
P
os
te
d
on

6
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
22
49
25
7.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

C
O
M
M
.2
02
0.
29
94
19
1

Modeling of Viral Aerosol Transmission and Detection

Maryam Khalid 1, Osama Amin 2, Sajid Ahmed 1, Basem Shihada 1, and Mohamed-Slim
Alouini 1

1Affiliation not available
2KAUST

October 30, 2023

1



1

Modeling of Viral Aerosol Transmission and

Detection

Maryam Khalid, Osama Amin, Sajid Ahmed, Basem Shihada and

Mohamed-Slim Alouini

Abstract

In this paper, we propose studying the disease spread mechanism in the atmosphere as an engineering

problem. Aerosol transmission is the most significant mode among the viral transmission mechanisms

that do not include physical contact, where airflows carry virus-laden droplets over long distances.

Throughout this work, we study the transport of these droplets as a molecular communication problem,

where one has no control over the transmission source, but a robust receiver can be designed using

bio-sensors. To this end, we present a complete system model and derive an end-to-end mathematical

model for the transmission channel under certain constraints and boundary conditions. We derive the

system response for both continuous sources such as breathing and jet or impulsive sources such as

coughing and sneezing. In addition to transmitter and channel, we assumed a receiver architecture

composed of air sampler and Silicon Nanowire field-effect transistor. Then, we formulate a detection

problem to maximize the likelihood decision rule and minimize the corresponding missed detection

probability. Finally, we present several numerical results to observe the impact of parameters that affect

the performance and justify the feasibility of the proposed setup in related applications.

Index Terms

Communication through breath, aerosol transmission, virus detection, molecular communication,

nano-networks, channel modeling, molecular receiver, advection-diffusion channel.

M. Khalid is with Electrical and Computer Engineering Department, Rice University, Houston, TX 77005 USA. E-mail :

maryam.khalid@rice.edu.

O. Amin, B. Shihada and M.-S. Alouini are with CEMSE Division, King Abdullah University of Science and Technology

(KAUST), Thuwal, Makkah Province, Saudi Arabia. E-mail: {osama.amin, basem.shihada, slim.alouini}@kaust.edu.sa.

S. Ahmed is with Electrical Engineering Department, Information Technology University, Lahore 54000, Pakistan. E-mail:

sajid.ahmed@itu.edu.pk.



2

I. INTRODUCTION

Molecuar communication (MC) is an emerging research area that focuses on the commu-

nication processes involving biological entities. Unlike conventional wireless communication,

where electromagnetic signals are encoded and transmitted to share information, MC uses

molecules as signaling sources. Although this phenomenon is a naturally existing communication

mechanism in most living beings, it is only recently that it gained attention in the research

community. This interest is attributed to the recent advancements in nanotechnology and the

advent of nanoscale biosensors or nanomachines that have given a boost to research in this

field [1]. The existing nanomachines are constrained in their capabilities due to their small size,

limited energy resources, memory and processing capacity. Thus, in order to perform complex

operations, multiple nanomachines need to cooperate together and this is where the concept of

MC plays an essential role. Since links between nanomachines can not be established through

existing electromagnetic or optical technology, MC provides this connection that allows them

to form a cooperating network of nanomachines [2]. Research in this domain also paves way

for development of artificial networks that can imitate biological networks inside or outside

the human body. This will not only help in understanding the working mechanism of complex

biological systems such as brain, but also help provide cure for several diseases and disorders that

occur due to communication links’ malfunction inside the body. [3]. Thus, it is envisioned that

these advancements can play a vital role in biomedical, environmental and manufacturing appli-

cations [1]. Some recently explored biomedical applications include neural network modeling,

development of ICT-inspired treatments [3] and intelligent drug delivery [4].

MC has been studied from the perspective of not only biomedical applications but also from

communications point of view that focuses on the design of efficient receivers, modulation

schemes, coding theory and performance analysis, etc. [5]. It must be noted that the existing

solutions for conventional communication can not be simply replicated to MC setups due to

the complex nature of the process. The challenges in MC appear in the form of non-stationary

signal-dependent noise, range limitations that allow nanomachines to communicate over distances

not more than few micrometers, large propagation delays, issues concerning chemical reactivity

of molecules resulting in high loss rate, limited memory, power constraints and compatibility

between bio-nanomachines [1]. These challenges significantly define the current and future

research directions in this area. Furthermore, the fact that these nano-sized sensing bodies allow
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interaction with biological entities such as bacteria have also opened several new research av-

enues. For instance, instead of artificially produced molecules and chemicals, chemicals produced

by bacteria serve as messenger for communication between bacterial colonies where receptor

bacteria produces light in response to received molecules [6]. In addition to micro and macro-

level applications, researchers have also put efforts in understanding and replicating the existing

biological processes/systems and interfacing with them.

In this work, we propose a new dimension in MC that focuses on the spread of infections

and diseases via aerosols. Viral aerosols are virus-laden droplets that are suspended in air for

prolonged periods of time [7]. These particles are dispersed in the surrounding because of

molecular diffusion and are carried away by wind and this transport is called aerosol transmission.

This transmission of viruses leads to disease spread on a very large scale with a massive impact

on human population. It has been shown that aerosol transmission is an important mode of

transmission for several viruses such as influeza A virus [8], severe acute respiratory syndrome

(SARS) virus [9], lyssavirus [10], rabies [11] and many other pandemics. Unlike the traditional

research in MC, for this particular context the message-bearing entities can not be modulated

and the message can not be embedded as desired. However, we believe that the virus-laden

exhaled air from an infected person can serve as a source of useful information and we need

to design our receiver in order to retrieve this information. The significance of this proposed

research dimension is even more highlighted in high human population scenarios.

It is common to observe Mass gatherings when people get together for sports, recreational,

social or religious activities. During these gatherings, the large movement of people from different

regions poses high risk of disease transmission and transport of emerging and reemerging diseases

to the gathering place. The increase in likelihood of disease transmission during Mass gatherings

is reported in [12]–[15]. The detection system proposed in this work can help deal with this

problem. If an efficient detection setup is deployed at the entry point of gathering events like

railways stations and airports and the likely hosts of diseases and endemics are spotted and treated

before they become part of the gathering, the spread of diseases can be significantly prevented.

Moreover, if accurate models for virus transport and its dynamics can be established, a blind

localization problem can be formulated that can prove helpful in identification of disease sources.

Thus, in order to be able take any preventive measures against disease spread, it is essential to

characterize and analyze the dynamics of virus transport as has been done in this work.

We want to highlight that our work is particularly relevant in the context of recent Coronavirus
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disease breakout (COVID-19). One of the main spread mechanism of this virus is through respi-

ratory droplets released when an infected person coughs or sneezes [16]. The highly contagious

nature of the disease and gaps in our knowledge about its transmissibility, survival duration in the

air and spread mechanisms are raising fears about it becoming a global pandemic. This gap can be

partly filled by studying the behavior of transmission channel through which the droplets travel.

Since person-to-person interaction is the main cause of its spread, there is a need for automated

machine-based diagnosis setup so that human involvement is minimized. The scale at which

control measures need to be taken also necessitate the deployment of such automated detection

infrastructure. This public health emergency requires detection and management of infected

individuals in mass gatherings and at points of entry such as international ports, airports and

ground crossings [16]. While different corona-detecting biosensors and kits are being developed

[17], concurrent research efforts should be carried out for their optimal deployment outside

laboratory-scale environments. We believe that the system proposed in this work is a good

starting point towards the integration of these biosensors in a macro-scale virus detection and

control infrastructure.

In general, the receiver design proposed in diffusion-based MC is inspired by biosensor

technology that aims to detect the presence of a particular biological entity as in [18]. However,

since MC receivers inherently integrate the biosensors in their functionality, MC receivers are

much more extensive and robust in their applications. The biosensors are limited to detection

of a particular entity only and do not go beyond to extract the information encoded in them

in the form of concentration, type, etc. as is the case with MC receivers. MC receivers aim

to quantify the information extracted by the biosensor and process them in such a way that

information beyond the binary detection can be derived. In addition, there are issues related to

the scalability of biosensor-based detection systems especially in macro-scale MC applications

such as the one proposed in this work. In general, the research on deployment of biosensors

in medicine and virology is limited to laboratory-scale systems. The huge differences between

laboratory environment and real-life outdoor environments resulting from physical factors such

as presence of wind, infrastructure, etc. discourage the deployment of such biosensors in disease

monitoring applications without further exploration and study. Thus, it is very essential that the

sensing technology should be complemented with data analysis and processing based on physical

domain knowledge. In this work, we not only deal with the aspect of information extraction but

also incorporate the effect of scalability to real-life environments by modeling the dynamics of
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physical aerosol channel.

The well-developed theory in estimation and detection, the presence of molecular receivers,

the existence of this phenomenon in nature and the rich set of tools and machinery in wireless

communication justifies the treatment of this disease detection problem as a communication

problem. Once the modeling process is complete and interface and analogies between this

problem and existing wireless communication problem are developed, the efficient set of tools

and analysis techniques can be easily deployed to realize systems with capabilities performance

unimaginable by biosensor-based approaches.

Being the first to study viral aerosol information retrieval in communication through breath

systems [19], we investigate the detection problem of a single virus released from an infected

human. To this end, we develop a mathematical analysis model of aerosol transmission and

detection in order to examine the range limitation of detecting virus. The main contributions of

our work are summarized as follows1,

• A new study dimension in MC is proposed, where virus spread through aerosol transmission

is studied as a MC problem.

• A virus detection system is formulated using a biosensor-based receiver architecture and an

end-to-end model for proposed setup is presented.

• A major part of this work has been dedicated to the modeling of wind-aided aerosol channel

that is crucial from the perspective of not only receiver design but also in the study of disease

spread. The channel model is derived considering transient analysis, frequency response and

steady-state conditions.

• The system performance is studied through numerical simulation scenarios in order to

understand the impact of different factors, where the performance is evaluated by studying

the probability of virus miss-detection.

The rest of the paper is organized in the following order: Section II provides a brief description

of proposed setup. System modeling is explained in detail and detection problem is formulated

in Section III. Modeling of aerosol transmission channel is provided in Section IV followed by

simulation and results in Section VI finally concluding the paper in Section VII.

Notations: As for the mathematical notations, we use the following symbols. The partial

derivative of the function f with respect to x, i.e, ∂f
∂x

, is represented by fx. Higher order derivatives

1A part of this work was accepted for presentation at IEEE International Conference on Communications [20].
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Fig. 1: Virus aerosol transmission system setup.

are represented by repetition of independent variable in subscript, for example ∂2f
∂x∂y

is represented

by fx,y. The x, y and z components of ~F are defined as F x, F y and F z, respectively. The Laplace

transform of a function f(x, y) with respect to x is represented by f̄ (x)(q, y). The two dimensional

Laplace transform is represented by ¯̄f (x,y)(q, r). ~F denotes that F is a vector and ∇ is the vector

differential operator. Thus, the divergence of ~F is expressed as ∇. ~F .

II. SYSTEM DESCRIPTION

In this section, we briefly describe the basic architecture of a single source viral aerosol

transmission system. The proposed system is composed of three major components. The first

one is the infected human who acts as a source of pathogen and in the rest of the paper, he or

she is referred to as the transmitter. The second component is the aerosol transmission channel

through which the virus travels. The transmission can be subjected to air-flow, i.e., artificial

wind. The third component is the receiver side that aims to retrieve information about the virus

and/or pathogen.

The respiratory tract of the infected person is loaded with virus-containing droplets. The

virus is emitted from the mouth through different mechanisms that include breathing, coughing

and sneezing. If we consider the instantaneous emission, coughing and sneezing release higher

droplets than breathing. However, as a process they are not very frequent compared to the normal

breathing which is a continuous process [21]. Thus, over the coarse of long time windows like a

few hours or so, coughing and sneezing account for smaller proportion of bioaerosols compared

to normal breathing [21].
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Once the aerosols are released into the air, they disperse in different directions because of

diffusion. To increase the transmission range, decrease the propagation delay and improve the

strength of received signal, we apply air flow that is directed towards the receiver side. It must

be noted that in real-life situations wind plays an important role in the spread of pathogens

and diseases and therefore, incorporating air flow brings our setup close to real-life systems.

Along with some other physical properties, the size of droplets determines the travel distance

of the pathogen. Aerosol transmission can be categorized into two types, airborne transmission

and droplet transmission. Airborne transmission is defined as transmission of aerosols with size

less than 5µm, which can travel for a large distance in order of meters [22], [23]. On the

other hand, droplet transmission refers to transmission of pathogen-laden droplet whose size is

usually greater than 5µm with shorter distance spreading [23]. Our focus in this paper is airborne

transmission.

Throughout this paper, we are interested in retrieving viral information from aerosols released

from the respiratory tract of infected humans which is depicted in Fig. 1. The experiment is

performed in an indoor environment where we can apply artificial airflow with a specific velocity

to drive the aerosols towards the detector. It must be noted that the experimental setup under

consideration is very close to real-life situation where wind is responsible for spread of viral

droplets. Thus, the models derived in this work can be deployed not only in bio-monitoring

applications but can also prove helpful in the qualitative and quantitative analysis of infection

transmission.

III. SYSTEM MODELING

The objective of this section is to analyze all blocks of system, shown in Fig. 2, separately.

The system is composed of a transmitter, followed by physical channel with additive noise and

finally the detector. In the following subsections, we provide the detailed mathematical modeling

of different system components.

A. Transmitter

As explained earlier, we assume that the infected human releases pathogens into the air through

his breath. The normal breathing of an adult occurs at rate of 12-16 breaths per minute [24],

which means that each breath takes no more than 4.98 seconds. Please note that compared to

wireless communication, the transmission achieved through chemical signaling is quiet slow and
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Fig. 2: System Block Diagram

it can take several minutes for the signal to reach the receiver placed few meters away. Thus,

the transmission process ensures that the time scale of this experiment is of the order of the

minutes. Since the time within breaths (or exhalation time specifically) is too small

relative to the coarse of experiment which is of the order of several minutes, the variations in

emission process due to exhalation can be averaged out and the process can be approximated as

a continuous and constant emission process. The emission rate might vary over time however we

expect the average rate to be constant atleast for the coarse of experiment (of the order of few

minutes). Although it is helpful if the variations in the emission rate can be incorporated in the

system design, it is hard to find any such deterministic or stochastic model that can explain these

variations in the literature. Most empirical studies that revolve around this subject are based on

collection of breath samples of length varying from few minutes (∼ 30 minutes) up to hours

and reporting the cumulative effect. It is not clear whether the variations in per-second emission

rate for the few minutes time windows can be evaluated with the current technology. Hence,

we model the input signal as a continuous process with constant average emission rate which is

equal to the average rate i.e Q g/sec.

It is important to note that although breathing can be assumed to be continuous, coughing

and sneezing as impulsive jet sources can not follow the same assumption. For modeling the

input signal, the duration of experiment or temporal characteristics of the application under

consideration are extremely important. For some applications such as understanding the dynamics

of diseases spread or detection in specific frameworks where only one person enters the room

and stays for long enough, the steady state response of the system is sufficient. However, for

applications where decisions are made based on data collected at fine-grained resolution, the

transient response is required. Since, the latter yields the system impulse response, we start

with transient analysis for jet sources in the next section extending it to the transient analysis for
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breathing and finally moving to the steady state response for breathing. For the rest of the system

blocks that include the noise and detection block, we focus on the steady state response only.

For transient analysis, the input is modeled differently to incorporate the dynamics of both, time

and space. At this point, we do not comment on the frequency of jet sources, their probability

to occur, time interval between successive sneezes and the duration of continuous coughing. We

consider a sneeze or single cough as a jet instantaneous source that emits Rs aerosols into the

air. If a person of height approximately H standing at location [0, 0, H] in Cartesian coordinate

space, sneezes/coughs at time t = 0, the source is modeled as,

Ss = Rsδ(x)δ(y)δ(z −H)δ(t). (1)

Similarly, while the person is breathing, he is continuously emitting aerosols with a certain flow

rate Rb. If the person has entered the room or experimental setup at time t = 0 and stands again

at the same location [0, 0, H], the source is modeled as,

Sb = Rbδ(x)δ(y)δ(z −H)u(t). (2)

Since a person who sneezes is also breathing, both continuous and jet sources should be included

in the definition of input signal. Thus, we assume both these emissions to be independent of

each other and define the final input signal to be,

St = Ss + Sb. (3)

If there are multiple people present in the room at different locations, their independence

from each other results in simple addition of all those emissions to represent the final input

signal. Along with the emission rate, the aerosol droplets’ size also affects the communication

performance. According to the study in [25], it has been observed that the normal human

breathing results in larger fraction of droplets compared to coughing and sneezing, and the

droplet sizes are below 1µm. These micro-sized droplets also have a high tendency to remain

suspended in the atmosphere for a long period. Thus, this work circumscribes aerosols that travel

distances of the order of meters and remain suspended in air for more than several minutes which

is the coarse of our simulation experiment.

In this work, our major focus is on the breathing only as it is a permanent source of aerosol

transmission compared to coughing and sneezing. Moreover, it is not practical to wait for the

infected person to cough or sneeze to begin the experiment of detecting and tracking the infection.
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However, it is still worthwhile to analyze the performance of coughing and sneezing mechanisms

and therefore we derive the transient analysis of aerosol channel as well.

B. Molecular Receiver

We propose a detection mechanism that could be leveraged to distinguish between healthy

and infected person. Once, the infected person has released certain amount of pathogens into the

atmosphere, and they have passed through the molecular channel, the receiver acts as an absorbing

surface that absorbs most of the pathogen -laden droplets. The architecture of molecular receiver

is shown in Fig. 3. The details of three major blocks are presented below.

Fig. 3: Receiver Architecture

1) Aerosol Sampler: Several techniques have been developed for collection of suspended air

particles. Aerosol sampler is the front end of our receiver which controls the sampling rate of air.

Although there are several other techniques, the sampler proposed in this receiver architecture is

based on the principle of electrostatic precipitation which is not only commercially available but

also allows sampling of particles with sizes as small as 2-100nm. [26]. The sampler sensitivity

in terms of sampling nano-sized particles is quiet significant since, the droplet sizes are of the

order of few micrometers and the diameter of virus and bacteria, in general can be of the order

of nanometers.

The architecture of the electrostatic air sampler is depicted in Fig. 4. The two main components

of the sampler are ionizer and charged electrode. The ionizer induces negative charge on air

particles that pass then through the next chamber and collect on the positively charged electrode

after repelling by the outer negatively charged boundaries.. The performance of sampler is

quantified through it’s collection efficiency. As reported in [27], collection efficiency of 80−90%

is achievable with commercial electrostatic aerosol samplers. For the rest of paper, we denote

sampler efficiency by ξ.

2) Biosensor: Biosensors are sensing devices that translate molecular events into processable

information [28], [29]. They usually consist of a recognition layer followed by transducer that
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Fig. 4: Electrostatic air sampler.

converts the recognized signal into a processable form [30]. The physical change that the bio-

recognition layer undergoes on contact with target bodies is quantified. The recognition layer is

connected to a transducer which converts the behavior or the variation in recognition layer into

processable information. Based on the varying property which is being measured, biosensors are

classified into three types, electrical, mechanical and optical.

In the electrical biosensors, a change in current, voltage, or conductance is observed when

a binding event takes place in the recognition layer. On the other hand, in optical sensors, the

optical properties of the recognition layer are altered when it comes in the presence of target cells.

As for the mechanical biosensors, they consist of nanomechanical systems that are capable of

detecting the forces, motions, mechanical properties and masses, which emerge in biomolecular

interactions [31].

In this work, we consider electrical biosensors due to their high sensitivity and selectivity [32].

There are two basic types of electrical biosensors, which are known as biocatalyitic and affinity

based. In biocatalytic sensors, the presence of a virus or a target specie induces enzymes (already

present on recognition layer) to produce a certain chemical substance whose concentration is

then measured in order to obtain information about the presence of target. On the other hand,

affinity based sensors consist of virus or target-specific antibodies placed on the recognition

element. In the presence of target, a binding event between target and antibody takes place

which is translated to variation in some electrical property (current, voltage, conductance, etc.).

Field effect transistors (FETs) are the most commonly used affinity-based electrical biosensors.

The amplification property of FETs permits that a small change in voltage at the gate nduces a

large current change in source-drain channel yielding a highly sensitive biosensor [33].
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The Silicon NanoWire (Si-NW) FET is transistor with Si-NW is placed between the source

and the drain terminals over the FET substrate. The virus is detected with the help of antibody

receptors that are placed on the Si-NW as shown on Fig. 5. When the FET is placed in an

antigen-rich solution, the antigens come into contact with the antibody receptors and a binding

event takes place. The binding events effect the source-drain conductance channel resulting

in accumulation or depletion of electrons just like gate voltage. Thus, the binding events are

translated to current change across the source-drain channels by producing a change in the FET

conductance. The inherent amplification property of FETs allows for even small number of

binding events to produce measurable current making it a highly sensitive sensor [34]–[36]. It

was shown in [34], that the presence of a virus resulted in a dramatic change in source-drain

current. In [35], the presence of influenza A virus results in discrete changes in conductance

while no change in conductance occurs in presence of other viruses such as adenovirus, which

demonstrates the high selectivity of the sensor. In [36], an air sampler was integrated with FET

and it was shown that discrete conductance changes were observed when sensor was exposed

to aerosols and the change was proportional to the aerosol concentration. The setup was able to

detect in real-time and the whole process of sampling, sensing and detection occurred in less

than 2 minutes.

The capabilities of bio-FETs also depend on material used to fabricate the conductance

channel. The two materials that have gained most attention in recent years are silicon-based

(Si-NW) and nano-carbon materials such as Graphene and Carbon Nanotubes (CNT). While,

SiNW-FETs have shown high sensitivity and selectivity for real-time detection [37] and are

well studied in literature, they suffer from low-carrier mobility [38] and deterioration from

oxide-layer built-up [39]. Compared to that, Graphene and CNT offer much better mechanical

strength, chemical stability, electrical properties and plasticity [40]. However, the latter suffers

from reproducibility issues and the synthesis process produces impurities that degrade electrical

properties of these materials. The fabrication of SiNW is much easier and unlike nano-carbon

materials it can be produced on mass-scale by the semiconductor industry. The mater fabrication

process, feasibility in mass-production and the availability of extensive literature encourages us

to focus on SiNW-FETs in our work.

3) Measurement Noise: The most important factor while designing the processing and detec-

tion block is the input signal model and noise. As explained in [41], binding noise and flicker

noise are dominant in MC receivers.
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Fig. 5: Si-NW FET

• Binding noise: The probabilistic binding events between virus and receptors existing at

the FET biosensor result in a binding noise. A detailed modeling of the binding noise is

discussed in [42], [43]. A Markovian approach isadopted to model the dynamics of biosensor

and derive closed form expressions for settling time and noise power spectral density (PSD).

Since, we are interested in analyzing the system in the steady state, where we wait for a

longer period than the settling time before measuring the output signal, the captured virus

concentration is given by [43],

Css = N
Pa

Pa +KPd

= Nγ (4)

where N is the total number of antigens, Pa, Pd, and K are the association probability,

dissociation probability and number of possible states, respectively.

• Flicker Noise: This noise is known also as 1/f noise, where it is dominant at low frequencies

and results from semiconductor channel imperfections. Flicker noise can be modeled as

Gaussian [44], [45] and is independent of the virus concentration because it solely depends

on the transistor characteristics.

Moreover, we can have interference noise that results from other biological entities which

might interfere with the binding process of virus and the corresponding antibody receptor

[41]. The accumulating nature of the aerosol channel can also result in significant inter-symbol

interference (ISI). A passive solution to overcome the effects of ISI is to introduce large delays

between the time a person leaves the room and the next person enters so that the aerosols
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are dispersed. Another solution can be to incorporate the accumulation effect in the detection

mechanism and update the decision threshold each time a person leaves the room. However,

a more efficient method is using enzymes that react with accumulated viral aerosols and keep

them from interfering in future [46]. We assume that such method has been employed to take

care of interference effects such that each new person entering the room is exposed to a sanitized

environment; thus the interference can be ignored.

C. Aerosol Transmission Channel

Once the bioaerosols are released into the air by the infected human, the droplets are carried

away by the artificial wind, which is applied to increase the transmission range and decrease

the propagation delay. The basic difference between diffusion-based MC (DMC) and aerosol

transmission is the propagation mechanism that drives the droplets in the fluid. In DMC, the

Brownian motion is responsible for movement of particles and can be modeled as a Wiener

process [1], where the molecular diffusion is characterized by molecular diffusivity coefficient.

This communication occurs due to thermal movements of molecules and therefore it is a micro-

scale communication. On the other hand, aerosol communication is a macro-scale transport

of micro-sized particles over larger distances and can be characterized by dispersion models.

Moreover, molecular diffusion has negligible contribution in the propagation of bioaerosols in

atmosphere and is mainly governed by advection and turbulent diffusion. The wind is respon-

sible for advection and eddies cause turbulent diffusion. It must be noted that eddy diffusivity

coefficient is much greater than the molecular diffusivity coefficient, which can be ignored in

dispersion models.

Now we describe the basic framework for deriving the channel model. Assume the source is

located at ~r = [x, y, z] emitting pathogens at a rate S(~r, t), where t is the time. From law of

conservation of mass we can write [47], [48],

Ct +∇. ~F = S, (5)

where Ct is change in concentration of pathogen with time and ~F is the mass flux. Both, the

concentration and flux are functions of ~r and t. The mass flux is composed of two components

resulting from the two phenomenons called diffusion and advection and can be represented as

follows,
~F = ~Fdiff + ~Fadv,
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where ~Fdiff is the diffusion component and ~Fadv is the advection component. The Fick’s law of

diffusion states that flux due to diffusion is proportional to concentration gradient,

~Fdiff = −K∇C,

where K is the diffusivity matrix defined as

K =


Kx 0 0

0 Ky 0

0 0 Kz

 ,
in terms of the eddy diffusivity coefficients Kx, Ky, Kz in the x, y and z direction, respectively,

after neglecting the molecular diffusivity. The eddy diffusion coefficients are function of position

vector.

∇. ~Fdiff = KxCx,x +KyCy,y +KzCz,z. (6)

The second transport phenomenon is the advection which is the bulk transport of particles by

a moving fluid. In our case, the driving force responsible for particles’ transportation is wind

which is artificially applied. If the flow velocity is represented by ~v = [ux, uy, uz], we can express

the advective flux as,
~Fadv = ~vC

Then, the divergence of ~Fadv is found to be,

∇. ~Fadv = ∇.(~vC) = C(∇.~v) + ~v.(∇C)

For incompressible fluids whose density stays constant [49],

∇.~v = 0,

Thus, the change in advection flux boils down to the following expression,

∇. ~Fadv = uxCx + uyCy + uzCz. (7)

After plugging the flux terms (6) and (7) in (5) and rearranging few terms, we obtain the

following main partial differential equation (PDE),

Ct = S + (KxCx,x +KyCy,y +KzCz,z)− (uxCx + uyCy + uzCz) . (8)

In order to derive closed-form expressions, it is necessary to define the boundary conditions

and state the basic assumptions as follows:
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• The downwind is in x direction only i.e ~v = [u, 0, 0].

• Diffusivity coefficients are equal in all directions and are a function of downwind distance

x only, i.e Kx = Ky = Kz , K(x).

• Along the downwind direction, the flux due to advection is much stronger than that due to

diffusion, thus, we ignore the diffusion flux along the x-direction, KxCx,x− uCx ≈ −uCx.

• The ground z = 0 is flat and doesn’t have any topographical variations.

• The pathogen-laden droplets do not penetrate the ground, K(x)Cz(x, y, 0) = 0.

• Mass is conserved, C(x, y,∞, t) = 0, C(x,±∞, z, t) = 0 and C(∞, y, z, t) = 0.

By considering in the boundary conditions, PDE in (8) is simplified as

S = Ct + uCx −K(x)[Cy,y + Cz,z], (9)

which is more tractable allowing us to derive closed-form expressions for different sources. The

detailed derivations are presented in the next section.

IV. AEROSOL CHANNEL MODELING

In this section we provide a detailed analysis of aerosol channel for derive its response to

both continuous and jet sources. We start with the transient response for cough and/or sneeze.

A. Transient Response of Physical Channel to Jet Sources

In this section, we focus on modeling of wind-aided aerosol transmission channel to understand

its dynamics in both temporal and spatial domain. It can be observed that for a given location,

the source for a sneeze/cough is simply an impulse. Thus, finding the response for such input

will yield impulse response that can be used to compute the system performance for several

input scenarios. We start our analysis by considering a single jet-source in (9) and obtain the

following PDE

Rsδ(x)δ(y)δ(z −H)δ(t) = Ct + uCx −K(x)[Cy,y + Cz,z], (10)

which is written equivalently as,

u

K(x)
Cx +

1

K(x)
Ct = Cy,y + Cz,z, x 6= 0, y 6= 0 z 6= H

C(0, y, z, t) =
Rs

u
δ(y)δ(z −H)δ(t).

(11)
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First, we introduce the following variable definition

C(x, y, z, t) = φ(x, y, z, τ(x, t)) (12)

where, τ(x, t) = x − ut. Then, we apply chain rule to find out the derivatives Ct = −uφτ and

Cx = φτ + φx and plug them in (9) obtaining

u

K(x)
φx = φy,y + φz,z. (13)

To get rid of variable coefficient of φx, we define, xη , u
k(x)

, which allows us to rewrite (13) as

φη(η, y, z, τ) = φy,y(η, y, z, τ) + φz,z(η, y, z, τ). (14)

To solve (14), we assume φ(η, y, z, τ) is composed of separable functions as

φ(η, y, z, τ) , F (η, y)G(η, z)H(η, τ), (15)

which enables use to break (14) into three sets of simpler PDEs with boundary conditions as,

Fη =Fz,z (16a)

F (0, z) =
Rs

u
δ(z −H) (16b)

F (∞, z) = 0 (16c)

Fz(η, 0) = 0 (16d)

F (η,∞) = 0 (16e)

Gη = Gy,y (17a)

G(0, y) = δ(y) (17b)

G(∞, y) = 0 (17c)

G(η,±∞) = 0. (17d)

H = φ(η, τ) (18a)

H(0, t) = δ(t) (18b)

H(∞, t) = 0 (18c)

H(η,±∞) = 0. (18d)

Now we use Laplace transform to solve the above differential equations to find F , G and

H . At this point we assume that F , G and H are real-valued positive functions whose Laplace

transform exists. The Laplace transform variables for η, y and z are q, r and s respectively. We

start with the equation set (16) to find F by finding the Laplace transform of (16a) w.r.t. z,

F̄ (z)
η (η, s) = s2F̄ (z)(η, s)− sF (η, 0)− Fz(η, 0). (19)

Since, the droplets do not penetrate the ground, from (16d), the last term becomes zero. Then,

we take Laplace transform for (19) w.r.t. η obtaining

q ¯̄F (z,η)(q, s)− F̄ (z)(0, s) = s2 ¯̄F (z,η)(q, s)− sF̄ (η)(q, 0). (20)

By taking Laplace of (16b) we obtain F̄ (z)(0, s) = Rs
u
e−sH , which is plugged in (20) obtaining

¯̄F (z,η)(q, s) =
sF̄ (η)(q, 0)

s2 − q
− Rse

−sH

u(s2 − q)
. (21)
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Then, by taking the inverse Laplace transform of (21) w.r.t s, we get,

F̄ (η)(q, z) = F̄ (η)(q, 0) cosh(
√
qz)− Rs

u
√
q

sinh(
√
q(z −H)). (22)

Now, we use the boundary condition (16c) to obtain

F̄ (η)(q, 0) =
Rse

√
q(z−H)

u
√
qe
√
qz

=
Rs

u
√
q
e−
√
qH ,

which is plugged in (22) and after expanding the hyperbolic functions as sum of exponentials

the following simplified expression is obtained,

F̄ (η)(q, z) =
Rs

2u
√
q

(e−
√
q(z−H) + e−

√
q(z+H)).

Then, we take the inverse Laplace transform w.r.t q obtaining

F (η, z) =
Rs

u
√

4πη

(
e−

(z−H)2

4η + e−
(z+H)2

4η

)
. (23)

It should be noted that the domain of z is above ground i.e z > 0. Now, we consider the next

set of equations (17) and take Laplace of (17a) w.r.t y and η . After using suitable boundary

conditions and rearranging, the following equation is obtained

¯̄G(y,η)(q, r) =
rd1

r2 − q
− d2

r2 − q
, (24)

where d1 = Ḡ(η)(q, 0) and d2 = 1 − Ḡy(q, 0). Then, by taking the inverse Laplace transform

w.r.t r, we find

Ḡη(q, y) = d1 cosh(
√
qy)− d2√

q
sinh(

√
qy). (25)

After expanding the hyperbolic functions and considering (17d), we obtain

N̄η(q,∞) =
d1

2
e
√
qy − d2

2
√
q
e
√
qy = 0

thus, d1 = d2√
q
, which can be substituted in (25) obtaining Ḡη(q, y) = d2√

q
e−
√
qy. Following same

strategy used for F̄ (η)(q, z), we take inverse Laplace of Ḡη(q, y) yielding,

G(η, y) =
d2√
πη
e−

y2

4η . (26)

To find d2, we use (17b) that gives

δ(y) = lim
η→0

d2√
πη
e−

y2

4η . (27)

Then, by using the definition of delta as a limit of Gaussian, δ(y) = limx→0
1√

2πx2
e−

y2

4x2 , and

comparing with (27), we find d2 = 1
2
. Therefore, G(η, y) turns out to be,

G(η, y) =
1

2
√
πη
e−

y2

4η . (28)
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Now we consider the third set (18), where the solution to our PDE is of the form H = φ(η, x−ut).

Now we deploy the initial condition (18(b)) to find the exact solution,

lim
η→0

H(η, t) = δ(t) = lim
η→0

1√
2πη2

e
− t2

4η2

lim
η→0

φ(η, x− ut) = lim
η→0

u√
2πη2

e
− (x−ut)2

4η2

Comparing both sides of the equation yield the exact solution of (18),

H(η, t) =
u

2
√
πη
e−

(x−ut)2
4η . (29)

The general concentration expression is found by plugging (23), (28), (29) in (15) yielding,

C(x, y, z, t) =
Rs

8(πη)3/2
e
−(x−ut)2

4η e−
y2

4η (e−
(z−H)2

4η + e−
(z+H)2

4η ). (30)

For ease of notation, we have just written η instead of η(x). However, it should be implicit that

η is a function of x.

B. Transient Response of Breath and Multiple Sources

After deriving an expression for system response to cough or sneeze, we move to breathing

which is a continuous source of aerosols. The solution derived in the previous section is shown

to be linear and time-invariant as shown in the Appendix. Thus, for extending the above analysis

to evaluate system performance for different sources, we observe that for a given point in space

the concentration of aerosols can be expressed as a convolution in time. Hence, we can conclude

that for a point ~r = [x, y, z] in space, the impulse response of system is,

h~r(t) =
1

8(πη)3/2
e
−(x−ut)2

4η e−
y2

4η (e−
(z−H)2

4η + e−
(z+H)2

4η ) (31)

As explained in section III-A, breathing can be modeled as a unit step function of magnitude Rb.

The output for this breathing source can be obtained by convolving with the impulse response,

yb
~r (t) =

∫ t

−∞
αe

(x−u(t−τ))2
4η u(τ)dτ

where α = 1
8(πη)3/2

e−
y2

4η (e−
(z−H)2

4η + e−
(z+H)2

4η )

The final response can be expressed in terms of complementary error function,

yb
~r (t) =

Rb

8πηu

{
erfc(

x− ut
2
√
η

)− erfc(
x

2
√
η

)

}
e−

y2

4η
(
e−

(z−H)2

4η + e−
(z+H)2

4η
)
. (32)
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As mentioned in Section III-A, for a given person the source is an additive function of continuous

and jet sources. Since, the system is linear, the overall response of the system for a person of

height H who is standing at origin and is coughing or sneezing at some random instants ti is

given by,

y~r(t)=

[
Rb

8πηu

{
erfc(

x− ut
2
√
η

)−erfc(
x

2
√
η

)

}
+

N∑
i=1

Rs

8(πη)3/2
e

(x−u(t−ti))
2

4η

]
e−

y2

4η
(
e−

(z−H)2

4η +e−
(z+H)2

4η
)

(33)

where N is the number of jet sources, i.e coughs and sneezes.

In a similar way, the response of multiple user scenario is found to be

ymulti(t) =
Nu∑
j=1

y
tj
~rj

(t)u(x− xj)u(t− tj) (34)

where ~rj = [x−xj, y−yj, z−zj] and Nu is the number of users, xj , yj and zj are coordinates of

the j − th user’s source and tj is the releasing time. A stochastic setting can also be developed

by discretizing the time equally with an interval T1 and defining the probability that a user j

sneezes in the interval Ti by pij . It can assumed that the intervals are quiet small and therefore

for each interval the sneeze/cough time can be taken to be start of interval i.e Ti. In this case

the system response at time T is given by

ymulti(t) =
L∑
i=1

K∑
j=1

pijy
tj
~rj

(t)u(x− xj)u(t− tj), (35)

where L =
⌈
T
T1

⌉
.

C. Steady State Response of Breath

To derive the steady state response of emitted pathogens from a continuous source, i.e.

breathing, we start from (9) and consider the following changes:

1) The infected human is continuously emitting pathogens at a constant rate R (discussed in

section III.A). The person is standing at origin and his mouth is at height H . Thus, we

can represent the source concentration as,

S (~r, t) = Rδ(x)δ(y)δ(z −H).

2) The solution is derived for steady state conditions therefore Ct = 0.

After considering these conditions, (9) reduces to

Rδ(x)δ(y)δ(z −H) +K(x)[Cy,y + Cz,z] = uCx. (36)
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Similar to the transient analysis scenario, we rewrite (36) as,
u

K(x)
Cx = Cy,y + Cz,z

uC(0, y, z) = Rδ(y)δ(z −H),

(37)

which is a variable coefficient PDE. To simplify (37), we adopt the same procedure as followed

earlier and define a new variable η, where η = 1
u

∫ x
0
K(t)dt. Thus, the PDE in (37) reduces to

Cη = Cy,y + Cz,z. (38)

Then, we assume C(η, y, z) is separable function as

C(η, y, z) = F (η, y)G(η, z), (39)

which allow breaking the PDE in (38) into two sets of simpler PDEs as follows

Fη = Fz,z (40a)

F (0, z) =
R

u
δ(z −H) (40b)

F (∞, z) = 0 (40c)

F (η,∞) = 0 (40d)

Fz(η, 0) = 0. (40e)

Gη = Gy,y (41a)

G(0, y) = δ(y) (41b)

G(∞, y) = 0 (41c)

G(η,±∞) = 0. (41d)

Since the set of simplified PDEs and boundary conditions is the same as (16) and (17), it is

pretty straightforward to see that the solution to (38) is given by,

C(η, y, z) =
R

4uπη
e−

y2

4η

(
e−

(z−H)2

4η + e−
(z+H)2

4η

)
, (42)

which resembles a Gaussian curve with a variance parameter of 2η that describes the spread of

the concentration curve in crosswind directions and is an indicator of turbulence present in the

environment due to the wind.

To visualize the spread of aerosols, a contour plot is presented in Fig. 6. The source is located

at a certain height at origin which can be seen as the point of highest concentration. Moving

away from the source results in a drop in concentration, however, this change is not constant. In

fact, it is like a cone with it’s vertex at the source spreading in the direction of wind. Analyzing

the expression derived above, it can be observed that the the expression is in fact product of two
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Fig. 6: Concentration of virus for source present at ~r = [0, 0, 177]
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Fig. 7: Impact of downwind distance on virus concentration

normal curves whose variance changes with downwind distance. This trend can be more clearly

visualized in Fig. 7 where increase in downwind distance increases the spread of individual

contours in the y− z plane. Also this spread is more significant up till a certain point along the

x-axis after which the overall or mean concentration itself is too low to be sensed or detected.

Thus, it can also be concluded that on average the concentration drops as we move away from

the source, however the trend is not linear.

D. Frequency Response

In Section IV-B, we have focused on the temporal behavior of channel and therefore observing

the frequency response of system can provide useful insights into the behavior of channel. Also,
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Fig. 8: Frequency response of aerosol channel

since the objective of this work is to view this aerosol dispersion phenomenon in the context of

a communication systems problem, it is worthwhile to analyze the aerosol channel’s frequency

response. Furthermore, in order to deal with the issue of synchronization at receiver end and

choose the appropriate sampling frequency, it is necessary to study the system characteristics in

frequency domain.

The Fourier transform of the system impulse response given by (31) can be found from

H(ω) = α

∫ ∞
−∞

e−
(x−ut)2

4η e−jωtdt

where α = 1
8(πη)3/2

e−
y2

4η (e−
(z−H)2

4η + e−
(z+H)2

4η ). After completing the square and rearranging the

exponent terms, we obtain the following expression,

H(ω) = αe−(ω
2η

u2
+ jωx

u
)

∫ ∞
0

e
−( ut

2
√
η
− x

2
√
η
− jω

√
η

u
)2
dt.

Then, we apply a change of variables and obtain the following simplified expression,

H(ω) =
f(y, z)

8uη
√
π
e−(ω

2η

u2
+ jωx

u
), (43)

where f(y, z) = e−
y2

4η (e−
(z−H)2

4η + e−
(z+H)2

4η ).

We can visualize the impact of distance and wind speed on frequency response in Fig 8a and

8b. It can be seen that the channel becomes more selective at lower wind speed and/or large

observation distances.
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V. DETECTION PERFORMANCE ANALYSIS

The viral aerosol detection system performance is affected by several factors such as, the

diffusion process, Brownian motion, interference and the electrical properties of receptors. In

order to analyze the effect of diffusion in-depth, stochastic models for the aerosol channel need to

be derived, which is a complicated and extensive process because of the complexity associated

with the modeling of turbulent fluid flows. A simpler approach at this point is to assume a

single viral source to ignore the interference effect, then evaluate the average response, which

is what we derived in section III-B. For the electrical properties of receptors or Si-NW FET in

particular, there is sufficient literature on noise modeling that depends on electrical properties of

FETs [50]. However, since we want to focus on the spread of aerosols and their integration in a

communication system, instead of diving deep into a well-detailed model particular for Si-NW

FET, we opt for the basic model and as mentioned previously use an additive Gaussian noise.

It must be noted that approximating the non-signal dependent noise term to be Gaussian is a

good assumption. Since, the receiver consisting of thousands of receptors adds the input, that has

finite variance measurement noise, from each receptor separately, this independence allows us to

apply central limit theorem. Hence, the final expression for the average received concentration

incorporating the noise effects can be written as,

Cr = ξγCmean + n (44)

where ξ represents aerosol sampler efficiency, γ is a fraction representing the probabilistic

binding process, n is additive noise that incorporates the effect of flicker, thermal noise and

other residual noise and is modeled as Gaussian [39] with mean zero and variance σ2. Although

the exact expression for σ2 can be derived, it is a tedious process. In order to observe the system

performance and trends, it is sufficient to treat the noise variance as a parameter that can be

varied over a range. Moreover, the advancements in nanotechnology and electronics provide

us sufficient flexibility in design of MC receivers. Compared to the transmitter and physical

channel where there is little or almost no flexibility in design process, there is a lot of room in

the physical design of molecular receiver. Cmean is average concentration of virus particles that

are present in the receiver chamber and is given by,

Cmean =

∫
Ts

∫ ∫ ∫
Vrx

C (x, y, z, t) dxdydzdt (45)

where Vrx represents receiver volume and Ts is the sampling time period Ts is very large, (45)

reduces to the one with steady state performance. As for the receive, it receiver could be a
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1-D array of biosensors, a sphere or some other appropriate surface molecular receptors for

corresponding viral aerosols. It is worthy noting that the receptor’s size and density determine

the hitting probability which eventually change the binding noise. It has been shown for diffusion-

based MC that higher number of smaller receptors improve the hitting probability [51]. In our

system, the effect of receptor size and density is implicitly captured through γ, however, the

impact of the receptor density, size and geometry can be analyzed in detail in future studies.

Depending upon the receiver geometry and receptor/biosensor density, closed form expressions

for average received concentration of pathogen may also be derived. However, the process is

quiet complex and closed-form expressions might not exist in all scenarios for which data-driven

approaches and machine learning tools can be employed.

In the detection process, Cmean is compared with a pre-determined threshold, Cth, through

maximum posterior probability rule to determine whether the person is infected or not. Let

I and H represent the infected and healthy person, respectively. Thus, the decision is made

according to,

Pr(I|Cr) ≶
H

I
Pr(H|Cr).

Then, by applying Bayes’ rule and assuming that the event of person being infected or healthy

is equally likely, we obtain the following expression,

Pr (Cr|I) ≶
H

I
Pr (Cr|H) ,

which can be rewritten equivalently using (44) as,

1√
2πσ2

e
−(Cr−γξCmean)2

2σ2 ≶
H

I

1√
2πσ2

e
−(Cr)

2

2σ2 .

After rearranging the terms on both sides, we obtain the following inequality,

Cr ≶
H

I

γξCmean

2
. (46)

Thus, the maximum likelihood threshold value should be equal to,

Cth =
γξCmean

2
. (47)

For further insights, we derive the probability of missed detection Pmd as follows,

Pmd = Pr (Cr ≤ Cth|I) , (48)
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TABLE I: Simulation Parameters

Parameters Values

u 140 cm/sec

H 180 cm

K 0.242 cm2/sec

rd 2 cm

which reduces to

Pmd =

∫ Cth

−∞

1√
2πNo

e
−(Cr−γξCmean)2

2σ2 .

Through change of variables, we get the final expression for probability of missed detection in

terms of the well-known Q-function,

Pmd = Q

(
γξCmean√

23σ2

)
(49)

where, Q(x) = 1
2π

∫∞
x
e−

u2

2 du.

From (49) and (47), it can be observed that the probability of missed detection not only

depends on the average received a concentration of pathogens but also on the sampler efficiency

on which is taken into account while incorporating the threshold value.

VI. NUMERICAL RESULTS

In this section, we analyze the proposed system performance numerically by studying the

spatial temporal viral concentration in addition the missed detection probability. Throughout the

following numerical results, we assume that the receiver is a sphere of radius rd placed in-line

with the source along downwind direction in the y − z plane at a distance of dx and centered

at ~us = [dx, 0, H] as assumed in Fig. 6. Additionally, we assume the receiver is located in a

perfectly sanitized environment. In the following numerical results, we adopt the parameters

listed in Table I, unless otherwise specified.

In the first numerical example, we study the effect of airflow velocity and distance on the

received viral concentration at the receiver side. For this purpose, we assume the sampling time

is 3 seconds and evaluate the collected viral concentration performance as a ratio of the released

virus R versus the distance between infected person and receiver for different u ranges as shown

in Fig. 9. The air flow velocities are chosen to represent the scenario of exhaled nasal breath
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Fig. 9: Detected viral concentration ratio versus the distance between the infected person and

the detector for different airflow velocities.

where it is below 140 cm/s, cough scenario or breath with artificial air flow [52]. First, we

observe that the spatial viral signature depends mainly on airflow velocity. The detection area

can be increased by increasing u, however it comes at a cost of concentration decrease as a

result of the mass conservation law [53]. Thus, applying air flow plays a good role in extending

the spatial coverage of detection, but it may reduce the concentration below detectable level.

In the second numerical example, we investigate the delay due to molecular channel propaga-

tion using both diffusion and advection mechanisms; in order to detect a virus at the detector side.

To this end, we plot the time needed to detect 1% of the exhaled virus versus the propagation

distance for different airflow velocities in Fig. 10. One can observe that the airflow velocity has

a significant effect in reducing the propagation delay, where doubling the airflow velocity can

reduce the propagation delay to the half. However, it is important to know that using airflow

reduces the concentration peaks, which can affect the system reliability in detecting virsus even

if the detector is located close to the infected human as shown in the first numerical results

depicted in Fig. 9.

Finally, we study the steady state missed detection probability of exhaled nasal breath versus

the distance between infected human and the detector. We assume ξγRb

8σ2 = 1.96×104 and compare

the missed detection probability between three scenarios: Rb virus flow rate and spherical detector

with volume Vr, 1
2
Rb virus flow rate and spherical detector with volume Vr and Rb virus flow
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Fig. 10: Propagation delay in detecting 1% of the exhaled virus versus a wide range of distances

between the human and detector for different airflow velocities.

rate and spherical detector with volume 1
2
Vr, as shown in Fig. 11. The depicted results shows

that the exhaled virus concentration ratio, detection distance and detector volume are essential

parameters in determining the missed detection probability performance. Moreover, the receiver

volume has better impact on the performance than virus concentration in the exhaled breath.

Thus, it is desirable to design a detector with large volume(s) and appropriate air collecting

capabilities.

VII. CONCLUSION

The paper defined a new research dimension in MC, which is viral aerosol transmission, spread

mechanism and detection. The mathematical modeling of aerosol channel provides insights into

the dynamics of virus spread that can prove helpful in its detection. Applying artificial airflow

overcomes the slowness of diffusion based spread and allows the detection of viruses, thus it

is a key enabler for the viral detection system. The simulation results show that the missed

detection is controlled by the distance, virus flow rate, air velocity, receiver binding efficiency

and others. The proposed mathematical problem was studied using steady state analysis of virus

transmission and detection due to breathing. It was further extended to transient analysis and

response of system to coughs and sneezes. The transient analysis is important in multiple aspects

of receiver design such as the memory channel behavior and synchronization. In future works,

the work can be extended by relaxing the assumptions and incorporating complex wind fields,
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Fig. 11: Effect of receiver volume and emitted virus rate on the missed detection probability

versus the distance between the infected human and the detector.

that results in different turbulence behavior. Moreover, it is imperative to optimize the receivers’

size and/or location, and study multiple sources, interference, and different turbulence models.

Finally, this work can also be extended in the context of predicting the occurrences of pandemics

and taking preparatory measures.

APPENDIX

In this section, we show that the system is linear and time-invariant.

• Linearity: Consider the main PDE that defines the system,

Ct + uCx −K(x)Cy,y +K(x)Cz,z =
R

u
δ(x)δ(y)δ(z −H)δ(t) (50)

It is straightforward to observe that the PDE and it’s boundary conditions are linear. For

linear Differential equations, the principle of superposition states [54],

“If a linear PDE in c, L(c) = f1 has the solution c1 and L(c) = f2 has the solution c2,

then the solution to L(c) = af1 + bf2 is given by c3 = ac1 + bc2 "

Applying the principle of superposition we can conclude that for scaled and additive inputs,

the output is also scaled and sum of respective responses.

• Time Invariance Consider the PDE (50) where input is a shifted impulse in time,

Ct + uCx −K(x)Cy,y +K(x)Cz,z =
R

u
δ(x)δ(y)δ(z −H)δ(t− to)
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Let us make a change of variable and define t′ = t− to so that the above PDE becomes,

Ct′ + uCx −K(x)Cy,y +K(x)Cz,z =
R

u
δ(x)δ(y)δ(z −H)δ(t′) (51)

Along with the boundary condition, C(x, y, z, t′) = 0 for t′ = 0.

If C1(x, y, z, t)u(t) represents the solution to (50) then it is straightforward to observe that

the solution to (51) is given by C1(x, y, z, t′)u(t′) = C1(x, y, z, t−to)u(to). Thus, the system

is time-invariant.
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