catalyzes the interconversion between kinetic energy and
potential energy, but the total amount is constant.

The essence of the myoelectric interface is the total energy
allocation of five-fingers. Therefore, we can solve this
problem through two extreme conditions of energy transfer.

Fig. 1. Example of the primary mechanism of human hand mimicked in the
present study. Active movement at one finger may result in some movement
at other fingers unless activating corresponding muscles to keep other fingers
static. Humans rarely move one finger alone, but multiple fingers
simultaneously, and the energy adaptively extend to multiple motions or
forces according to the task itself [1, 2]. We sought to regard the whole
manual task as energy transfer, mimicking the adaptive mechanism of the
human hand. The direction of arrows indicates the direction of acceleration.
If the five-fingers state is in the same direction of acceleration, we regard it
as the same energy mode. ��u expresses the kinetic energy of the u -th finger,
while ��u expresses the potential energy of the u -th finger.
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Figure 3 shows an overview of the proposed myoelectric
interface. To simplify the model, we utilize the conditions of
wholly transferred kinetic energy or potential energy. The
five-fingers energy of the operator was estimated by the
bionic model using independent component analysis (ICA)
and conservation of energy, thereby allowing the expression
of the unlearned hand tasks via a few learned energy modes
adaptively [2, 25].

3. Materials and methods

3.1 Scheme for the bionic myoelectric interface

From the perspective of information and energy transfer,
the neuromuscular system of humans hand consists of
muscle synergy, mechanical coupling, and the adaptive
conversion of kinetic energy and potential energy (Fig. 2 and

Fig. 2. Scheme for the biomimetic myoelectric interface. (a) Schematic diagram of the neuromuscular system of human hand, including muscle synergy,
mechanical coupling, and the conversion of kinetic energy and potential energy adaptively. (b) Schematic diagram of the proposed myoelectric interface. The
energy of muscles is transferred through mechanical coupling to five-fingers, which performs manual tasks by the conversion of kinetic energy and potential
energy adaptively. The essence of the myoelectric interface is the total energy allocation of five-fingers. Furthermore, the size of colored area on single
finger expresses the amount of energy. The aim is to solve for the pink area of five-fingers (allocation of total energy).
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Fig. 1). Therefore, we mimic these parts to designed our
model.

3.1.1 ICA to mimic muscle synergy. 
Evidence from a large number of animal experiments has

been demonstrated that the CNS achieves muscle activation
by controlling a small number of synergies rather than
controlling individual muscles [20-22, 26, 27]. Briefly,
muscle synergy pattern can be expressed by the activation of
individual muscles [�1 � ,�2 � ,⋯,�� � ] ∈ �� ( � is the
number of muscle)

� � � ���ݎ�� �1 � ,�2 � ,⋯,�� � (1)

Where � � � [�1 � ,�2 � ,�,�� � ] � �� ( � is the
number of synergy patterns and � � � ) and ���ݎ�� � is a
function that transforms the muscle activation into a smaller
number of synergies. Previous experiments of frogs [26] and

rats [27] demonstrated that we could use ICA to extract these
muscle synergy patterns. Therefore, muscle synergy pattern
� � is extracted from the time-series EMG pattern
[�1 � ,�2 � ,�,�� � ] � �� ( � is the number of
EMG electrodes and � � �)

� � +e � � ���ݎ��ܥ�� �1 � ,�2 � ,⋯,�� � (2)

Where ���ݎ��ܥ�� � is a function that transforms the time-
series EMG pattern into a smaller number of synergies, and
� � is the noise of the system (Fig. 3b). � � is regarded as
the information from CNS.

3.1.2 Energy transfer applied to the human hand. 
Both mechanical coupling and neuromuscular control limit

finger independence [1, 2]. For example, active movement at
one finger may lead to some movement at another finger (Fig.
1). To implement the fluid decoding of a single finger, we,

Fig. 3. Overview of the myoelectric interface based on the conservation of energy. The myoelectric interface (a) is composed of training and application
stages. Both stages consist of signals measurement and signal processing and virtual/bionic hand control. Note that, in the training stage, the sensor signals
can be measured on the intact side of the user. Besides, independent component analysis (ICA) decomposes a synergy matrix that represents muscle
activation. The synergy matrix is used to extract muscle synergy and improve robustness (b). Furthermore, each energy mode can extend many other hand
tasks adaptively (c, an example, the direction of the arrow represents the direction of acceleration of single finger, and all adaptive motor patterns are the
same energy mode.). ��u expresses the kinetic energy of the u -th finger, while ��u expresses the potential energy of the u -th finger.
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therefore, sought to regard the whole manual task as energy
transfer, mimicking the adaptive mechanism of the human
hand. Applying the conservation of energy to the human
hand can be expressed as the following formula (Fig. 2b).

� � �� + �� (3)
��� �t ��� (4)

Where � is the energy from muscles to hand, �� is the
kinetic energy of hand, �� is the potential energy of hand
(usually existing in the form of strain energy), ��� is the
amount of change of kinetic energy, and ��� is the amount
of change of potential energy. Also, the energy transfer can
be phrased as follows at the level of a single finger.

� � ��1
� ��

�� , �� � ��1
� ��,�� , �� � ��1

� ��,�� (5)

��� � ��1
� ���,�� , ��� � ��1

� ���,�� (6)

Where �1
� ,�2

� ,�,��
� � �� , ��,1,��,2,�,��,� � �� and

��,1,��,2,�,��,� � �� are the total, kinetic, potential energy
for each finger, respectively. ���,1,���,2,�,���,� � �� and
���,1,���,2,⋯,���,� ∈ �� are the amount of change of
kinetic, potential energy for each finger, respectively.
Uppercase subscript of “P” or “K” expresses the whole hand
level. Lowercase subscript of “p” or “k” expresses the single
finger level. Superscript “s” indicates the single finger level.
In addition, a single finger satisfies the following conditions.

��
� � ��,� + ��,�, � ∈ 1,2,,�,� (7)

Here, according to the adaptive mechanism of the fingers
in task [1, 2] and muscle synergy [13], we assume that a
fictitious resistance exists in fingertip during flexion and
extension of each finger, and muscle activation aims to
overcome the resistance, so as to unify the static force and
motion condition (Newton's Second Law of Motion-Force
and Accelerat). Thus, the energy transfer of the single finger
is as follows.

���,� �t ���,�, � ∈ 1,2,,�,� (8)

In other words, for a certain muscle activation, although
the form of energy is uncertain, the total energy of the single
finger is a constant. Therefore, for the five-fingers level, we
do not care the form of energy, and this process recasts the
decoding problem as the problem of energy allocation of the
five-fingers (energy mode; the adaptive and expansive
expression are shown in Fig.3c).
To simplify the model, we utilize the conditions of wholly

transferred external kinetic energy ��
��� or external potential

energy ��
���.

��
��� � ��

��� � � (9)

Also, the form of a single finger is as follows.

��,�
��� � ��,�

��� � ��
� , � ∈ 1,2,,�,� (10)

Where ��,�
��� � ��,1

���,��,2
���,�,��,�

��� � �� and ��,�
��� ∈

��,1
���,��,2

���,⋯,��,�
��� ∈ �� are the wholly transferred kinetic

energy or potential energy for a single finger. Furthermore,
with the help of an additional system, according to the
principle of virtual work, the wholly transferred potential
energy should be equal to the amount of change of internal
energy of the additional system (Fig. 2b and Fig. 3a).

��,�
����W�,�

������
��� ⋅ �, �∈ 1,2,,�,� (11)

Where ��,�
��� is the work of the energy transfer from finger

to the additional system, ��
��� is the force applied to the

additional system, and � is the virtual displacement. Besides,
compared with (1), the energy of the five-fingers is expressed
as the following formula.

��
� � ��,�

��� � ��,�
������

��� ⋅ �, � ∈ 1,2,,�,� (12)

Then, we utilize the two extreme conditions of energy
transfer simultaneously to solve the total energy for each
finger, as shown in figure 3a.

3.2 Experimental protocol

Fig. 4. Hardware structure for training states. Although the learning
method we selected, such as ANN or SVM, is similar to previous researches
that recorded motions or force of the wrist, the difference of our interface is
that we had users perform tasks that represent energy modes in the level of
the whole hand. We found it is very convenient to extend massive manual
tasks by training a few specific energy modes based on virtual hand
visualization about the entire hand, rather than a lot of motions or single-
finger force. Notice the gesture in yellow box is without mechanical
coupling, so we record the wholly transferred potential energy. ( Ten energy
modes in Movie S6.)
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We performed off-line analysis and three sets of
operational experiments in which we decoded the finger
energy of subjects using EMG signals recorded from their
forearms. We recruited ten able-bodied subjects (subjects 1,
2, 3, …, 10) for the study (note that the EMG signals from
subject 10 are contaminated with noise due to electrode shifts
[28] and one lift-off electrode [29] intentionally in training
stage).

3.2.1 Subjects and EMG recording. 
In this study, 10 able-bodied subjects (two females, eight

males, aged 26.4±1.43 years) gave informed consent to
participate in the experiment protocol. All participants were
right-handed. We performed training stages in all
experiments with their left hands for convenient operations.
For the right hands, the electrodes were placed in the same
positions as the left hand in operational experiments. Also,
these subjects’ hands are similar in size due to the fixed
device or forces capture device (Fig. 4).
According to anatomy and kinesiology of hand [30], we

recorded the EMG activity from eight extrinsic muscles of
the forearm of all subjects. As shown in figure S3, four
flexor muscles and four extensor muscles related to hand or
finger movements were selected.

3.2.2 Training stages. 
a. System setup
The system is mainly composed of a multichannel surface

electromyography device, a fixed device or force capture
device, and a personal computer (Fig. 4). Surface EMG
signals, as well as the continuous five-fingers forces in both
finger flexion and extension directions with visual feedback
of virtual hand, were recorded simultaneously. Among them,
proportional five-fingers forces indicate the potential energy
that converted into the internal energy of the capture device.
Visual feedback of the virtual hand represents kinetic energy
that is completely converted by potential energy for each
finger (kinetic energy is in direct proportion to the square of
the speed of virtual fingers). Formula derivation is as follows.

For potential energy of five-fingers:

,1 ,2 ,3 ,4 ,5

1 2 3 4 5

1 2 3 4 5

: : : :

: : : :
: : : :

ext ext ext ext ext
p p p p p

ext ext ext ext ext

ext ext ext ext ext

P P P P P

F F F F F
F F F F F

         



(13)

For kinetic energy of five-fingers:

,1 ,2 ,3 ,4 ,5

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5

: : : :
1 1 1 1 1: : : :
2 2 2 2 2

: : : :

ext ext ext ext ext
k k k k kP P P P P

m v m v m v m v m v

m v m v m v m v m v





(14)

Where the subscript expresses the finger. In addition, for a
certain hand, 1 2 3 4 5: : : :m m m m m is constant. Thus, to solve
for allocation of total energy, the formula is as follows.

1 2 3 4 5

1 2 3 4 5
2 2 2 2 2
1 2 3 4 5

: : : :

: : : :

S S S S S

ext ext ext ext ext

P P P P P

F F F F F

v v v v v





： ： ： ：

(15)

The formula is applied to Fig. 4, and the proportional
constant is selected by the visualization effect. The
contribution lies in providing the method to select
representative energy modes (see Movie S6). Additional
information regarding the devices can be found in the
Supplementary Materials and movies.

b. Data collection
The participants were individually seated in a comfortable

chair in front of a table and were asked to place left hands on
the table and watch the LCD monitor. A spongy cushion
supported the arm with EMG electrodes, and the fingers were
fixed in the fixed device. All subjects participated in the data
collection and were included in off-line analyses. Besides,
the EMG signals from subject 10 are contaminated with
noise due to electrode shifts [28] and one lift-off electrode
[29] intentionally. The subject was tasked with moving
virtual fingers simultaneously to achieve the target gestures
(contain ten energy modes in Movie S6). The task consisted
of the target movements of five-fingers, single-finger, two-
fingers, and three-fingers flexion and extension
simultaneously.

3.2.3 Online experiment stages.

The interface mainly originates from the adaptive
mechanism of fingers in life, so the experimental design to
prove the validity should regard activities of daily living
(ADLs) as a reference. The verification is based on three
aspects: (1) decoding untrained configurations, (2) decoding
the amount of single-finger energy, and (3) real-time control
of single-finger energy.

After training, some energy models using artificial neural
network (ANN) learning method was obtained (see Data
analysis part). We performed the following experiments
using these models.

a.Experiment 1: the expression of unlearned continuous
hand motions

Attribute Condition

Prepared models (1) Models with non-ICA
(2) Models with ICA

hand (1) Trained hand
(2) Untrained hand

Drive system Virtual hand
With the evolution of limb in humans, hands have

developed into a highly sophisticated system used for
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manipulative activities—tool use, preparing, and eating food
[24, 31]. Today, as a result of cultural pressure, the
complexity of the human hand motions has increased
tremendously. Some tasks require different hand motions,
such as turning a door handle or grabbing a car key. Other
tasks require a more differentiated role for each finger, such
as sewing, clicking the keyboard, playing musical
instruments.

Some myoelectric interface implements the classification
of many hand motions depending on large training datasets
of target motions, resulting in an increased burden on users
[11, 18]. We, therefore, sought to implement the expression
of multiple unlearned hand motions by our energy-based
interface only using a few energy modes.

To assess the benefit, we asked participants to perform
these hand tasks in figure 5e as faster as possible from figure
5e1 to figure 5e13, continuously rather than individually.
Referring to the literature [32] and considering the adaptive
adjustment in ADLs, we examined two outcome measures:
completion rate and completion time. Trial failure was
defined as the participant voluntarily gave up the trail,
analogous to give up manual tasks that use the prosthetic
hand in ADLs.

Six subjects (subject 5,6,7,8,9,10) participated in this
experiment. For this experiment, a total of 4 different
experimental conditions were examined (Table S1 and Fig.
5). Tests under each condition were performed five times.
We first test the trained hand and later test the untrained hand,
and alternately test the algorithm with ICA and without for
each hand. Additionally, for the trained hand test, we did not
re‐position the electrodes relative to the training phase, and
for the untrained hand test, we re‐positioned the electrodes.
Also, for normalized EMG reducing individual differences,
at the beginning of the experiment, we asked participants to
flex and extend their hands and fingers to try maximum
contractions for the muscles in the forearm.
b. Experiment 2: the amount of single finger energy

Attribute Condition

Prepared models Models with ICA

hand (1) Trained hand
(2) Untrained hand

Drive system Bionic hand
When manipulating objects, our native hands are good at

exerting just exactly enough fingertip force on it [33]. For
example, while the object is light and “ fragile”, such as a
grape, our hands manipulate a “gentle” enough pinch not to
cause any damage; while the object is heavy and slippery,
such as a hammer, our hands can exert just enough pressure
on an object to avoid slipping free from a stable grasp [34].
Some tests of manual dexterity do few benefits from force

sensitivity — no penalty is incurred for exerting too much

force on an object, such as the Box and Blocks Test and
Action Research Arm Test. However, many tasks in
activities of daily living (ADLs) are highly dependent on
force sensitivity. In our test, we, therefore, designed the
experiment in which prick suspended balloon with a needle.
The balloon is “fragile” and “breaks up” if exerted finger
energy too much, while the balloon is “suspended” and “slips
away” if applied finger energy is too little.
To test whether the energy-based interface distinguishes

the amount of finger energy, we had the participant
repeatedly perform these selected hand motions by
controlling a bionic hand whose fingertips were fitted with
steel needles on the premise of ensuring breaking/non-
breaking the balloon (Fig. 6e and Movie S4).
Five subjects (subject 5,6,7,8,9) participated in this

experiment. For this experiment, a total of 4 different
experimental conditions were examined (Table S2 and Fig.
6). Tests under each condition were performed ten times. We
first test the trained hand and later test the untrained hand,
and alternately test the experiment with breaking or non-
breaking the balloon. When the participant was asked to
perform the selected hand motion without breaking the
balloon, trial failure was defined as “breaking” the balloon or
not accomplishing the selected gesture. When the participant
was asked to perform the selected hand motion with breaking
the balloon, trial failure was defined as “non-breaking” the
balloon or not accomplishing the selected gesture.

Additionally, the perimeter of the balloon is was about 66
cm, and the length of the hanging rope is about 7 cm. The
experimental balloons were counterbalanced to reduce
quality effects. Each balloon is filled with 36 grams of
plasticine (Fig. S5).

b. Experiment 3: the control of single finger energy in
real-time

Attribute Condition
Prepared models Models with ICA

hand (1) Trained hand
(2) Untrained hand

Drive system Bionic hand
Our native hands were exquisitely proficient at flexing the

finger a just enough position and perform manual tasks
precisely—e.g., combing hair or applying lipstick, depending
on controlling finger energy in real-time [24]. To display
noticeable results when exerting too much energy, we
developed a closed-loop task punching a hole in the
plasticine (~1mm thickness) attached to the fixed balloon
with steel needles (Fig. 7e and Movie S5). Concretely, we
had the participant repeatedly punch a hole in the plasticine
(~1mm thickness) attached to the fixed balloon by using the
index, middle and ring fingers, while not breaking the
balloon.
Five subjects (Subject 5,6,7,8,9) participated in this

experiment. For this experiment, both hands and selected
fingers were examined (Table S3 and Fig. 7). Tests under
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each condition were performed ten times. Success failure
was defined as “punching” a hole with the selected finger
under the unbroken balloon in 30 seconds (Fig. 7e and movie
S5).

3.3 Data analysis

The formal scheme for the analysis of the EMG signals for
the model: preprocessing steps, feature extraction, and the
learning of models for EMG features and five-fingers energy
features.

3.3.1 Data processing. 
This preprocessing step included two further

preprocessing steps. During EMG recording, 16-channel
EMG data has been band-pass filtered from 10 Hz to 450 Hz
and notch filtered of 50 Hz to remove movement artifacts,
high-frequency noise, and power line noise and its harmonics
[35]. Firstly, by considering the clinical relevance of using

single-differential EMG, the EMG data of 16-channels were
further processed to produce 8 bipolar channels by
subtracting each pair of adjacent channels along the muscle
fibers as they are more tolerant of noise than monopolar ones
[36]. Additionally, after the first step, ICA can be selected. In
order to reduce the output variable dimensions, the finger
power of one finger was calculated as the pressure of finger
pulp minus the pressure of the finger dorsum. Finally, the
power data of 10-channels were processed to 5-channels
wherein the signs of the power represented the flexure and
extension of fingers, and the absolute values of the power
represented the magnitude of power. Secondly, a 200 ms
sliding window with a 50 ms overlap was used to down-
sampled to 6.67 Hz due to the difference in the sampling
frequency between the EMG data and power data. The EMG
data in the sliding window were prepared for feature
extraction. The power data was filtered using a moving
average window to improve movement smoothness towards
online control. (more information in Supplementary

Fig. 5. Energy-based interface implements the expression of unlearned hand motions. To test the expression of multiple hand motions based on fundamental
energy mode, we had the participant repeatedly sequential perform these selected hand motions as faster as possible (repeated 5 times under each condition).
(a) The completion results of normal participants (subject 5-9). (b) The completion result of the participants whose EMG signals were contaminated with
noise in training stage (subject 10). (c) Differences among participants in completion time (subject 5-9). (d) Faster with the number of operations. (e)
Selected hand motions based on fundamental energy mode. [Note that, one continuous energy mode can adaptively extend to unlearned multiple motions or
forces according to the task itself (e.g., mechanical coupling of task and physiological coupling of five-fingers)—e.g., the same energy model of e3 and e7;
The unlearned energy mode can be expressed by fundamental energy mode—e.g., e12](In terms of motions, unlearned motions includes e3, e4, e5, e6, e7,
e12, and e13). ��u expresses the kinetic energy of the u -th finger, while ��u expresses the potential energy of the u -th finger. *p< 0.05, **p< 0.01. Data show
means ± SD.
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Materials)

3.3.2 Feature extraction. 
The fundamental purpose of feature extraction is to

emphasize the critical information in the recording signal
while rejecting noise and irrelevant data. We chose two
groups.
Over the past two decades, some EMG features have been

widely used in research and clinical practice. In this study,
six time-domain features and two frequency-domain features
typically used for myoelectric interfaces [35, 36] were
extracted from each EMG channel in the 200 ms sliding
windows producing a set of 64 EMG features (8 features×8
channels). [E-T: Mean of absolute values, Variance,
Waveform Length, Root-mean-square value, Willison
Amplitude (WAMP), Zero crossing (ZC), Median Frequency
(MDF), and Mean Frequency (MNF)]
Additionally, the EMG amplitude is a simple and useful

feature, as evidenced by commercial prostheses [10]. To
further improve the robustness to noise distinguishable by
frequency band, we also extract the frequency-domain power
(F-P) as features with a sample short-time Fourier transform,
similar to amplitude in the different frequency band (Fig. S4),
which produces a set of 88 EMG features (11 features×8
channels).

3.3.3 Learning methods. 
As two examples of learning methods, we explore two

learning methods. Firstly, a multi-layer feedforward ANN
was used to learn a mapping between the EMG signals and
the five-fingers energy. The functional relationship predicted
by the ANN can be written as:

�ݎ�� � � �� � � ,� (13)
Where �ݎ�� � ∈ ��×1 are the predicted five-fingers

power, � � ∈ �6�×1 (E-T) or � � ∈ �88×1 (F-P) represent
the EMG features, � are the weight parameters which
represent the links between the nodes or neurons. The
network is made up of an input layer, a hidden layer with a
tanh activation function (the number of neurons: 10), and a
single linear output layer. The training algorithm was
Levenberg–Marquardt back-propagation. Secondly, the
excellent performance of the support vector machine (SVM)
applied to regression problems is known. SVM regression is
statistical learning machines [37] that build an approximated
map between samples drawn from an input space (under the
standard i.i.d. sampling hypothesis) and a set of real value.
As is standard, we use the radial basis function for regression.

3.3.4 Operational experiments. 
For all operational experiments, as an example, we used a

200 ms sliding window to extract F-P features and the ANN
learning method to predict the energy of five-fingers online,
and the online instruction update rate was kept at 200 Hz
(5ms interval).

4. Results

4.1 Experiment 1: energy-based interface achieves the
expression of unlearned continuous hand motions

All normal participants completed tasks successfully (100
of 100 times from subject 5-9; binomial test, p < 0.0001;
Fig. 5a and Movie S1-3).
The energy-based interface requires the sensor signals

from one hand, such as in the case of unilateral amputees, in
training stages [38]. To test the performance of the proposed
interface in the untrained hand, we had the participant
respectively perform the above tasks with the trained hand or
the untrained hand. As might be expected, given the
similarity of both hands of one man in neuromuscular
patterns, participants implement these motions not
significantly slower with the untrained hand than the trained
hand through either ICA (81.96±8.95 s versus 79.47±9.15 s;
paired � test, � = 0.210; Fig. 4a) or non-ICA algorithms
(80.10±11.48 s versus 78.27±9.80 s; paired � test, � = 0.435;
Fig. 5a ). However, there were significant differences among
participants (one-way ANOVA test, � <0.01; Fig. 5c), and it
becomes significantly faster with the number of operations
(correlation analysis, r=-0.445, � <0.01; Fig. 5d).
Additionally, the lack of robustness of myoelectric control

approaches is one of the reasons for the limited transfer into
clinical and commercial applications [39]. To test whether
the bionic interface that includes the ICA matrix was
resistant to the interference of noise, we had subject 10,
respectively, perform the above tasks with the algorithms of
non-ICA or ICA. We found that subject 10 was able to
perform these tasks with the untrained hand through ICA
algorithms (5 of 5 times; binomial test, � < 0.0001; Fig. 5b),
and as likely fast as with the trained hand (75.73 ± 9.69 s
versus 77.90 ± 4.69 s; paired � test, � = 0.621; Fig. 5b ).
However, subject 10 might be failed to achieve these tasks
with the untrained hand through non-ICA algorithms
(success times:1 of 5 times; binomial test, � =0.375; Fig. 5b).
The ICA that mimics the muscle synergy of the
neuromuscular system in the training stage increased the
robustness of the myoelectric interface [Although
participants implement these motions not significantly faster
with ICA than without (untrained hand:81.86±8.95 s versus
80.10±11.48 s; paired � test, � = 0.429; Fig. 5a)].

4.2 Experiment 2: energy-based interface controls the
amount of single finger energy

The participant was able to exert just enough finger energy
significantly better than chance (breaking: 366 of 500 trials;
binomial test, � < 0.0001; non-breaking: 413 of 500 trials;
binomial test, � < 0.0001; Fig. 6a). Besides, there was no
significant difference between untrained hand and trained
hand in the control of the amount of finger energy (non-
breaking: 8.20�1.19 times versus 8.32�1.11 times; paired �
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test, � =0.671; breaking: 7.16�0.85 times versus 7.48�1.08
times; paired � test, � =0.148; Fig. 6a).
Contrary to expectation, it seemed not easy to prick

suspended balloons with a needle relative to non-breaking
counterpart (trained hand: 7.48�1.08 times versus 8.32�1.11
times; paired � test, � <0.01; untrained hand: 7.16� 0.85
times versus 8.20�1.19 times; paired � test, � <0.01; Fig. 6a).
One possibility, then, was the effect of balloons themselves.
Thus, taking into consideration that a balloon is either
breakable or hard to break, we explored the property of
finger energy sensitivity by incorporating these two trials
(break and non-break) for reducing or eliminating potential
confound of balloons. We found that there might be
significant differences across fingers and subjects at the
control of the amount of finger energy (Two-way ANOVA
test, fingers: � <0.05; Fig. 6b; subjects: � <0.05; Fig. 6c),
and different subjects might be adept in different fingers
(Two-way ANOVA test, � <0.05; Fig. 6d).

4.3 Experiment 3: energy-based interface controls
single finger energy in real-time

The participant punched a hole without breaking balloon
at over 95% success rate (97.67�5.04 % versus 95 %; one-
sample � test, � <0.01; Fig. 7a). Furthermore, success rates
with untrained hand and trained hand showed no significant
difference in real-time, no matter which fingers were used
(index finger: 100�0.00 % versus 98�4.47 %; paired � test,
� =0.374; middle finger: 96� 5.48 % versus 98� 4.47 %;
paired � test, � =0.621; ring finger: 96 � 8.94 % versus
98�4.47 %; paired � test, � =0.704; Fig. 7a).

4.4 Off-line analysis

In the studies described above, the energy-based interface
has been shown to confer functional benefits through three
sets of operational experiments. Our purpose for this analysis
was to explore the characteristics of the energy-based
interface further and explain why the interface shows great
functional benefits. Two performance indices were chosen to
evaluate the accuracy of the estimation in each finger energy.
Pearson’s correlation coefficient (R) was calculated to assess
the total variation between the estimated and actual energy,
while the root-mean-square error (RMSE) to describe the
total residual error.

4.4.1 Energy-based interface achieves a continuous
estimation of finger energy in real-time. 
Even an element of EMG datasets exists massive

properties, the properties that similar in the group, but
different among groups should be selected as features for a
better model, and learning methods should be adopted to
distinguish these groups through features as far as possible.
To the extent, the fitting model is the classification model
whose classes is infinite and continuous.
To assess which combination of features and learning

methods could apply to the energy-based interface, a ten-fold
cross-validation procedure was used to evaluate the overall
statistical performance of both different features (E-T and F-
P) and learning methods (ANN and SVM). Figure 8 shows
the continuous estimation results from 10 subjects for 10 test
trials. The signs of value represent the flexion or extension of
fingers, and the absolute values represent the amount of
finger energy. As an example, the equivalent state of kinetic
energy and potential energy is shown from the data of subject
4. Figure S6 shows the confusion matrix for the estimation of
the finger energy of subject 4. Although the confusion matrix

Fig. 6. Energy-based interface controls the amount of finger energy on the tasks pricking suspended balloons with a steel needle. To test whether the energy-
based interface distinguishes the amount of finger energy, we had the participant repeatedly perform these selected hand motions by controlling a bionic
hand whose fingertips were fitted with steel needles, while ensuring breaking/non-breaking the balloon (repeated 10 times under each condition; subject 5-
9). (a) Participants could exert just enough finger energy on a balloon. (b) Differences among fingers. (c) Differences among subjects. (d) Interaction effect
between subjects and fingers. (E) Selected hand tasks according to ADLs. *p< 0.05, **p< 0.01. Data show means ± SD.



Journal XX (XXXX) XXXXXX Author et al

11

shows some deviations, the user can correct the deviations in
real-time, similar to the native hand [40, 41]. Furthermore,
we found ANN outperformed SVM, whether in the total
variation (0.699 � 0.124 versus 0.653 � 0.125; Three-way
ANOVA test, � <0.01; Fig. S7C) or the total residual error
(0.209�0.040 versus 0.223�0.041; Three-way ANOVA test,
� <0.01; Fig. S7F). Also, there are significant differences
across fingers (R: Three-way ANOVA test, � <0.01; Fig.
S7B. RMSE: Three-way ANOVA test, � <0.01; Fig. S7E).
The lowly individuated fingers (ring and middle fingers) are
likely performances better in the total variation [2].
Another way to assess the trait of the energy-based

interface relative to classification-based is to characterize the
accuracy of the estimation in a certain range of the amount of
energy [13]. To test this extraordinary capability for single
finger energy, we divided the amount of energy from zero to
maximum voluntary energy (MVE) into 5 ranges
(normalized energy; Fig. 9a and Fig. 9c). The among ranges
difference was significant, whether in the total variation
(One-way ANOVA test, � <0.01; Fig. 9a) or the total
residual error [One-way ANOVA test, �
<0.01(logarithm of RMSE); Fig. 9a]. Also, the total residual
error increase with the improvement in energy (correlation
analysis, r=0.961, � <0.01; Fig. 9a ), similar to the native
hand [40, 41]. More interestingly, the distribution of relative
energy (ratio of voluntary energy to MVE for the finger) is
likely consistent with the usage frequency of the finger
(Fig.9c). For instance, unconsciously exerting higher relative
energy in the finger might signify more frequent use in
ADLs. Furthermore, the model estimates the finger energy
better for finger flexion than finger extension in total
variation (the whole estimated energy relative to the whole
actual energy rather than the statistics according to ten
tests， 0.622� 0.034 versus 0.495� 0.041; paired � test, �
<0.01; Fig. 9b), presumably reflecting better performances in

grabbing and pinching.

4.4.2 The generalization of across subjects is
explored. 
Previous studies of muscle synergy for wrist demonstrated

that humans have a similar anatomical structure and synergy
[42, 43]. To assess the degree to whether the energy-based
interface applies to unlearned subjects, we used another ten-
fold cross-validation procedure whose testing datasets from
one subject totally while training datasets from other subjects,
relative to the previous test. Firstly, we found there are
significant differences among subjects, whether in unlearned
subjects (One-way ANOVA test, R: � <0.01; Fig. S8A;
RMSE: � <0.01; Fig. S8F) or “learned” subject of the
previous procedure (One-way ANOVA test; R:� <0.01; Fig.
S8A. RMSE: � <0.01; Fig. S8F). Secondly, the “learned”
subject outperformed the unlearned subject (paired � test;
R:0.697� 0.008 versus 0.680� 0.007, � <0.01; Fig. S8D.
RMSE: 0.215� 0.041 versus 0.230� 0.047, � <0.01; Fig.
S8I), which presumably reflecting personalized anatomical
structure [42]. Furthermore, as expected, when the training

Fig. 7. Energy-based interface controls the single finger energy in real-time
on the tasks punching a hole with a steel needle. To assess the degree to
control the finger energy in real-time, we had the participant repeatedly punch
a hole in the plasticine (~1mm thickness) attached to the fixed balloon by
using single fingers, while not breaking the balloon (repeated 10 times under
each condition; subject 5-9). (a) Participants could flex the finger a just
enough position to punch a hole on the plasticine. (b) Example of tasks for the
index, middle and ring fingers. Data show means ± SD.

Fig. 8. Test data for ten subjects. Normalized five-fingers energy is
shown in red solid lines, while the estimated results of the ANN and SVM
method are shown in blue and green, respectively. The estimated energy of
F-P features is shown in solid lines, and the energy of E-T features are shown
in dotted lines. The signs of value represent the flexure or extension of
fingers, and the absolute values represent the amount of finger energy. The
data for subject 4, as an example, show the equivalent state of kinetic energy
and potential energy. Besides, the blue arrows and shade bars represents the
flexure of fingers, the green arrows and shade bars represents the extension
of fingers, while the pink arrows and shade bars represent the coupled
motion of fingers. � expresses the total energy of fingers,�� expresses the
kinetic energy of fingers, and �� expresses the potential energy of fingers.
Note that although some fingers remain stationary by overcoming the
coupling, their muscle-energy modes are the same as in some hand motion.
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datasets did not contain the data of the testing subject,
performance degradation in the subject contaminated with
noise is more noticeable (Fig. S8C and Fig. S8H); we also
observed a significant increase in the coefficient of variation
(paired � test; R:0.044�0.009 versus 0.092�0.021, � <0.01;
Fig. S8E. RMSE: 0.007�0.004 versus 0.024�0.013, �<0.01;
Fig. S8J), highlighting the huge difference in performance
across features and across learning methods for subject
contaminated with noise.

4.4.3 ICA mimicking muscle synergy improves the
robustness of the energy-based interface. 
In the studies described above, when trained with the

subject contaminated with noise, the model shows
performance better with ICA than without for standard data
(Fig. 5b), presumably relying on information separation
capacity of ICA (Fig.4b) [44]. Furthermore, ICA has been
applied to extract synergies from the muscles of frogs [26]
and rats [27]. To further assess whether the ICA model
trained with the standard data applies to the subject
contaminated with noise, we rebuilt a model using the
synergy matrix decomposed by standard data from subject 1-
9. Also, the model evaluation was accomplished through 10-
fold cross-validation whose datasets divided by subjects. We
found the model with ICA likely outperformed the previous
model for the subject contaminated with noise (paired � test;
R: 0.286� 0.148 versus 0.257� 0.171, � =0.057; RMSE:
0.274 � 0.052 versus 0.290 � 0.060, � <0.01; Fig. S9).
However, the model with ICA showed no advantage in
normal conditions (Fig. S9B and Fig. S9D). Briefly, the

major advantage of the ICA model lies in the capacity of
reducing or eliminating the noise due to myoelectric
prosthesis “aging” with time and use, such as failure
electrodes and deformation, which increase the service life of
the myoelectric prosthesis through recalibration (Fig.4b and
Fig. 5b).

5. Discussion and conclusion

In the present study, we demonstrate that the dynamic
energy model that decodes continuous hand actions with
force information by training small amounts of sEMG data.
This theory imitates the self-adapting mechanism to the
coupling of the five-fingers in actual motion in the actual
task. For example, to gesture “V” in Fig. 1, according to real-
time feedback, humans usually unconsciously and adaptively
control thumb to press ring and little fingers (translate the
energy of these two fingers into potential energy). Thus, the
experimental design to prove the validity should regard
ADLs as a reference.
Experiment 1: First of all, performed with a certain task

such as turning a door handle or grabbing a car key, the
user must be able to enforce the correct grasping motions.
Considering continuous automatical adjusting of the

human hand in ADLs, we have participants perform a series
of uninterrupted actions. The results show that few
continuous energy modes can adaptively combine into
multiple motions or forces according to the task itself (e.g.,
mechanical coupling of the task and physiological coupling
of five-fingers [1, 2]), according to real-time feedback,
similar to the human hand [40, 41]. Also, some unlearned

Fig. 9. The amount of five-fingers energy. To explore this extraordinary capability for a single finger in the amount of energy relative to the classification
model, firstly, we divided the amount of energy from zero to maximum voluntary energy (MVE) into 5 ranges, and (a) explored the performance within each
range; secondly, (c) we counted the distribution of these ranges for each finger, presumably consistent with the usage frequency of the finger in ADLs.
Furthermore, for the performances in grabbing and pinching, (b) we also explored the accuracy according to the range of finger flexion and extension. **p<
0.01. Data show means ± SD.



Journal XX (XXXX) XXXXXX Author et al

13

energy mode can be expressed by learned energy mode.
Besides, the correlation coefficients of off-line analysis are
relatively low compared to previous researches in the wrist
due to less training data and more DOFs [14-16]. However,
because the method is designed by imitating mechanical
coupling and physiological coupling of five-fingers in
humans, regarding the whole manual task as an energy
transfer, subjects can adaptively adjust the energy mode in
real-time for the operational experiments, and results are
excellent.
Experiment 2: Second, the amount of energy involved in

the grasp must be controlled so that it is possible to grab,
e.g., both a hammer without letting it slip and an egg
without breaking it.
Use small energy to complete finger flexion to ensure that

the balloon was not broken by the needle of a fingertip, or
use abundant energy to complete finger flexion to ensure that
the balloon was broken without moving away. Considering
the influence of the quality of the balloon, we test both
conditions for each balloon. Through overall consideration of
both conditions, we prove that the presented model can
achieve exerting just enough finger energy on “fragile” or
“heavy” objects.
Experiment 3: Third, real-time control of single-finger

energy is paramount so that it is possible to perform
manual tasks precisely, e.g., applying lipstick.
Control finger energy in real-time to ensure punching a

hole in the plasticine (~1mm thickness) attached to the fixed
balloon without breaking the balloon. In actual operation, for
our model, this task was easy to complete, and the success
rate was over 95%.
Overall, the study involved the main lines of research

about the myoelectric interface. One line of research is to
recognizing hand gestures based on pattern recognition.
These related works focus on improving classification
accuracy and the number of discriminated motions [11-13].
With adequately designed feature extraction and classifier, it
is possible to achieve extremely high classification
accuracies ( 90–95%) on a large repertoire of hand motions
(21 classes) [12]. In 2019, a combined hand-motions
viewpoint emerged [13]. The literature [13] showed some
unlearned combined motions could be expressed using only
learned single motions. However, this is a combination of
discrete motions. Here, inheriting previous work, we propose
a different way to extend hand tasks using continuous energy
modes. Some different hand movements can be divided into
the same energy modes from the five-fingers level. In actual
operation, the user can accomplish a mass of hand
movements by adjusting a few continuous energy modes
adaptively according to feedback. This means that, for later
research about sEMG gesture recognition, one may consider
tagging the training data by energy mode instead of gesture.
Another line of research is to estimate a proportional

activation of each DOF. These related works mainly focus on
the wrist or hand close and open [15, 39, 43, 45, 46].

However, the estimation of forces and kinematics of single
finger has rarely been investigated. Unlike the wrist, both
mechanical coupling and neuromuscular control limit to
finger independence [1, 2]. For instance, active movement at
one finger may lead to some movement at another finger.
Previous approaches that estimate a proportional activation
for each DOF might not apply to five-fingers unless training
using vast amounts of data. Our work explored the five-
fingers as as a whole and divided massive manual tasks into
several specific energy modes in terms of energy, thus, this
problem was overcome.

In terms of signal selection and processing, a myoelectric
signal comprises two states: a transient state emanating from
a burst of fibers, as a muscle goes from rest to a voluntary
contraction level, and a steady-state emanating during a
consistently maintained contraction in a muscle [7]. The
latter component dwarfs the former in robustness [47], and
the energy-based control used the latter one. Besides, as with
previous studies [20-23], the present experiments explored
ICA to extract muscle synergy. Compared to directly use the
sEMG features as the input of ANN, the model with ICA
has shown no significant advantage inaccuracy. The machine
learning methods, such as ANNs, were able to learn the
mapping relationship consistent with ICA. However, before
learning the relationship by machine learning methods, ICA
could reduce or eliminate the noise of failure electrodes and
unstable connections via recalibration (removing the
interference-independent components). Such capacity may
prove more and more valuable with long-term use. With the
advent of more and more prosthetic hands, it may become an
effective means of increasing the service life of commercial
prostheses.
The main limitation of the current study is that no amputee

was recruited. However, in previous studies, a large number
of amputees were similarly demonstrated to the non-disabled
subjects in muscle activation [15, 43], and it is not likely that
the motor learning ability of the amputees would be greatly
affected by the limb deficiency. Besides, our operational
experiments showed that the performance degradation for
using for the untrained hand was not significant when the
model was trained by the contralateral limb of the same
person. Of course, we exclude the amputee in muscular
atrophy or non-existent measurable muscles for the
application scope of the proposed method. The present study
emphasizes the concept of hand action division by energy
model, and the user is not limited to the amputee, e. g.,
neurorehabilitation after stroke [48-50].
Amputees have expressed a desire for intuitive

myoelectric control [51]. The adaptive property of the
energy-based interface underlines the importance of the
capacity of the user to interact with the machine and learn a
new task in which the user is within the loop and can adapt to
the control system. Before concluding, it is worth
mentioning that this study showed that, for later research
about sEMG gesture recognition, one might consider tagging
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the training data by energy mode instead of gesture to reduce
training complexity.
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