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Abstract

This paper serves as an overview for sequential learning algorithms for single hidden layer neural nets. Cite as: M. H. Arshad,

M. A. Abido. An Overview of Sequential Learning Algorithms for Single Hidden Layer Networks: Current Issues & Future

Trends. Abstract: In this paper, a brief survey of the commonly used sequential-learning algorithms used with single hidden

layer feed-forward neural networks is presented. A glimpse at the different kinds that are available in the literature up until

now, how they have developed throughout the years, and their relative execution is summarized. Most important things to take

note of during the designing phase of neural networks are its complexity, computational efficiency, maximum training time, and

ability to generalize the under-study problem. The comparison of different sequential learning algorithms in regard to these

merits for single hidden layer neural networks is drawn.
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An Overview of Sequential Learning Algorithms for
Single Hidden Layer Networks: Current Issues &

Future Trends
M. H. Arshad , Student Member, IEEE, and M. A. Abido , Senior Member, IEEE

Abstract—In this paper, a brief survey of the commonly used
sequential-learning algorithms used with single hidden layer feed-
forward neural networks is presented. A glimpse at the different
kinds that are available in the literature up until now, how
they have developed throughout the years, and their relative
execution is summarized. Most important things to take note of
during the designing phase of neural networks are its complexity,
computational efficiency, maximum training time, and ability to
generalize the under-study problem. The comparison of different
sequential learning algorithms in regard to these merits for single
hidden layer neural networks is drawn.

Index Terms—RAN, EKF, MRAN, Generalized Growing and
Pruning NNs OSELM, Direct Link RBF, EOSELM, ESOS ELM,
MOSELM

IMPACT STATEMENT

Online sequential learning plays a pivotal role for real-time
neural network applications. This review article summarizes the
most commonly used online sequential learning algorithms with
single hidden layer feedforward neural nets which will motive
the interest of machine learning researchers with the span of
the latest ongoing research work. We identify the major pros
and cons of the studied algorithms and share some of the new
promising directives for future work. This review also draws
comparison between the studied algorithms for three different
datasets to show the performance of each individual algorithm
based on generalization ability, accuracy and training time.
This comparison will benefit the new data science strategists in
selecting any of the above techniques for their own problem.

I. INTRODUCTION

THE internal layout of Multi-layer feedforward neural net-
works (MLFNs) allows to generate an approximate repre-

sentation which describes how well an input data is correlated
and it has made these networks the most widely used neural
networks (NNs) when it comes to pattern classifications [1],
[2], [3]. Multiple hidden layer NNs are considered as general
approximates but because of their complex nonlinear behavior,
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they are not preferred in industrial applications where most
applications require much faster and more generalized models
[4]. Due to its simple network structure and excellent approx-
imation performance, single hidden layer feed-forward neural
networks (SHLFNs) have been widely used in pattern classi-
fication and function approximation applications [5]. Under
normal circumstances with high dimensional large training
data, the existing SHLFN algorithms has a slow learning
speed, which limits the practical application of these learning
algorithm [6]. Another disadvantage of the SHLFNs learning
algorithm is its poor generalization ability [7]. At present the
learning algorithms for SHLFNs can be widely classified as:

• Batch learning algorithms
• Online sequential learning algorithms.

For the NN batch-mode learning algorithm, the offline
learning method is generally adopted [8]. That is, the network
training process is divided into several independent stages in
time. One typical feature of the batch learning algorithm based
neural networks is that all sample information must be known
beforehand. This feature makes the batch learning algorithm
unable to process objects with time-varying characteristics
i.e. real time data. In addition, before the network training,
if the number of samples are not enough, it will seriously
affect the performance of the network. Similarly, when adding
new samples, all the samples must be used to retrain the
whole neural network [4]. To compensate the shortcomings of
SHLFNs batch learning algorithm, researchers are committed
to explore new online sequential (OS) learning algorithm that
provide compatible performance index with the existing batch
learning based SHLFNs [9], [10]. With OS learning algorithm,
all sample data enters the neural network one by one, and
at any time, only one training sample is visible and used
for learning. The training samples entering the network are
discarded after the training is over. The most promising feature
of this type of learning algorithm is that before the start of
the learning process, there is no need of prior knowledge
of the training dataset size. Therefore, these algorithms are
more suitable for real time problems in industrial environment
applications.

In the history of SHLFNs OS learning algorithms, the
earliest algorithm was the Stochastic Gradient Decent Back
Propagation (SGBP) algorithm which was formulated in [11].
It was proposed as an improvement to standard back propaga-
tion algorithm (BP) with input data samples are processed in
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chunks. Resource Allocating Network (RAN) learning algo-
rithm proposed by Platt in [12]. RAN fundamentally suffers
from a problem of unlearning over time and this problem
was later addressed in [13] where the author proposed RAN-
LTM. The shortcomings of RAN learning algorithm were
further studied by Kadirkamanathan et al. and he proposed the
extended Kalman filter (EKF) iterative strategy and replaced
the previously used LMS method for network parameters
training which resulted in RANEKF learning algorithm [14].
Although this method improves the convergence speed of
the algorithm, the network complexity is also increased. To
minimize the computational cost of the RANEKF learning
algorithm, the MRAN algorithm added the deletion mecha-
nism for the neurons in the hidden layer [15]. An improved
MRAN learning algorithm (Hyper-MRAN) was proposed in
2006 which uses a new weight adjustment strategy that reduces
the disadvantages of high memory requirements of the MRAN
algorithm with higher accuracy [16].

In 2004, a new SHLFNs OS learning algorithm called GAP-
RBF algorithm was proposed, which further improved the
performance of MRAN [17]. It was later generalized in [18]
and was called as GGAP-RBF. In an attempt to improve the
computational complexity of the GGAP-RBF, in [19] GAP-
DRBF was proposed that replaced the extended Kalman filter
with decomposed extended Kalman filter and the underlying
activation function was changed to direct-link RBF (DRBF).
This learning algorithm has many adjustable parameters that
needs manual tuning. When these parameters are not properly
selected, the performance of the network will be seriously
degraded. In view of this shortcoming of the GGAP-RBF
learning algorithm an improved GGAP-RBF neural network
learning algorithm (GIRAN) was formulated [20]. Although
the improved GGAP-RBF can solve many practical problems
related to manual tuning of parameters, the activation function
of the algorithm is in the form of RBF which still was
computationally not very effective and limits its use in real-
time applications. The most famous RAN variant (SRAN)
introduced in [21] uses self-adaptive mechanism to update the
weight and biases of hidden layer neurons thereby drastically
increases the learning speed of the algorithm.

The concept of batch learning based extreme learning
machine (ELM)was introduced in [22] which Liang extended
to an OS learning based ELM that significantly improved
the computational efficiency of the algorithm and can select
multiple activation functions [23]. To further improve the
performance of Liang algorithm, recursive least squares (RLS)
method was replaced with orthogonal least squares iterative
strategy to further improve the generalization ability of the
network [24]. Additional improvement in setting the initial
random weights for the hidden neurons in OS-ELM was made
in [25] by using set of regularized linear equations. With OS-
ELM, the condition of having a greater number of hidden
neurons than the dataset size and also the singularity problem
encounter during the noisy data was studied in [26] and a
new algorithm called Regularized online sequential extreme
learning machine (ReOS-ELM) was proposed. The ReOS-
ELM makes use of the Tikhonov regularization [27] with bi-
optimization function to counter the problem of singularity and

ill-posed matrix inversion with standard OS-ELM. Ensemble
technique [28] was studied with OS-ELM in [29], [30] to
increase the generalization speed. To classify timeliness based
data, a forgetting factor mechanism was introduced with OS-
ELM in [31]. Class imbalance learning (CIL) is one of the
most researched areas in NNs and in [32], the first ELM
based framework was proposed for CIL problems with explicit
feature mapping. In case of implicit feature mapping in the
hidden layer neurons, a kernel based solution KOS-ELM was
introduced [33]. Various other improved OS-ELM for multi-
class data streams were studied in [34], [35], [36].

The SHLFNs OS learning algorithm can be divided into two
categories:
• SGBP, RAN, RAN-LTM, RANEKF, MRAN, EMRAN,

HMRAN, GGAP-RBF, GAP-DRBF, GIRAN and SRAN
The network parameters for these OS learning algorithms

are done iteratively as new sample information is received.
Also, before the algorithm training, there are many initial-
ization parameters that need to be manually set for reliable
performance
• OS-ELM, EOS-ELM, ReOS-ELM, FOS-ELM, VOS-

ELM, WOS-ELM, KOS-ELM, I-ELM, ROS-ELM,
ESOS-ELM, VWOS-ELM, MOS-ELM, M-OS-ELM,
OS-RELM, OS-RKELM, WOS-ELMK, AFGR-OS-ELM
and CW-OS-ELM

These OS learning algorithms eliminate the use of ini-
tialization parameters to improve the learning speed of the
NNs and reduce the artificially adjusted initialization network
parameters. Activation function for hidden layer neurons are
also no longer limited to the RBF form which makes these
algorithms computationally efficient.

To compare the performance of various OS learning algo-
rithms for SHLFNs, most of the researchers used training time,
number of hidden layer neurons, approximation accuracy,
generalization ability and algorithm stability as performance
indices.

II. ONLINE SEQUENTIAL LEARNING ALGORITHM BASED
SHLFNS

The structure of the SHLFNs consists of three layers, as
shown in Fig. 1, including the input layer, a single hidden
layer, and the output layer. Passing of signals to the hidden
layer is the major function of the input layer. The hidden
layer neuron can be a radial basis function or other satisfying
infinitely differentiable or arbitrary nonlinear bounded piece-
wise continuous qualitative function form, denoted here by
i (G). The output layer node has generally a linear activation
function, and the hidden layer and the output connection
weight are represented by ‘w’. In the RAN, RAN-LTM,
RANEKF, MRAN, GGAP-RBF, GAP-DRBF and GIRAN, the
hidden layer and the output connection weight is a constant
value of ‘1’, while in SGBP and sequential learning-based
ELM algorithms, this parameter is randomly set.

A. Stochastic Gradient Decent Back Propagation (SGBP) Al-
gorithm

SGBP was proposed by LeChun et al., is an improvement
to standard BP learning algorithm. In SGBP, the training
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Fig. 1. SHLFNs Architecture

dataset sample is introduced one by one in the hidden layer
neurons, and then based on the estimate of the error gradient,
parameters are updated by the standard BP algorithm [11]. The
algorithm was named as stochastic gradient back propagation
because of the use of the estimate of error gradient. The
purpose of using the estimate was to reduce the speed of
convergence which is advantageous in case of noisy data.
Because the input data is processed one by one, the SGBP
results in faster learning with repeating data sequences and can
track changing more effectively because of slow convergence
with noisy data which is usually the case in most of practical
applications.

B. Resource Allocation Network (RAN) Algorithm

The RAN was proposed by Platt in [12] is a dynamic
single hidden layer radial basis function (RBF) neural network.
The corresponding training algorithm is called RAN learning
algorithm. In RAN, the "novelty" of training dataset smple is
exploited for introducing the hidden layer neurons, and then
the parameters are updated by the LMS algorithm [37]. The
RAN learning algorithm is started with a no hidden layer
neuron, the hidden layer neuron activation function type is
RBF, and the first two input sample data are used for network
initialization. Subsequently, if for an input sample there is
unnecessarily large error between the output and the desired
one, the sample is considered novel, and a neuron is added
to the hidden layer of the network. If the input sample does
not meet the novelty requirements, the hidden layer neurons
are not added, but the LMS algorithm is initiated to update
the current network parameters e.g. centers for neurons, the
hidden and output layer connection weights etc. The novelty
criteria of the RAN online-sequential learning algorithm is:

|48 | = ‖H8 − Ĥ8 ‖ > Y (1)

38 = min1<:< ‖G8 − 2: ‖ > X8 (2)

where, 48 is the error in the output of the network, Y is the
required approximation accuracy (manual adjustment parame-
ter), 38 is the !2 norm between the current input data sample
x, and the center of the hidden layer neuron closest to it,
X8 = <0G(W8X<0G , X<8=) where, X<0G and X<8= are the max.
and min. distance between all the input data samples, and

0 < W < 1 is an attenuation coefficient. As the input data
sample G8 increases, X8 decreases at an exponential rate until
X<8=. When the input data sample G8 does not meet the novelty
requirements, the center point and the weights are updated
using the LMS algorithm.

C. Resource Allocating Network with Long-Term Memory
(RAN-LTM) Algorithm

The major drawback with RAN is the inherited unexpected
forgetting which causes the network to unlearn over time [38].
This problem was addressed in 2003 by K. Okamato who
proposed the idea of external memory with RAN [13]. The
new algorithm was called resource allocating network with
long term memory. The learning phase of this algorithm was
divided into 2 parts.

• Firstly, a hidden neuron is allocated and its weight
connection with the output are determined.

• Then in the later stage output error is calculated and if the
error shoots over a predetermined value, another neuron
is added like in the case of RAN but together with it a
new memory unit is also allocated in which the previous
input output pair is stored

The architecture of the RAN-LTM is given in Fig. 2 [38].

Fig. 2. RAN-LTM Architecture.

D. Resource Allocation Network using Extended Kalman Fil-
ter (RANEKF) Algorithm

The RANEKF algorithm is an improvement of RAN. The
addition of neurons in the hidden layer is the same as for
the RAN learning method. The only difference is that the
adjustment of the network parameters (centers and weights)
are done by the extended Kalman filter (EKF) method as
a substitute for the more traditional LMS method [14]. The
extended Kalman filter method has a faster convergence speed
than LMS method, but it requires more computer resources.
With the development of computer hardware technology, the
EKF method is more advantageous than the LMS iterative
method when the problem size is small.
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E. Minimal Resource Allocation Network (MRAN) Algorithm

This algorithm combines the hidden layer growth criterion
of RAN learning algorithm with an ideal deletion strategy for
the hidden layer neurons. In 1994, Cheng proposed the method
of deleting hidden layer nodes in batch learning algorithm [5].
In this method, each time the sample data enters the network
processing, the weights of each hidden layer node must be
checked and deleted in case if the weight of hidden layer node
is not equal or greater than a certain wanted value. Inspired
by the Cheng method, the MRAN algorithm with hidden
layer node deletion strategy was proposed [15]. The proposed
MRAN algorithm was compared both with RAN learning
and the RANEKF algorithm. Since the learning process of
MRAN algorithm entails the introduction of new hidden layer
neurons along with iterative tuning of network parameters
with the deletion strategy of hidden layer neurons, so it can
be more streamlined under the premise that SHLFNs has
better performance. Its common applications are listed in [39].
An extended MRAN (EMRAN) was proposed to reduce the
computational cost associated with MRAN in case of larger
input dimensional size [40]. A winner neuron approach was
used to select a neuron and then update the parameters only
related to this neuron using EKF method rather than updating
the parameters of all the neurons in the hidden layer.

F. Hyper Minimal Resource Allocation Network (HMRAN)
Algorithm

The computational complexity of MRAN increases dras-
tically as the input data sample dimension increases as it
requires to learn unwanted information from the input data
sample. The underlying activation function in MRAN is RBF
and in case of high dimensional input data sample, the compu-
tational cost increases because the increase in neurons number
proportionally increases the size of the covariance matrix for
extended Kalman filter. Therefore, the time complexity of the
algorithm limits its use in real-time industrial applications.
To overcome this problem with MRAN, extended minimal
resource network (EMRAN) was proposed in [40] but this
algorithm lags reasonable accuracy. In [16], Hyper MRAN
(HMRAN) was formulated, with suitable input data sample
dimension selection with hyper radial basis function (Hyper
RBF) as an activation function for SHLFNs, to reduce the time
complexity problem of MRAN by using localized extended
Kalman filter approach also the hyper RBF activation function
ensure high accuracy.

G. Generalized Growing and Pruning Radial Basis Function
(GGAP-RBF) Algorithm.

Nanyang University of Technology in Singapore, in 2005,
proposed a new OS learning algorithm for the existing short-
comings of various SHLFNs OS learning algorithms, called
the GGAP-RBF algorithm [18], which makes the use of the
traditional RBF. The performance of this SHLFNs online-
sequential learning algorithm was improved over the MRAN
algorithm. The parameters in MRAN are adjusted at each
iteration using the extended Kalman filter method, which

leads to the increment in the hidden layer neurons during the
parameter update process [16]. Also, the size of the covariance
matrix used in EKF is usually very large, which increases
the computational complexity of the network structure. This
results in an excessive computational burden of the algorithm
and a large amount of computer resources, which limits the
real-time application of the MRAN algorithm. Although the
GGAP-RBF learning algorithm uses the extended Kalman
filter method in the parameter update process, but only updates
the parameters (center and width) of the hidden layer neurons
closest to the current input data and the weight of the corre-
sponding neurons connecting the hidden layer neurons, which
greatly reduces the computational cost of this algorithm. In
addition, for the shortcomings of the initial parameter selection
of the various heuristic algorithms mentioned above, for the
uniformly distributed input data, the GGAP-RBF learning
algorithm also estimates the importance of the hidden layer
neurons, thereby reducing the initial parameters. Even though,
the GGAP-RBF OS learning algorithm reduces the number
of initialization parameters of MRAN, the disadvantage of
having uniformly distributed input data drastically reduced the
performance of the algorithm.

H. Growing and Pruning Direct Link Radial Basis Function
(GAP-DRBF Algorithm.

In [19], the authors improved the performance of GGAP-
RBF by replacing the RBF with Direct-link RBF which is
basically the augmented version of conventional RBF with a
linear mapping of input and output to improve the accuracy
of training and also the EKF was replaced with decomposed
EKF proposed in [41] that reduces the number of initialization
parameters thereby ensuring that the computational complexity
of the GGAP-RBF is further reduced as the training data size
increases. On the flip side, this algorithm has a significant
disadvantage: it requires data to be uniformly distributed,
which usually is not the case in practical applications hence
requiring more hidden neurons, reducing the performance of
the algorithm.

I. Improved GGAP-RBF (GIRAN) Algorithm.

The GGAP-RBF utilized the idea of dynamically estimating
the importance of the hidden neurons but the formula given
in [18] was further corrected in [20] where the author improved
the GGAP-RBF algorithm in a bid to reduce the initialization
parameters of the algorithm and introduced the new definition
and estimation formula for measuring the importance of the
hidden layer neurons. The corresponding algorithm is called
GIRAN (Improved GGAP-RBF Learning Algorithm) learning
algorithm. The dynamic adjustment formula for ‘K’ was given
by

 =
48

(48 + ‖F8A ‖)
√
−;= Y

48

(3)

where, K equals the number of hidden neurons.
Based on the GGAP-RBF algorithm, combined with the

update formula of parameter, and the adaptive adjustment
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method of radial basis function width, the improved algorithm
is as follows.

Given the estimated error, the single point output is expected
to be accurate. For the input sample.
• Calculate the network output
• Calculate the novelty criterion
• Apply the novelty criterion to determine whether to

increase the hidden layer neurons
• Else: Use the EKF method to update the hidden layer

section of the network closest to the current input.
• Check if the deletion criteria of the hidden layer neurons

are met
• If yes, delete the hidden layer neurons, correspondingly

reduce the dimension of EKF. Else: GOTO Step 1.

J. Self Adaptive Resource Allocation Network (SRAN) Algo-
rithm.

Usually, in RBF based sequential learning algorithms, the
control parameters are manually set for reliable performance
which results in poor generalization efficiency with redundant
data. In [21], a solution to this problem was proposed by using
self-regulated initial control parameters. These control param-
eters change automatically based on the difference between the
new information in the coming sample and the already learnt
network’s information. The higher the difference, the greater
is the probability of the incoming sample to contribute towards
sequential learning process. If the difference is negligible, then
the sample is considered as redundant and is simply discarded.
It is to be noted that SRAN does not include pruning strategy
and relies on EKF for training which makes it computationally
more expensive.

III. EXTREME LEARNING MACHINE BASED ONLINE
SEQUENTIAL LEARNING ALGORITHM

To counter the learning speed problems of the commonly
used SHLFNs sequential-learning algorithms, Huang proposed
an extreme learning machine (ELM) batch learning algorithm,
which sets the weight connections between input and hidden
layer and the bias of the hidden layer neurons randomly, and
then analytically determines the weight connections of hidden
layer neuron with that of the output layer of the SHLFNs by
calculating a pseudo-inverse operation on the matrix generated
by the output layer to obtain the weights [25]. In theory, the
input weights and neuron deviations of SHLFNs do not have
to be adjusted during training, and they can be arbitrarily
assigned [22], which greatly improves the learning speed of
the SHLFNs.

To solve the problem of large hidden layer neuron in ELM
with batch learning, the Regularized Least-Squares Extreme
Learning Machines (RLS-ELM) was proposed in [25]. In RLS-
ELM, instead of random initialization of the hidden layer
weights and biases, the decision is taken by using a system of
regularized linear equations. The output weights are obtained
in the same manner as the original ELM. This single act of
changing the way in which the weights of the input layers are
obtained makes the system obtain a very good performance
in relation to the original ELM and ensures that the overall
network is relatively smaller with a higher training speed.

A. Online Sequential Extreme Learning Machines (OS-ELM)
Algorithm

Using the core idea of ELM algorithm, in [23], an online-
sequential extreme learning machine based on recursive least
squares algorithm (RLS), called OS-ELM (RLS) learning
algorithm was proposed. This algorithm was further improved
in [24] where the author used orthogonal least squares method
and replaced the computationally bulky RLS method to update
the network parameters. The improved OS-ELM was termed
as OS-ELM (OLS). The major drawback related to OS-ELM
was ill-posed and singular matrix obtained in case of noisy
data. Also, the dependence of hidden layer neurons on the
size of dataset greatly effects the efficiency of this learning
algorithm

B. Ensemble based Online Sequential Extreme Learning Ma-
chine (EOS-ELM) Algorithm

To further enhance the generalization ability and speed
of OS-ELM, in 2009, Lu proposed the ensemble-based OS-
ELM termed as EOS-ELM [29]. It uses various OS-ELMs
with different hidden neurons and the same data sample is
passed to the hidden layer. Because of the different parametric
settings of each OS-ELM, the output of OS-ELMs are different
and the final output is calculated by the average of the
outputs of each OS-ELM. This ensemble of different OS-
ELMs effectively produces better results because of each ELM
possessing distinct capacity of adaptation to the new streams
of data and the fact that mean of a population is always close
to the expected value rather than any individual value in the
population.

C. Regularized Online Sequential Extreme Learning Machines
(ReOS-ELM) Algorithm

The OS-ELM algorithm produced exemplary results for
non-noisy training data. It can work with data arriving one
by one or in small data streams. The issue of singular matrix
and ill-posed optimization problem in case of noisy data was
studied by H.T. Huynh associated with OS-ELM [26]. The
author replaced the standard optimization problem associated
with OS-ELM with bi-optimization problem composed of
actual ;2norm of current weight vector and training error
that improved the generalization ability of the network for
real-time noisy data as studied in [42]. Also, the singularity
problem was solved by using Tikhonov regularization [27]
instead of least squares method used in [25]. The ReOS-ELM
learning algorithm not only produces faster learning but also
significantly helps in overcoming the usual problem of setting
the initial domain of impact factor and bias in case of noisy
data.

D. Online Sequential Extreme Learning Machine with Forget-
ting Mechanism (FOS-ELM) Algorithm

The generalization ability of EOS-ELM hinders with the
timeliness property associated with certain types of data e.g.
weather and stock forecasting data. Because the input data
has a limited period of validity, training the EOS-ELM with
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this type of data results in wrong prediction and instability.
To overcome this issue and to reflect the timeliness property
of the incoming data, J. Zhao et al. proposed the forgetting
mechanism with EOS-ELM to oust the out-of-date datum for
the sequential learning in [31]. Zhao concluded that rather than
re-training the network, as new data enters the hidden layer,
training is only done by using newly available datum and with
the already known network parameters only if the new data
arriving is valid. A similar work was reported in [43] where, a
timeliness online sequential extreme learning machine (TOS-
ELM) was proposed based on incoming data’s distribution and
central tendency characteristics. In [44], a variable forgetting
factor based on directional forgetting factor [45] with EOS-
ELM, called DFF-OS-ELM, was used to better capture the
timeliness property of the incoming data.

E. Voting base Online Sequential Extreme Learning Machine
(VOS-ELM) Algorithm

VOS-ELM was proposed in [46] that used several inde-
pendent OS-ELM in parallel with same number of hidden
nodes and similar input data chunk but with different randomly
generated initialization parameter for each extreme learning
machine. A weight vector for the several OS-ELMs were cal-
culated in parallel with RLS algorithm. The final measurement
was calculated based on voting method between the OS-ELMs.
The classification accuracy of VOS-ELM was found to be
higher than the original OS-ELM also the speed of learning
was greatly improved in contrast to V-ELM [30].

F. Weighting Online Sequential Extreme Learning Machine
(WOS-ELM) Algorithm

The most widely encountered problem during the last
decade in machine learning is class imbalance learning (CIL)
problem. Majority of researchers have proposed various so-
lutions based on batch learning to tackle CIL problems es-
pecially in the field of medicine and online fraud detection.
It was not until 2013 that a first online sequential extreme
learning machine-based algorithm was proposed to counter
the bi-class CIL problem [32]. Mirza B. & Lin Z. proposed
their weighted online sequential extreme learning machine
algorithm that efficiently assign higher weights to minority
class and lesser weight to majority class in order to alleviate
the CIL problem. This weighting tuning was based on �<40=
optimization which is a popular statistical evaluation criteria
for the CIL problems [47]. Because of no need of external
storage of past learned data and simple weight tuning method,
the convergence rate of WOS-ELM is very fast, but it requires
the setting of optimal number of neurons in the hidden layer.
Also, the proposed algorithm works only in case of bi-class
problems with known feature mappings.

G. Online Sequential Extreme Learning Machine with Kernels
(KOS-ELM)

To overcome the limiting condition of known feature map-
pings for WOS-ELM, kernel based OS-ELM was presented
in [33] called KOS-ELM. This was the first attempt to combine

OS-ELM with nonlinear adaptive filtering technique. Although
the resultant algorithm has better classification capability for
bi-class CIL problem, but it works only when the data is
entered in the hidden layer one by one as for each time a new
center is calculated for each input data sample which hinders
its utilization for large datasets. Two variants of KOS-ELM;
approximate linear dependency kernel-based OS-ELM (ALD-
KOS-ELM) and fixed budget kernel based OS-ELM (FB-KOS-
ELM) was also proposed in [33] in order to apply KOS-ELM
algorithm to large datasets that are sparse in nature.

H. An Incremental Extreme Learning Machine for Online
Sequential Learning (I-ELM) Algorithm

Based on the idea of ELM algorithm, in [48], three variants
of incremental extreme learning machine (IELM) was pro-
posed to solve online-sequential learning problems namely:
• Minimal Norm Incremental Extreme Learning Machine

(MN-IELM)
• Least Square Incremental Extreme Learning Machine

(LS-IELM)
• Kernel Based Incremental Extreme Learning Machine

(KB-IELM)
MN-IELM is used with smaller dataset but for larger dataset

LS-IELM is preferred with known feature mappings. For
unknown feature mapping KB-IELM was formulated.

I. Robust Online Sequential Extreme Learning Machine (ROS-
ELM) Algorithm

Even though the generalization ability of OS-ELM improves
by using ensemble learning technique as studied in [29], Zhou
et al. in 2002 deduced that the selective ensemble learning
technique is even better than the standard ensemble learning
technique for NNs [28]. Based on this idea of selective
ensemble learning a ROS-ELM algorithm was presented in
[49]. An adaptive selective ensemble method based on particle
swarm optimization was used with OS-ELM. The output error
in root mean square sense is compared to a threshold value
to decide whether to do selective ensemble using PSO or to
just proceed with standard EOS-ELM algorithm. This adaptive
selective mechanism results in the improvement of the inherit
instability of the EOS-ELM.

J. Ensemble of Subset Online Sequential Extreme Learning
Machine (ESOS-ELM) Algorithm

To solve the CIL problem of data having timeliness property
with ensemble-based OS-ELM, Mirza B. & Lin et al. proposed
ensemble of subsets of OS-ELM algorithm termed as ESOS-
ELM in the literature [50]. ESOS-ELM consists of ordinary
EOS-ELM with external memory to store previously learned
information. A control is implemented to detect the validity
of the incoming data which enters the main ensemble of OS-
ELMs in balanced subsets. The main architecture of ESOS is
shown in Fig. 3. Though this framework helps getting better
classification efficiency with imbalance data having timeliness
property, the major disadvantage was its restriction to just bi-
class classification problems.
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Fig. 3. ESOS-ELM Architecture.

K. Volting based Weighted Online Sequential Extreme Learn-
ing Machine (VWOS-ELM) Algorithm

The bi-class classification shortcoming of original WOS-
ELM for CIL problems and even in ESOS-ELM with timeli-
ness data was further addressed in [34] by the same authors
and they proposed an improved framework called VWOS-
ELM. Mirza B. et al. extended the idea presented in [50]
and replaced OS-ELM with WOS-ELM proposed initially
for stationary bi-class CIL problems. The architecture thus
proposed is shown in Fig. 4 The control for the detection of
implicit time information in the incoming datum was replaced
with the majority voting system that selects the trained WOS-
ELM. Each WOS-ELM in VWOS-ELM has same number
of hidden neurons with different initial parametric settings.
The enhanced sequential learning algorithm thus produced has
better classification property in comparison to WOS-ELM for
bi-class CIL problems and can also handle multi-class CIL
problems. This technique however cannot work with timeliness
data as there is no detection mechanism for time validity of the
input data stream. Also, another drawback of this framework
was to specify the optimal number of neurons in the hidden
layer.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Training  
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Validation Set for 
Weight Optimization 

Test Set

WOS-ELM  1

  Majority 
   Voting 

Output. 
. 
. 
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Fig. 4. VWOS-ELM Architecture.

L. Meta-congnitive Online Sequential Extreme Learning Ma-
chine (MOS-ELM) Algorithm

Newly proposed MOS-ELM [35] for CIL problems resolves
the major issues in WOS-ELM & VWOS-ELM of classifying

the timeliness data and the problem of only working with
the bi-class dataset. MOS-ELM can solve both timeliness
and class imbalance classification problems. Effective cost
weighting with data sampling was used to extend bi-class
CIL to multi-class CIL and a windowing method to detect the
validity of change required for timeliness data classification
problems. There was no need to specify the optimal number
of neurons in the hidden layer during the initialization process
that resulted in faster convergence with better generalization
efficiency [32].

M. M-estimator based Online Sequential Extreme Learning
Machine (M-OS-ELM) Algorithm

Recently a variation of OS-ELM was proposed to cater the
classification of noisy data especially in case of chaotic time
series [51]. By replacing the least square with M-estimator in
the cost function of the optimization function of OS-ELM, an
iterative solution, that solves the M-estimator based model, is
devised. To further find the optimal threshold value for M-
estimator, a sequential parametric estimation was proposed.
The proposed M-OS-ELM learning algorithm was found to
be very robust in contrast to OS-ELM and ReOS-ELM for
noisy data.

N. Online Sequential Regularized Extreme Learning Machine
(OS-RELM) Algorithm

Owing to the ill-posed and stability issues with OS-ELM in
case of smaller number of neurons in the hidden layer than the
datum size, in [52], an improved version of OS-ELM similar
to the ReOS-ELM [26] was presented. OS-RELM makes use
of the regularization to deal with the inherit ill-posed issue.
Moreover, it uses Leave-One-Out cross-validation method [53]
to learn from the new incoming data. A novel update scheme
was formulated to eliminate the required initialization phase
for stability and optimal performance during the sequential
learning. OS-RELM outperforms the basic OS-ELM in terms
of computational cost with superior generalization ability.

O. Online Sequential Reduced Kernel Extreme Learning Ma-
chine (OS-RKELM) Algorithm

Although OS-RELM somewhat addressed the issue of com-
putationally ill-posed and stability with OS-ELM, it still would
get trapped in singularity problem when the incoming datum
size is larger as compared to neurons in the hidden layer. Deng
et al. proposed a solution to this problem by incorporating
different kernels for the hidden neurons. The presented frame-
work of OS-RKELM takes a subset of training samples in the
initialization phase to train the kernel based hidden neurons
and then afterwards the algorithm can handle incoming data
streams arriving either one by one or in chunks [54]. OS-
RKELM overcome the drawback of OS-ELM of specifying
the optimal random initial weights for better generalization
ability in case of implicit feature mapping.
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P. Weighted Online Sequential Extreme Learning Machine
with Kernels (WOS-ELMK) Algorithm

ESOS-ELM [50], and WOS-ELM [32] works only for bi-
class CIL problems. Also, both these algorithms require to
specify the number of neurons in the hidden layer for optimal
performance. VWOS-ELM [34], presented for multi-class CIL
problems, resolves the major stability problem inherited with
single WOS-ELM when hidden layer neurons are less in
number than the incoming data size via majority voting based
ensemble of WOS-ELM. Lately, another online sequential
learning algorithm (MOS-ELM) [35] proposed for multi-class
CIL classification. All these variations of online sequential
ELM frameworks for CIL problems require explicit feature
mapping in the hidden layer. The idea of using kernel based
hidden layer neurons for training the data with implicit feature
mapping was exploited in [36] and the author presented a
new framework called WOS-ELMK. The proposed algorithm
works extremely well with multi-class CIL problems by uti-
lizing implicit kernel mapping rather than explicit random
feature mapping. To cater larger class-imbalance data streams,
a window approach for transferring the data to hidden layer
was used with an external memory control to improve the
convergence.

Q. Adaptive Forgetting Factor with Generalized Regulariza-
tion Online Sequential Extreme Learning Machine (AFGR-OS-
ELM) Algorithm

DFF-OS-ELM, proposed in [44], uses a variable
exponential-forgetting factor with regularization which
causes the regularization effect to slowly fade away. Thus,
eventually the DFF-OS-ELM will get trapped in the same
problematic operation of ill-posed matrix inversion. In order
to overcome the instability and limited use of DFF-OS-ELM,
W. Guo et al. presented a more sophisticated framework
called AFGR-OS-ELM in [55]. The author employed a novel
adaptable forgetting mechanism with a more generalized
regularization term [56], [57] in the cost function instead of
using the exponential forgetting regularization term in [44].
Doing so, the improved AFGR-OS- ELM framework ensured
a constant regularization effect without fading throughout
the entire learning process which ultimately removed the
ill-posed problem with most of OS-ELM algorithms.

R. Improved Online Sequential Extreme Learning Machine
Algorithm

To avoid the ill-posed matrix inversion problem associated
with OS-ELM, the size of hidden neurons is usually larger
than the input datum size. Genetic algorithm (GA), [58] whici
is a renowned global optimization tool, was used recently
to optimize the randomly initialized weight and biases of
simple OS-ELM [59]. The improved OS-ELM was able to
give better generalization efficiency and opened the door to a
new phase in the research of finding a new sequential learning
algorithm which combines OS-ELM with various evolutionary
algorithms.

S. Combination Weight based Ensemble of Online Sequential
Extreme Learning Machine (CW-EOS-ELM) Algorithm

In January 2019, CW-EOS-ELM algorithm was proposed
which selects the OS-ELM from the ensemble, based on
individual ELMs correlation and running error [60]. Adaboost
algorithm was used to set the initial weights and biases of
every OS-ELM in the ensemble and then later are updated
analytically during the update phase in accordance with the ag-
gregate game theory. The proposed framework can only work
with bi-class classification problems and does not require any
beforehand settings of weights and biases of individual OS-
ELMs establishing the fact that re-learn process is dynamic.

IV. SUMMARY & DISCUSSION

Usually the performance of various SHLFNs online-
sequential learning algorithms are compared in terms of the
type of problem and input data stream type i.e. imbalance or
timeliness-based data. There are very few algorithms that can
be used to solve bi-class as well as multi-class classification
problem. In terms of handling imbalance data streams, the
proposed framework makes use of computationally efficient
weighting method for different classes of data or intelligent
sampling techniques to extract balanced subsets of data.
Windowing method is widely used to capture the timeliness
property of the incoming data during the retraining of the
network. Even though major improvements in the sequential
learning algorithms have been suggested over the years for the
SHLFNs, all have some limitation of their own:
• Very few perform well with timeliness-based data e.g.

RAN-LTM, SRAN, FOS-ELM, DFF-OS-ELM, MOS-
ELM and AFGR-OS-ELM.

• Some are better suited for the imbalanced data streams
e.g. ESOS-ELM.

• Few of them can handle both bi-class and multi-class
classification problem with timeliness-based imbalanced
input data streams e.g. MOS-ELM and VWOS-ELM.

• Even though some can solve problems with input data
having gradual change in its validity, they are unable to
give satisfactory results with rapid timeliness drift s, such
as SRAN, OS-ELM.

• SRAN, GIRAN, OS-ELM, EOS-ELM & WOS-ELM are
commonly studied algorithms by most scholars for online
sequential learning and are further compared with the
improved algorithms

Table I summarizes all the above methods just to provide a
theoretical guidance for the practical engineering applications
when using any one of these learning algorithms.

The most common performance indices for any training
algorithms are the approximation accuracy (training error) and
the generalization ability (test error) which are calculated using
the average value of the root mean square error produced by
the algorithm. The stability is measured using the average
result’s standard deviation. The complexity of the network
trained by the algorithm can also be obtained using the total
number of the hidden layer neurons and learning speed is
approximated by the amount of training time required. The
activation functions of the RAN and its derivatives are fixed
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TABLE I
SEQUENTIAL LEARNING ALGORITHMS WITH THEIR APPROPRIATE SCENARIOS

Algorithms Bi-Class
Classification

Multi-Class
Classification

Imbalanced
Data Stream

Timeliness
Based Data

RAN X × × ×
RAN-LTM X × × X
RAN-EKE X × × ×

MRAN X × × ×
EMRAN X × × ×
HMRAN X × × ×

GGAP-RBF X × × ×
GAP-DRBF X × × ×

GIRAN X × × ×
SRAN X × × X

RLS-ELM X X × X
OS-ELM X X × X

EOS-ELM X X × X
ReOS-ELM X X × X
FOS-ELM X X × X
VOS-ELM X X × X
WOS-ELM X × X ×
KOS-ELM X × X ×

I-ELM X X × X
ROS-ELM X X × X

ESOS-ELM X × × X
VWOS-ELM X X X X
MOS-ELM X X X X
M-OS-ELM X X × X
OS-RELM X X × X

OS-RKELM X X × ×
WOS-ELMK X × X ×

AFGR-OS-ELM X X × X
Improved
OS-ELM X X × X

CW-OS-ELM X × × X

and is in the form of RBF except in GAP-DRBF where DRBF
was used whereas in case of OS-ELM and its different variants
of, two different activation functions of RBF and Sigmoid
(SIG) forms are mostly used.

In RAN, RAN-LTM, RANEKF, MRAN, EMRAN, HM-
RAM, GGAP-RBF, GAP-DRBF and GIRAN algorithms, the
parameter of the expected approximation accuracy is required,
and the performance of the network is controlled by the
adjustment of this parameter which is usually achieved through
the trial and error method. Similarly, in ELM variants, the
setting of the number of hidden layer neurons is used to control
the performance of the network.

The sequential learning algorithms including RAN, RAN-
LTM, RANEKF, MRAN, EMRAN, HMRAN, GGAP-RBF,
GIRAN and SRAN shows good stability when the activation
function is RBF. Also, the standard deviation in this case is
zero which confirms robustness. In case of learning algorithm
based on OS-ELM, the standard deviation usually is large
which makes the algorithm less robust. The main reason
for the poor stability of the algorithm is that the weight
connections between the inputs and hidden layer neurons are
set randomly before training which are later updated by the
iterative algorithm. Since the initial weights are different for
each iteration setting thereby, the performance of the network
is slightly different at each iterative step which reduces the
stability of the algorithm.

In addition, for most of the variants of OS-ELM learning al-
gorithm, it is necessary to use the training samples to initialize

the network parameters. When the size of hidden layer is large,
more training samples are needed to initialize the parameters
and since these input data sample have not been learned by
the network, they will reduce the approximation ability of the
network. Conversely if the total number of sample data is
small, it will result in large training error of the algorithm
or even instability. To get good approximation accuracy and
generalization ability different activation function have been
used for the hidden layer neurons [61] .

For any OS learning algorithm, the process of learning from
the previous data sample must end before the new sample
enters the network allowing the algorithm to be fast enough to
deal with real-time problems. The training time associated with
RAN learning algorithm and its variants is longer as compared
with sequential learning ELM variants.

Table II shows the performance of some of the studied
sequential learning algorithms in terms of learning time,
generalization ability (testing error), accuracy (training error)
and no. of hidden layer neurons used for Mackey chaotic time
series dataset. A better visualization for learning time for these
algorithms in given in Fig. 5. The Mackey chaotic time series
dataset used include 4000 data samples with 300 testing and
validation samples.

Table III-IV shows the results of three major algorithms
in case of bi-class and multi-class imbalance problems. For
bi-class CIL problem, phoneme dataset is used with a class
imbalance factor of 2.4, 4500 training samples, 300 test
samples and 300 validation samples. Similarly, for multi-class
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TABLE II
COMPARISON OF DIFFERENT SEQUENTIAL LEARNING ALGORITHMS

BASED ON DIFFERENT PERFORMANCE INDICES FOR MACKEY CHAOTIC
TIME SERIES DATASET

Algorithm No. of Hidden
Neurons

Learning
Time (sec.)

RMSE
(Training)

RMSE
(Testing)

RAN 39 58.12 0.1006 0.0431
RAN-EKF 23 62.24 0.0725 0.0236
MRAN 16 57.5 0.1102 0.0337
EMRAN 18 53.6 0.0941 0.0245
GGAB-RBF 19 24.32 0.0667 0.0312
GIRAN 13 26.42 0.1289 0.0609
OS-ELM (SIG) 120 7.11 0.0177 0.0183
ReOS-ELM (SIG) 120 6.89 0.0181 0.0175
ROS-ELM 120 6.94 0.0146 0.0149
EOS-ELM (SIG) 120 6.86 0.0179 0.0183
VOS-ELM 120 5.91 0.0172 0.0175
FOS-ELM 120 7.34 0.0165 0.0192
KOS-ELM 120 2.54 0.0153 0.0191
OS-ELMK 120 9.42 0.0142 0.0242
OS-RKELM 120 7.05 0.0042 0.0045
M-OS-ELM 120 8.52 0.0078 0.0074
CW-OS-ELM 120 6.94 0.0152 0.0165
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40

50
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70

Fig. 5. Learning Time for Different Sequential Learning Algorithms for
Mackey Chaotic Time Series Dataset.

CIL problem, yeast dataset having 9 classes with a ratio of
463:429:244:163:51:44:35:30:20 and 1450 samples was used.

TABLE III
COMPARISON OF DIFFERENT SEQUENTIAL LEARNING ALGORITHMS FOR

BI-CLASS PHONEME DATASET

Algorithm No. of
Classifiers

Learning
Time (sec.) Gmeans

WOS-ELM 7 9.42 84.2
ESOS-ELM 15 12.51 84.4
VWOS-ELM 7 8.59 84.7

TABLE IV
COMPARISON OF DIFFERENT SEQUENTIAL LEARNING ALGORITHMS FOR

MULTI-CLASS YEAST DATASET

Algorithm No. of
Classifiers

Learning
Time (sec.) Gmeans

WOS-ELM 7 12.57 90.6
ESOS-ELM 15 21.51 90.4
VWOS-ELM 7 10.64 91.6

Finally, Table V summarizes the all these sequential learning
techniques in terms of their merits & demerits. In summary,
when you need to choose a higher stability algorithm, you
can choose anyone from RAN or its derivatives while if you

need a higher processing speed algorithm, you should choose
OS-ELM alternatives.

V. FUTURE WORK

The main focus of this review article is to summarize the
sequential learning algorithms used with single hidden layer
feed-forward neural networks. The authors tried to list the
advantages as well as the various limitations associated with
the existing algorithms to provide a prior guideline for anyone
using one of the above mentioned algorithms. The following
problems were identified as open research queries and are
worth exploring for potential researchers.

1) Even after more than a decade of research in ELM, the
problem of settings the optimal number of neurons in
the hidden layer is still there and needs to be randomly
selected beforehand. Thus, implying that the improved
algorithms have not solved the fundamental problem
associated with ELM stability.

2) At present, the practical applications of sequential learn-
ing variants are very limited and there is plenty of work
needs to be done especially to use SHLNs sequential
learning algorithms for video and text streams classifi-
cation.

3) Although the sequential leanring algorithms for multi-
layer neural network have attracted many researchers,
their applications to practical problems are very rare.
Therefore to explore application of sequential learning
with MLFNs is much needed.

4) Another contribution, for the improvement in the gen-
eralization ability of sequential learning algorithms, can
be made by combining conventional learning algorithms
e.g. support vector machine, decision trees, random
forest, nearest neighbour with them.

5) Timeliness based data streams, over the period of time,
completely reshape the correlation between the data
stream features thus opening a new research objective
of using correlation to predict the data stream type.

VI. CONCLUSION

Compared with the batch learning algorithm of SHLFNs,
the OS learning algorithm can be applied to the processing
of real-time problems, which is more suitable for industrial
environment. Built on the brief summary of existing SHLFNs
online-sequential learning algorithm, this paper compares the
performance of various algorithms, based on training time,
approximation accuracy, generalization ability, and algorithm
stability The merits and demerits of various online learning
algorithms and the scope of their applications are pointed
out, which provides a theoretical guidance for he practical
application of the SHLFNs online learning algorithm.
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TABLE V: Summary of Sequential Learning Algorithms in SHLFNs

No. Algorithms Advantages Disadvantages Compared with

1 SGBP
Sequential learning of data in
form of one by one form, faster
convergence with redundant data

Slow learning rate with noisy
data RAN [15]

2 RAN
1BC true sequential learning
algorithm with input stream in
form of one by one or in chunks

Convergence is very slow,
un-reliable to use with real-time
applications, un-learn over time
with redundant input data

SGBP [15],
RAN-LTM [62]

3 RAN-LTM
Overcome the issue of
unlearning in RAN with external
memory

Convergence is very slow,
un-reliable to use with real-time
applications

RAN [13], [63]

4 RAN-EKF
Replace LMS with EKF, faster
convergence rate compared to
RAN

Higher computational cost
because of EKF based learning
method

RAN [14],
DRAN-EKF [64]

5 MRAN

Low computational cost because
of the method of deleting hidden
layer neurons, better
generalization accuracy

Convergence is very slow,
un-reliable to use with real-time
applications

RAN-EKF [65],
GAP-RBF [66],
EMRAN [16]

6 EMRAN

First RAN variant for real-time
applications, faster convergence
as compared to MRAN, can
work with high dimensional
dataset

Un-learn over time with
redundant input data, poor
generalization accuracy

MRAN [40],
HMRAN [16]

7 HMRAN Improved accuracy, less training
time, localized EKF method

Un-learn over time with
redundant input data

MRAN [16],
GGAP-RBF [67]

8 GGAP-RBF

Faster convergence, well suited
real-time applications, less initial
parameter settings as compared
to RAN and its variants

Conventional EKF method,
require more computational
resources, Input data needs to be
uniformly distributed

RAN-EKF [67],
MRAN [68]

9 GAP-DRBF
Replaced RBF with DRBF in
GGAP-RBF, decomposed EKF
method, low computational cost

Input data needs to be uniformly
distributed

RAN, RAN-EKF,
MRAN [17]

10 GIRAN

Improved update formula for the
addition of new hidden layer
neuron, higher accuracy, less
initial parameter settings

Same as GGAP-RBF RAN, MRAN, IRAN,
GGAP-RBF [20]

11 SRAN No need of initial parameter
settings

No pruning strategy,
computationally expensive
because of EKF learning method

MRAN, ELM [69]

12 OS-ELM
Online sequential-learning
algorithm, input data can arrive
as one by one or chunk by chunk

Not very robust, falls to
singularity trap when the
incoming datum size is larger
than the hidden layer neurons

RAN [12],
GGAP-RBF [18],
GAP-RBF [17],
ELM [70]

13 EOS-ELM
OS ensemble-based learning
algorithm, stable with much
improved accuracy

No weighting mechanism for
individual OS-ELMs

OS-ELM [29], SGBP,
MRAN [71]

14 ReOS-ELM

Replaced single factor cost
function with bi-optimization
cost function, overcome inherit
singularity problem of OS-ELM
with noisy data, better accuracy,
robust

Require balance stationary input
data

SGBP, MRAN,
GGAP-RBF [26],
OS-ELM [72], ELM,
M-OS-ELM [51]

Continued on next page



IEEE TRANSACTION FOR ARTIFICIAL INTELLIGENCE, VOL. XX, NO. X, APRIL 2020 14

TABLE V: continued

15 FOS-ELM

Forgetting factor mechanism
with OS-ELM to predict
timeliness information of input
data streams, stable, less training
time

Only valid for short-term
prediction problems

OS-ELM [73], RAN,
GGAP-RBF,
WOS-ELM [74]

16 VOS-ELM

A majority voting method was
introduced with a weighting
vector for different OS-ELM in
ensemble, less training time,
improved accuracy

The neurons in the hidden needs
to be randomly set beforehand OS-ELM [46]

17 WOS-ELM First OS-ELM ensemble-based
algorithm to solve CIL problem

Explicit feature mapping
required, number of hidden layer
neurons needs to be randomly
assigned

OS-ELM [32],
TOS-ELM [43],
VWOS-ELM [34]

18 KOS-ELM

Similar to WOS-ELM, small
generalization error, faster
convergence rate, no need of
explicit feature mapping

Poor generalization accuracy
with large data stream, input
data can only be processed in
one by one form

OS-ELM [75],
FOS-ELM [76],

19 I-ELM

Overcome ill-posed matrix
inversion and stability issue with
OS-ELM, three variants based
on different types of input data
streams

Dataset size needs to be known
beforehand, activation function
depends on the feature vector

OS-ELM [23],
ELM [77],
OKRELM [78]

20 ROS-ELM Selective ensemble-based
OS-ELM, more stable Similar to EOS-ELM OS-ELM,

EOS-ELM [49]

21 ESOS-ELM

Can work with bi-class CIL
problem, use external memory to
detect timeliness information in
the input datum

Works only with bi-class
problems, poor generalization
ability with stationary balance
dataset

WOS-ELM [50],
FOS-ELM,
VWOS-ELM [76]

22 VWOS-ELM
WOS-ELM ensemble-based
algorithm to solve CIL problem,
higher classification accuracy

Similar to WOS-ELM ESOS-ELM [76],
OS-ELM, MRAN [79]

23 MOS-ELM
Similar to ESOS-ELM, can
handle multi-class classification
problems

Explicit feature mappings are
required, kernels cannot be used

ELM, OS-ELM [79],
WOS-ELM,
VWOS-ELM [35]

24 M-OS-ELM Robust as compared to OS-ELM
& ReOS-ELM Similar to ReOS-ELM ELM, ReOS-ELM [51]

25 OS-RELM
Improved accuracy with better
generalization ability in
comparison to OS-ELM

Same as OS-ELM OS-ELM [26], [52]

26 OS-RKELM Singularity issue of OS-ELM
was resolved using Kernels

Unable to solve nonstationary
CIL problems

SGBP, OS-ELM [36],
BSGD [80]

27 WOS-ELMK

Similar to WOS-ELM, can work
with multi-class data, faster
convergence rate, no need of
explicit feature mapping

No mechanism to detect the
timeliness property of the
incoming data

KOS-ELM,
VWOS-ELM [36]

28 AFGR-OS-ELM

Completely overcome the
ill-posed matrix inversion
problem of OS-ELM by using
directional forgetting factor
mechanism with OS-ELM, can
work with bi-class & multi-class
problem

Unable to predict the validity
period of the incoming data

OS-ELM,
ReOS-ELM [77]

Continued on next page
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TABLE V: continued

29 Improved
OS-ELM

Better generalization accuracy as
compared to OS-ELM

Similar to OS-ELM, slow
convergence because of
hybridization of OS-ELM with
evolutionary algorithms

ELM, OS-ELM [59]

30 CW-OS-ELM Very fast, no need for initial
parameters settings

Works only with bi-class
problems EOS-ELM [60]
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