
P
os
te
d
on

6
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
22
49
30
8.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Towards a Blockchain Contract-for-Difference Financial Instrument

for Hedging Renewable Electricity Transactions

Olakunle Alao 1 and Paul Cuffe 2

1University College Dublin
2Affiliation not available

October 30, 2023

Abstract

Contract-for-Difference financial instruments are available to renewable electricity generators in day-ahead electricity markets

to allow them to hedge against revenue risk. Traditional CfDs while designed to hedge revenue risk, introduce other new

risks such as counterparty credit, margining and third-party risks. We therefore propose a novel financial instrument - an

Ethereum blockchain-based dual escrow smart contract, to serve as the mediator in a CfD agreement between a renewable

electricity generator and supplier. This financial instrument addresses hedging related risks that result from traditional CfD

agreements in day-ahead electricity markets. In this paper, we design the logic of the financial instrument, translate this logic

to smart contract codes and demonstrate its expected performance. Overall, the proposed financial instrument has the benefits

of reducing hedging related risks inherent in traditional CfDs. Likewise, it enables secure, efficient, cost-effective, consistent,

reliable, transparent and frictionless transactions between contracting parties in a CfD agreement.

1

1

Towards a Blockchain Contract-for-Difference
Financial Instrument for Hedging Renewable

Electricity Transactions
Olakunle Alao, Student Member, IEEE and Paul Cuffe, Member, IEEE

Abstract—Contract-for-Difference financial instruments are
available to renewable electricity generators in day-ahead elec-
tricity markets to allow them to hedge against revenue risk.
Traditional CfDs while designed to hedge revenue risk, introduce
other new risks such as counterparty credit, margining and third-
party risks. We therefore propose a novel financial instrument –
an Ethereum blockchain-based dual escrow smart contract, to
serve as the mediator in a CfD agreement between a renewable
electricity generator and supplier. This financial instrument
addresses hedging related risks that result from traditional CfD
agreements in day-ahead electricity markets. In this paper, we
design the logic of the financial instrument, translate this logic to
smart contract codes and demonstrate its expected performance.
Overall, the proposed financial instrument has the benefits of
reducing hedging related risks inherent in traditional CfDs. Like-
wise, it enables secure, efficient, cost-effective, consistent, reliable,
transparent and frictionless transactions between contracting
parties in a CfD agreement.

Key words—Blockchain, Smart contracts, Renewable electricity,
and Electricity derivatives

I. Introduction

THE world’s abundant renewable electricity resource is
significantly untapped, as only about 25% of global

energy demand is met by renewable electricity. Declining dirty
fossil fuel reserves and an increasing global energy demand
necessitates the need for more investment in clean renewable
electricity [1].

Revenue risk is the major risk posed to renewable electricity
generators and can adversely affect the bankability of renewable
electricity projects. Debt often accounts for the highest share
of capital required to finance renewable electricity projects
[2], [3]. Risk-averse debt financiers assess the bankability of
a project before making investment decisions, and high-risk
projects usually incur expensive finance (i.e. debt at high-interest
rates). A bankable renewable electricity project is one where
debt interest and principal repayments are feasible because
of low revenue risk exposure [3]. Hedging against renewable
electricity generator’s revenue risk is therefore paramount, as
it enhances the bankability of renewable electricity projects;
hence, unlocking more debt capacity at low interest rates. The

This publication has been funded by the Sustainable Energy Authority of
Ireland under the SEAI Research, Development & Demonstration Funding
Programme 2018, grant number 18/RDD/373.

O. Alao and P. Cuffe (paul.cuffe@ucd.ie) are with the School of Electrical
and Electronic Engineering, University College Dublin.

Interests disclosure: The Authors hold cryptographic assets.

revenue of a typical renewable electricity generator in a day-
ahead electricity market is mathematically shown in Equation
(1):

t=n∑
t=1

((
Cpm
t × Ppm

t

)
+

(
C f m
t × P f m

t

))
(1)

In Equation (1), C is the contracted capacity in MWh and P
is the price per MWh. Superscript pm represents the physical
market and fm represents the financial market. A renewable
electricity generator will primarily participate in the physical
market, to generate revenue to cover its marginal cost of
electricity production. The physical market is however highly
volatile with respect to price. A rational renewable electricity
generator will therefore secure its position in the financial
market, by hedging itself against price fluctuations on a trading
period [4]. A two-way CfD is an electricity derivative financial
instrument available in day-ahead electricity markets, that
guarantees stable revenues for renewable electricity generators.
CfD contracting parties (a renewable electricity generator and
typically a supplier) are obliged to pay or receive the difference
between the strike price and spot price on a trading period [4].
The financial market (second term) in Equation (1) can then
be expressed as:

t=n∑
t=1

(
Cst
t × max

(
0, Pst

t − Psp
t

))
(2)

In Equation (2), C and P retain their definitions as Equation
(1), and superscripts st and sp represent the strike price and
spot price respectively. Equation (2) is the CfD payoff per MWh
that is due the generator, when the strike price is greater than
the spot price. If the strike price is less than the spot price,
then the payoff per MWh becomes: max(0, Psp − Pst), and the
generator becomes obliged to pay the supplier the difference
[5], [6].

CfDs like other bilateral contracts are traded over-the-counter
[5]. They are therefore susceptible to counterparty credit,
margining and third-party risks; slow settlement time; over-head
costs; high collateral requirements; bilateral friction; and human
errors [2], [5], [6]. We address these problems by proposing a
novel financial instrument – bed v1.0 (Blockchain Electricity
Derivative) – a blockchain-based dual escrow smart contract,
that serves as the mediator of an escrow in a CfD agreement
between a renewable electricity generator and supplier.

Although earlier blockchain applications were limited to the
banking and finance industry, modern blockchains enabled by
smart contracts are slowly gaining traction in other industries,

2

such as supply chain management, utilities, education, health
care, etc [7]–[9]. These new use cases have also been facilitated
by stable coins, which are digital assets whose underlying
value is pegged to relatively stable fiat currencies, unlike highly
volatile traditional cryptocurrencies [10].

Blockchain has been proposed for applications in the electric-
ity sector: electricity trading, financing of renewable electricity
projects, green certificates, carbon trading, smart grids, electric
vehicles, etc. [8], [11]–[16]. The greatest number of blockchain
applications in the electricity sector so far has been in the retail
market. Decentralised peer-to-peer electricity trading at the
retail market can be facilitated by blockchain connected smart
meters and tokenisation of electricity on modern blockchain
networks [8], [12], [13]. Blockchain may also disrupt the
traditional way renewable electricity projects are financed,
through Initial Coin Offerings [8], [15], [16], whose financing
structure is similar to Initial Public Offerings.
Blockchain has been proposed in financial derivatives and

securities market [17]–[21], but is yet to be explored in
the electricity derivatives sector. Given the volatility of the
day-ahead physical market, renewable electricity generators
have to apply the lowest risk, efficient and cost-effective
hedge. Considering blockchains already developed use cases
in financial derivatives [17]–[20] and for bilateral wholesale
and retail energy trading [12]–[14], [22], it is apparent that
this technology could lend itself to reducing hedging related
risks in electricity derivative transactions. Moreover, at the
time of writing, no industry blockchain project or academic
literature speaks to bespoke blockchain-based smart contracts
for electricity derivative transactions. This gap therefore reveals
the untapped potential of blockchain in electricity derivatives,
and it is hoped that this paper kick-starts discussions around
this salient topic.

II. Blockchain and Smart contracts
A. Blockchain fundamentals
A blockchain is an open, decentralized, distributed, im-

mutable, transparent and consistent digital ledger. It records
transactions, assets and data between participants in a verifiable
and permanent manner [8], [9], [23]. Blocks in a blockchain
consists of several transactions that are chronologically ap-
pended to each other via a cryptographic hash function. The
main features of a blockchain are its data structures, consensus
rules, cryptographic security and incentive mechanisms [7]–[9],
[23]. In typical blockchains like Bitcoin and Ethereum, when a
transaction is completed between participants, it is broadcasted
to all mining nodes on the network. Mining nodes gather the
transaction between these participants, and other transactions
into a block. Thereafter, mining nodes compete to add this
block to the blockchain by attempting to find a solution to a
difficult proof-of-work problem, which is computationally and
energy intensive. When a mining node finds the proof-of-work,
it broadcasts the block to all other mining nodes on the network.
These mining nodes accept the block if all the transactions in
it are valid. When more than 50% of the mining nodes on the
network accept this block, this block is added to the blockchain.
Mining nodes begin to work on creating the next block on the
blockchain, including the cryptographic hash of the recently

accepted block as the previous hash. Non-mining nodes, on
the other hand, support the decentralization of the network by
holding and distributing copies of the blockchain ledger [7]–[9],
[23].

B. Smart contracts
Even though the two most popular blockchains – Bitcoin and

Ethereum – have a similar design with respect to consensus
and cryptographic rules, they have different objectives. While
Bitcoin was proposed by Satoshi Nakamoto [23] for a single
application – that is to serve as a secure peer-to-peer decentral-
ized payment system; Ethereum, championed by Vitalik Buterin
[21] was designed to support many applications other than
payment. Ethereum, unlike Bitcoin supports any decentralized
application (dApp) and is Turing Complete – implying that it
can be programmed to solve any computational problem of
arbitrary complexity. The business logic of these decentralized
applications are embedded in smart contracts, which are
complex set of software codes written on the blockchain with
the ability to autonomously manage transactions [8], [9], [21],
[24]. Smart contracts can seamlessly handle funds between
different participants based on pre-agreed conditions, and when
these conditions are met, the smart contract automatically pays
the appropriate participants. In its simplest form, they are a
translation of contract laws into computer protocols, albeit they
provide security that surpasses classical contract laws. This
additional layer of security is because transactions that emanate
from smart contracts are verified and mined by the same rules
that underpins transactions between externally owned accounts
on a blockchain [21], [24].
Smart contracts change the state of Ethereum through the

Ethereum Virtual Machine (evm), which can be viewed as
a global computer that cannot be interfered with. They are
typically developed using Solidity, a contract-oriented high-level
programming language. The evm only understands bytecode,
so the high-level Solidity code is translated to evm executable
bytecode by the Solidity compiler [21], [24]. Ethereum’s smart
contracts are deployed on the blockchain via a transaction that
submits their evm executable bytecode on the blockchain. After
deployment, they possess an Ethereum address and their code
and subsequent transactions become accessible to the public on
the blockchain. Thereafter, the smart contracts run in the evm,
whenever a transaction is sent to its address. Every transaction,
including the contract deployment transaction incurs a fee called
gas, which is payable to the applicable mining node on the
network [8], [9], [21], [24]. In the Ethereum network, miners
are rewarded for processing transactions between externally
owned accounts and executing smart contracts [7], [24]. Smart
contracts can be invoked either through transaction or calls.
While transactions alter the state of the blockchain and incur
gas, calls allow state reading and are free. Transactions sent
to the smart contract address can contain Ether, data or both.
Transactions containing Ether lodges Ether to the smart contract;
whereas, transactions containing data usually serve as an
argument to a function in the smart contract [21], [24]. Overall,
Ethereum’s ecosystem is flexible and mature, which is why its
smart contract technology will be leveraged on for the rest of
the paper.

3

III. Methodology
As already discussed, traditional CfDs hedges against the

revenue risk exposure of renewable electricity generators, but
themselves introduces other new risks. In this section, we define
the business logic of bed that addresses the hedging related
risks posed by traditional CfDs. Developing smart contracts
can be very challenging since they must retain the same legal,
technical and commercial functionality as contract laws [20],
while being cheat-proof. This illuminates the importance of the
business logic – the brain of the smart contract, where all the
game-theoretic incentive mechanisms that encourages rational
behaviour are housed.
In a broad sense (see Fig. 1), bed is designed to be a dual

escrow bilateral smart contract, such as in [18]. It allows both
contracting CfD parties to deposit into and withdraw from their
respective escrow accounts. When exposed to a specific input
that serves as a trigger, bed autonomously pays either party
based on pre-agreed conditions. bed is designed to incentivize
a neutral but trustless party to regularly invoke functions of
the contract at certain time windows. Access to all functions
is restricted so that only permitted parties can call certain
functions. Contracting parties are motivated to remain in the
contract to hedge their revenue risk, and maintain their escrow
accounts to avoid liquidation.

A. Assumptions
1) Low volatility: The volatility problem of Ether has now

been resolved by the introduction of stable coins (e.g. the Dai
stable coin [10]) into the Ethereum ecosystem. Dai, developed
by the Maker team, is a collateral-backed cryptocurrency
whose value is softly pegged to the US Dollars (usd). Dai
can be generated in exchange for Ether, through Maker – a
smart contract on Ethereum, whose business logic is built on
decentralized finance game-theoretic principles to maintain a
1:1 pegging with usd [10]. For convenience, we maintain that
1 Ether = e200, and we use this exchange rate all through the
rest of this paper, even though DAI would be used in practise.

2) Oracle service: The spot price and strike price are
required to determine the CfD payoff at every trading period.
Although the strike price is fixed and registered on-chain
following bed’s deployment, the spot price fluctuates at every
trading period and is published off-chain. Unfortunately, smart
contracts are unable to autonomously access off-chain data.
This is where the role of Oracles come about, as they are used
to provide external data that can trigger pre-defined actions of
the smart contract. Oracles can be either software, hardware or
human. Software oracles send data to the smart contract via
online sources. Hardware oracles obtain data from the physical
world using sensors and send the data to the smart contract.
Human oracles interact with the smart contract, via participants
who are granted access by the contract owner [24]. Oracles
require trust [7], [24], and in this paper, we assume that a
Market Operator has been delegated to serve as an Oracle in
bed.

B. Incentives
Given that smart contract functions are not self-invoking and

incurs gas (infrastructure fee) for every call, both contracting

parties agree to allow a neutral but trustless party to invoke
some of the functions of bed, for a small bounty. Like any
derivative financial instrument, bed requires a maintenance
margin to limit counterparty credit risk exposure. Its margin
rules are in the form of a bilateral American option [19], since
any of the contracting parties can exit the contract any time they
wish. Therefore, a termination penalty premium is introduced
to disincentivize counterparties from terminating the contract
or refusing to refill their escrow account. The design problem
becomes deriving the minimum required maintenance margin
that removes counterparty credit risk; and the termination
penalty that encourages contracting parties to remain in the
contract and maintain their escrow accounts. Equation (3) shows
the minimum required maintenance margin for the generator:

t=n∑
t=1

(
Mm

t

)
≥

t=n∑
t=1

(
Cst
t × max

(
0, Pst

t − Psp
t

))
(3)

In Equation (3), Mm
t is the maintenance margin; while C

and P, st and sp, retain their definitions as in Equation (1) and
Equation (2) respectively. From Equation (3), we can assert that
the maintenance margin must be equals to or greater than the
CfD payoff per trading period. The maximum payoff at every
trading period occurs when: sp = ±∞. We can hence make a
realistic assumption that min sp = −st and max sp = (st × 2).
On the other hand, the termination penalty can be chosen
probabilistically, based on many factors such as the jurisdiction,
termination and default probability of contracting parties, etc
[19]. However, it must be sufficient to deter either party from
exiting the contract. The minimum escrow requirement of the
contracting parties become the sum of the maintenance margin
and termination penalty.

C. Functions
1) Account: bed provides two escrow accounts for both the

generator and supplier. Both parties alone are able to withdraw
money from their respective escrow account up to the minimum
escrow requirement. For demonstration, the following Solidity
code snippet shows the Deposit and Withdraw function of
the generator:
function generator_Deposit () public onlyGenerator

payable {
account_Balance [generator] += msg.value;
}
function generator_Withdraw (uint amount) public

onlyGenerator payable {
require (account_Balance [generator] >=

maintenanceMargin);
account_Balance [generator] -= amount;
msg.sender.transfer(amount); }

2) Difference: The Difference payment function is called
by a trustless party who is unable to affect the outcome of bed
but is financially incentivized to invoke the function once every
hour. This incentive mechanism is critical to the operation of
decentralized networks, such as in [10]. For every transaction,
the trustless party is paid a bounty, we term trustless party
difference fee. This fee is higher than the typical gas cost
of the transaction and is equally borne by both contracting
parties. Three things happen when this function is invoked.

4

Fig. 1. bed v1.0: A dual-deposit escrow smart Contract-for-Difference

First, the spot price is obtained from the Oracle. Thereafter,
bed computes the difference between the spot and strike price.
The difference is then transferred to the escrow account of the
appropriate party. See the following Solidity code snippet:
function difference_Payment(uint spotPrice) public

onlyTrustlessParty payable {
require (now >= lastWithdrawTime[msg.sender] +

tradingPeriodTime);
account_Balance [generator] -=

trustlessPartyDifferenceFee/2;
account_Balance [supplier] -=

trustlessPartyDifferenceFee/2;
msg.sender.transfer(trustlessPartyDifferenceFee);

if (strikePrice > spotPrice) {
uint diff = (strikePrice - spotPrice) *

contractedCapacity;
account_Balance [supplier] -= diff;
account_Balance [generator] += diff;
}
else if (strikePrice < spotPrice) {
uint diff = (spotPrice - strikePrice) *

contractedCapacity;
account_Balance [generator] -= diff;
account_Balance [supplier] += diff;
}
else { revert (); }
lastWithdrawTime[msg.sender] = now; }

3) Close: The Close function can be called by the contract-
ing parties or trustless party. Either of the contracting parties
will call this function if they intend to exit bed. When this
function is invoked, bed closes but before then, it transfers
the maintenance margin to the exiting party, and the balances
of both escrow accounts (if any) and termination penalty to
the non-exiting party. This ultimately discourages a rational
party from terminating bed. The trustless party, on the other
hand, is financially incentivized to invoke this function for a
bounty called trustless party close fee, when any of the escrow

accounts is below the minimum escrow requirement. Otherwise,
it loses Ether due to gas costs and bed reverts to its initial state.
If the trustless party invokes this function due to either party
defaulting on its minimum maintenance margin, a bounty is
paid to its account, while the balances of both escrow accounts
and termination penalty are transferred to the non-defaulting
party. See the following Solidity code snippet:

function close_Contract() public payable {
if (msg.sender == generator){
msg.sender.transfer(maintenanceMargin);
selfdestruct(supplier);
}
else if (msg.sender == supplier){
msg.sender.transfer(maintenanceMargin);
selfdestruct(generator);
}
else if (msg.sender == trustlessParty){
if (account_Balance [generator] < marginAndPenalty

&& account_Balance [supplier] >=
marginAndPenalty) {

msg.sender.transfer(trustlessPartyCloseFee);
selfdestruct(supplier);
}
else if (account_Balance [supplier] <

marginAndPenalty && account_Balance [generator
] >= marginAndPenalty) {

msg.sender.transfer(trustlessPartyCloseFee);
selfdestruct(generator);
}
else if (account_Balance [supplier] <

marginAndPenalty && account_Balance [generator
] < marginAndPenalty) {

selfdestruct(msg.sender);
}
else { revert (); } } else { revert (); } }

5

D. Access restriction and Security
Access is restricted in bed so that only permitted parties

can call certain functions. bed runs on Ethereum, which is
a public blockchain, so in spite of the fact that we restrict
access, transactions are publicly recorded. We restrict access in
bed, through the require object. For recurring and function-
wide access restriction requirements, the require object was
wrapped inside a function modifier and re-used, such as the
onlyGenerator, onlySupplier and onlyTrustlessParty
modifiers in Subsection III-C. bed is also resistant to a popular
vulnerability called – "re-entrancy bug" – which results when a
malicious smart contract tricks an exploitable smart contract by
recursively invoking functions of the smart contract [24]. bed’s
resistance to re-entrancy is because access control per function
only allows interaction with the contracting parties and trustless
party. Moreover, there is no function that sends Ether to the
public; thus, making it impossible for a malicious contract to
use a fallback function to re-enter bed. Overall, we ensured
that the state of bed was fully updated on the blockchain before
interacting with any party’s public address. Although there are
many other security risks and vulnerabilities that are plausible
in Ethereum’s smart contract ecosystem which we have already
taken cognizance of (see [24] for details), the re-entrancy bug
is the most popular.

IV. Results and Discussion
A. Case study
Consider a wind generator on the island of Ireland with

an installed capacity of 110 MW. On a trading day, the wind
generator offers 100 MWh of energy into the day-ahead physical
market at a price of 80e/MWh. It also holds a 100 MWh
bed contract with an electricity supplier at a strike price of
80e/MWh to hedge against the spot price volatility on a trading
day as shown in Fig. 2. The incentive mechanism built into bed
includes: a maintenance margin of e16,000 and a termination
penalty premium of e4,000. In this case study, we neglect the
trustless party fees because they are meagre compared to the
cash flows of the contracting parties.
The wind generator starts the trading day with an escrow

account balance of e24,000. On trading period 1 (00:00), the
spot price is e76/MWh. In this case, bed automatically pays
the wind generator the product of the contracted capacity and
the difference between the spot and strike price. The total
amount transferred to the generator’s escrow account by bed on
trading period 1 is equals to e400. Its escrow account balance
after trading period 1 (00:00) becomes e24,400. The CfD
payoff in the first eight trading periods as shown in Fig. 3 is
significantly in favor of the wind generator. This led its account
to grow much higher than bed’s minimum escrow requirement.
Given its healthy escrow account, the generator decides to
withdraw e5,000 from its account on trading period 9 (8:00).
Later on the same trading day, the payoff began to favor its
counterparty – the electricity supplier. To avoid liquidation of
its escrow account, which will automatically occur when its
escrow account falls below the minimum escrow requirement
(i.e. e20,000), it deposits e4,000 on trading period 15 (14:00).
It ends the trading day with a healthy escrow account balance
of e22,300. bed continues to pay out to the appropriate party

Fig. 2. Spot prices on a trading day (00:00 to 23:00)

Fig. 3. bed’s escrow accounts on a trading day (00:00 to 23:00)

this way, until any of the contracting parties exits the contract
or default on the minimum escrow requirement.

B. Discussion
1) Collateral requirements and Margining risk: Counterparty

credit risk is the greatest concern for parties entering a CfD
and is usually difficult to hedge since it is inherently part
of a CfD agreement. Collateral (or margin) requirements are
therefore imposed to limit this risk exposure [2], [3], [6], [25].
In traditional CfDs, collateral requirements are very high since
settlement typically occurs monthly or longer [25]. However,
since bed settles every hour, the possible counter-party exposure
per time is limited and thus, the collateral requirements are
significantly lower. This collateral requirement reduction is
significant and directly affects margining risk – the risk that
future cash flows are lower because of maintenance margin
payments [6]. This implies that with bed, investors would not
only hedge counterparty credit risk, but will increase their
liquid assets per time.

6

2) Hedging cost: bed presents significant cost reduction and
increased efficiency over the whole CfD transaction cycle. In
fact, the only cost that is incurred is a meagre fee called
gas cost, which is the infrastructure fee of the Ethereum
network and is used to create incentives for miners to process
transactions in the Ethereum blockchain. Unlike traditional
CfDs, bed eliminates the costs incurred by counterparties due
to clearing and settlement, and other overhead costs such as,
audits, enforcement & compliance, and confirmations. Another
non-recurring but possible cost that bed removes, is the cost
of potentially long and arduous arbitration processes that could
arise due to disputed payments or payment defaults [25].
Arbitration processes are non-existent in bed because it is
not susceptible to fraud or human errors, like traditional CfDs
where paper contracts and backend processes are the norm.
Transactions are frictionless, and pre-agreed terms are written
in stone and are made available through bed’s open-source
code on the blockchain.

3) Consistency, transparency and security: bed’s operation
remains consistent forever until it is exited by any of the
contracting parties. It also does not have a single point of failure
as its transactions and data are decentralised. Transactions that
emanate via bed are immutable forever on the blockchain
and can be referred to by any party in the future. As far as
possible, bed is designed to be secure and cheat-proof against
any malicious actor who intends to gain access to the contract’s
funds.

V. Conclusion
This paper has demonstrated the feasibility of using

blockchain for electricity derivatives and has shown that a
well-designed business logic for a blockchain-based smart
contract financial instrument can reduce hedging related risks
that arise due to traditional Contract-for-Difference agreements.
Altogether, the proposed bed prototype will result in lower
cost of obtaining finance for renewable electricity developers. It
will also increase the value of renewable electricity generators’
shares, since they will become more creditworthy ventures.
There are some aspects of bed that require further research and
development, such as the incentive mechanisms, Oracle and
stable coin features. However, it is hoped that future iteration
of bed will be sufficiently robust to become the standard CfD
financial instrument for renewable electricity generators in day-
ahead electricity markets.

References
[1] The International Energy Agency, “Renewables 2018: Market

analysis and forecast from 2018 to 2023,” Tech. Rep., 2019.
[2] Clifford Chance, “Contracts for Difference: an EMR CfD

Primer,” Tech. Rep., 2015, pp. 1–7.
[3] Baringa Partners LLP, “Forward hedging under I-SEM,” Tech.

Rep., 2016, pp. 1–29.
[4] Eirgrid, “Industry Guide to the Integrated Single Electricity

Market The I-SEM Project,” Tech. Rep., 2017, pp. 1–97.
[5] S. J. Deng and S. S. Oren, “Electricity derivatives and risk

management,” Energy, vol. 31, no. 6-7, pp. 940–953, 2006,
issn: 03605442. doi: 10.1016/j.energy.2005.02.015.

[6] J. Hull, Options, Futures and Other Derivatives. 2009, isbn:
0135009944. doi: 10.1007/978-1-4419-9230-7_2.

[7] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital
Cryptocurrencies. 2014, isbn: 9781449374044.

[8] M. Andoni et al., “Blockchain technology in the energy sector:
A systematic review of challenges and opportunities,” Renew-
able and Sustainable Energy Reviews, vol. 100, pp. 143–174,
2019, issn: 18790690. doi: 10.1016/j.rser.2018.10.014.

[9] K. Christidis and M. Devetsikiotis, “Blockchains and Smart
Contracts for the Internet of Things,” IEEE Access, vol. 4,
pp. 2292–2303, 2016, issn: 21693536. doi: 10.1109/ACCESS.
2016.2566339.

[10] Maker Team, “The Dai Stablecoin System,” Tech. Rep., 2017.
[11] A. S. Musleh, G. Yao, and S. M. Muyeen, “Blockchain

Applications in Smart Grid–Review and Frameworks,” IEEE
Access, vol. 7, pp. 86 746–86 757, 2019. doi: 10.1109/access.
2019.2920682.

[12] M. T. Devine and P. Cuffe, “Blockchain electricity trading
under demurrage,” IEEE Transactions on Smart Grid, vol. 10,
no. 2, pp. 2323–2325, 2019, issn: 1949-3053. doi: 10.1109/
TSG.2019.2892554.

[13] M. Pipattanasomporn, M. Kuzlu, and S. Rahman, “A
blockchain-based platform for exchange of solar energy:
Laboratory-scale implementation,” pp. 1–9, 2018. doi: 10 .
23919/ICUE-GESD.2018.8635679.

[14] E. Mengelkamp, J. Garttner, K. Rock, S. Kessler, L. Orsini,
and C. Weinhardt, “Designing microgrid energy markets: A
case study: The Brooklyn Microgrid,” Applied Energy, vol. 210,
pp. 870–880, 2018, issn: 03062619. doi: 10.1016/j.apenergy.
2017.06.054.

[15] Sun Exchange, The Sun Exchange. [Online]. Available: https:
//thesunexchange.com/.

[16] C. Hahn and A. F. Wons, “Initial Coin Offering,” Finanzierung
von Start-up-Unternehmen, pp. 237–251, 2018. doi: 10.1007/
978-3-658-20642-0_9.

[17] Ryan Surujnath, “Off The Chain! A Guide to Blockchain
Derivatives Markets and the Implications on Systemic Risk,”
Journal of Corporate & Financial Law, vol. 22, no. 2,
pp. 257–304, 2017.

[18] A. Asgaonkar and B. Krishnamachari, “Solving the Buyer and
Seller’s Dilemma : A Dual-Deposit Escrow Smart Contract
for Provably Cheat-Proof Delivery and Payment for a Digital
Good without a Trusted Mediator,” pp. 1–7, 2018. arXiv: arXiv:
1806.08379v1.

[19] C. P. Fries and P. Kohl-landgraf, “Smart Derivative Contracts:
Detaching Transactions from Counterparty Credit Risk,” pp. 1–
22, 2018.

[20] ISDA, “Legal Guidelines for Smart Derivatives Contracts,”
2019.

[21] V. Buterin, “Next generation smart contract & decentralized
application platform,” no. January, pp. 1–36, 2013.

[22] BTL, “Powered by Blockchain: Reinventing Information Man-
agement in the Energy Enterprise,” Tech. Rep., 2018.

[23] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[24] A. M. Antonopoulos and G. Wood, Mastering Ethereum. 2018,
isbn: 9783540773405.

[25] ESB, “Master Contract for Difference Agreement Between
Electricity Supply Board and [Buyer] Being a PSO-Supported
Contract Issued on [Date],” Tech. Rep., 2013.

