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Abstract

This work proposes a workload model for modern graphics APIs, named GAMORRA, to estimate each frame’s workload and
possibly predict rendering times on a target hardware.

Also, a suite of benchmarks is described that evaluates the performance of the target hardware and the overhead of different

graphical operations to be used in the proposed model for workload estimation.
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ABSTRACT 

This paper introduces a mathematical workload model of a modern graphics API pipeline, named as 

GAMORRA which works based on the load and complexity of each stage, either fixed-function or 

programmable. GAMORRA models each stage of the pipeline based on the stage’s operation complexity and 

the size of the data that these operations are performed on. To showcase GAMORRA’s capabilities, it is used 

to estimate real-time applications’ frame times in practice. A suite of benchmarks is also utilized to determine 

the processing time of each stage of the pipeline on the user’s device based on its mathematical model to be 

fed to GAMORRA. These benchmarks focus the overall processing load of the pipeline on a specific stage 

for each benchmark to determine the performance of that stage. Our experiments on direct3d11 show a 92.1% 

accuracy in estimating frame times.   
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Software infrastructure → Middleware • Software and its engineering → Software organization and 

properties → Software system structures → Real-time systems software • Software and its engineering → 
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• Computing methodologies → Computer graphics → Rendering → Rasterization •Mathematics of 

computing → Mathematical analysis → Functional analysis → Approximation 
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1 Introduction 
Graphics pipelines have evolved extremely during the past two decades, especially real-time rendering 

engines which are mostly used in computer games. Computer games produce heavily variant workloads in 

different scenes. Graphics streaming [1] in cloud gaming, as opposed to traditional CG [2], is gaining more 

attention in studies and estimating the rendering time of frames in a computer game is mandatory in such 

systems to ensure that game frames are rendered in time on the user’s device. Also, DVFS-based power 

management systems for mobile games need to take into account the amount of workload of each frame [3, 

4]. These studies usually rely on simple workload models [5] or mostly focus on predicting the upcoming 

frames’ workload. Instead, by utilizing an efficient model which can give a pretty good estimate of the 

workload of each frame without the need to render the frame, corresponding applications, e.g. power 
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management of mobile GPUs or frame time estimation in graphics streaming systems, wouldn’t need to rely 

on inaccurate prediction methods. Current frame workload estimation methods are scarce and usually utilize 

a linear prediction model, which contradicts the true nature of workloads even in consecutive frames.  

Due to the high variety of GPU architectures among vendors, a hardware level model effectively limits the 

applicability of such a model to a specific hardware device. Although each graphics driver covers a certain 

range of hardware models, they also differ significantly from each other due to their hardware dependent 

nature and the frequent updates they receive. But graphics APIs usually follow a certain model for their 

rendering pipeline with minor differences between different APIs’ pipeline architecture. So, designing a 

mathematical model to estimate frame times on an API-level is more effective and covers a much wider range 

of real-time applications, compared to a hardware architecture or driver level model. Additionally, utilizing 

an API-level model avoids the need for game engine modifications which are not possible to be applied to 

commercial off-the-shelf software. Therefore, a Graphics API-level Model of Rendering workload for Real-

time Applications, GAMORRA, is proposed in this paper.  

GAMORRA is a performance model that estimates the worst-case rendering time of a frame for real time 

applications like computer games. Graphics streaming [1, 6] or joint video-graphics streaming cloud gaming 

systems [7] which aim to improve the overall gaming experience of users that use low end hardware, require 

to estimate the rendering time of each frame practically to make sure that the client’s device can handle the 

workload of the game for every frame. Also, real time collaborative rendering platforms like Kahawai [8] 

and other similar platforms [9] that adjust the workload of each frame of the game based on the rendering 

capability of the client’s device, need to set the graphical level of details of every frame based on the thin 

client’s computational power.  

The primary goals of this work are as follows:  

- Presenting a reliable model for graphics APIs rendering pipeline in real-time applications: In 

GAMORRA, workload modeling is performed on an API level so that no modification in the game 

engine and no drastic change in the model, due to hardware upgrade or software update, are required.   

- Practicality and supporting commercially available off-the-shelf software: GAMORRA aims at 

presenting a general framework that takes the graphics data of each frame as input after they are 

being produced by the rendering engine. Taking this approach removes the need for accessing the 

graphics engine itself.   

- Simplicity and real-time functionality: It is very important for GAMORRA to not impose too much 

overhead on the system because that would defeat the purpose of such a model. 

- Designing a benchmark suite to evaluate the target system’s performance: Since the underlying 

graphics driver and hardware are responsible for carrying out the graphical workload, a benchmark 

suite is required to be performed on the target device to evaluate the performance of hardware and 

software involved in rendering the application. Direct3d 11 is chosen as a testcase of GAMORRA’s 

reliability in modeling a modern graphics API. Benchmarks are also performed on an API level so 

that they can capture the underlying software and hardware behavior and performance as well as the 

behavior of the API’s software itself.   

The primary contribution of GAMORRA is the mathematical workload model of a modern graphics API and 

the benchmark suite designed to work alongside this model for frame time estimation. Proper benchmarking 

has always been a focus in the field of computer graphics and GAMORRA, with its detailed model of a 

rendering pipeline, provides a blueprint for benchmarking of computer games for developers as well as a 

general graphics benchmarking framework for already released games. The rest of this paper is organized as 

follows: next section discusses notable works in this field and how GAMORRA differs from these methods. 

Section 3 explains the core design and functionality of GAMORRA in detail. Section 4 focuses on the 

implementation details of the proposed method and the experimental results and finally section 5 concludes 

the paper. 

2 Related works 
A limited number of studies have focused on estimating frame times targeting different applications for their 

proposed methods. In [10], a behavior-aware power management system is proposed for mobile games which 
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estimates each frame’s workload based on game application’s system calls and texture processing load. But 

there are much more contributing factors to rendering time of frames than only the number of API calls and 

the size of texture data like the size of 3D data models. 

Song et al [11] proposed a fine-grained GPU power management for closed source mobile games which 

works based on the number of vertices, the number of commands and the size of textures. Such an approach 

doesn’t take into account the effects of other contributing factors like the structure and performance of the 

graphics API that processes all the aforementioned parameters. This causes such a model to produce the same 

results for different APIs.  

Also, Zhang-Jian et al [3] model the workload of a computer game simply based on the number of triangles 

and pixels. Since the main focus of such studies is to predict the upcoming frames’ workload [12], rather than 

precisely modeling the workload of each frame based on available detailed frame data, they use controllers 

such as PID controllers along with linear models for workload prediction.  

Some of the studies in this field require hardware and software changes to perform properly [13, 14] which 

is not desired in the case of closed source software and already available hardware. Also, in [5], a simple 

model is proposed to determine the workload of graphics frames which is based on the number of triangles 

and might not suffice in a realistic scenario. So, for GAMORRA to become fully needless of any 

modifications in the rendering engine, it is implemented at an API level without the need to modify the API 

itself as well. 

3 GAMORRA 
GAMORRA acts as a middleware that resides between game engine and the graphics API software, capturing 

the output API commands produced by the engine. Figure 1 shows the placement of GAMORRA in a 

computer system and its relationship with the rendering engine and the graphics API layer. GAMORRA 

analyzes the graphics data stream on the fly and feeds each command to the graphics API as soon as it is 

done analyzing it. These analyses provide the value of the contributing factors to the workload so that they 

are fed to the mathematical model. To estimate frame times, a performance evaluation of the target device is 

mandatory before GAMORRA is ready to be used. After the performance signature of the target device is 

acquired, the pipeline model is tuned by the performance results and the setup is complete. 

3.1 Workload model 

Today’s graphics pipelines are composed of multiple programmable stages as opposed to the fixed function 

stages of old devices. A modern graphics API pipeline (Direct3d 11 in this case) is shown in figure 2.  

 

Figure 1: A rendering system hierarchy in presence of 

GAMORRA  
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Figure 2: Direct3d 11 graphics rendering pipeline 

Direct3d 11’s graphics pipeline consists of 4 fixed function stages (depicted by rectangles) and 5 

programmable stages (depicted by oval-shaped containers), a total of 9 stages. The programable stages of a 

rendering pipeline are called Shaders. To model the workload of each stage, the following generic formula 

is proposed which might differ in some details for different stages due to their unique characteristics: 

𝑊𝑋,𝐿𝑥
= 𝑃𝑒𝑟𝑓𝑋(𝐿𝑋)/Ƞ  (1) 

where Perfx represents the performance function of xth stage in time unit and Lx stands for the computational 

load of each stage. Also, Ƞ  determines the number of cores of the target device. Perfx is determined by 

custom graphics benchmarks that focus on executing a specific operation for a certain number of times to 

map each amount of load to the corresponding processing time. The final form of the function depends upon 

multiple factors like the performance and quantity of GPU cores residing in user’s device. Lx stands for the 

computational load of the xth stage. This load depends on the input size of each stage as well as the stage’s 

code complexity for shaders. Lx is also different for each stage and its value depends on the content of the 

intercepted graphics data.  

For a fixed function stage, Lx mainly depends on the number of inputs or outputs of that stage. But, the overall 

processing load of shaders is strongly affected by their shader program as well. The complexity of the shader 

program is obtained through analyzing its assembly code which is comprised of a series of instructions each 

of which performs a specific operation based on its opcode. The estimated time of each assembly operator 

on user’s device is obtained through multiple benchmarks that cover all the operations and is needed to be 

performed before starting a rendering session. So, the complexity of a programmable stage, CX, and 

consequently, LX is calculated as follows: 

𝐶𝑋 = ∑ 𝑜𝑝𝑚.𝑛𝑚
𝑁𝑂𝑃−1
𝑚=0   (2) 

𝐿𝑋
𝑃 = 𝑁𝑋.𝐶𝑋      (3) 

In the above equations, x determines the stage, NX stands for the number of elements that the stage operates 

on, 𝑜𝑝𝑚 stands for the mth operator’s weight which is derived from the benchmark results, 𝑛𝑚 is the number 

of times that the mth operator is used in the corresponding shader and NOP is the total number of operators. 

opm is actually the ratio of the mth operator’s processing time for a certain load to the simple assignment (=) 

operator’s time for that load. Our experiments indicate that texture sampling operators cost more than 

mathematical operators due to the texture bandwidth limitation.  

To precisely model a stage, which means to find its choke point along with the main parameters that triggers 

it, the functionality of each stage should be discussed. A vertex is a data structure that holds the attributes of 

a point such as its position, color, normal and texture coordinates in a graphics model [15, 16]. A scene in a 

game is comprised of multiple models and to render a frame of a scene, the frame is broken down to multiple 

batches. Each batch has a different pipeline state along with possibly different resources that results in a 

drawcall which draws the pixels prepared by the current batch [17].  

After estimating the required time to complete each stage by means of equations (1), (2) and (3), the overall 

processing time of each batch can be obtained as: 
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𝐵𝑎𝑡𝑐ℎ𝑏 = 𝜔 + ∑ 𝑊𝑛,𝐿𝑛

NStage

𝑛=1     (4) 

where n determines one of the NStage stages of the pipeline for the bth batch, and 𝜔 is the minimum workload 

of the simplest pipeline state and shaders to render one batch. Since the main application for GAMORRA in 

this paper is to estimate frame times, the value of 𝜔 is considered to be in time unit. 

Overestimating frame times leads to inefficiency while underestimating them would lead to a laggy 

application experience for users. Batches can be processed in parallel, but there is no way of accessing the 

user’s internal hardware affairs before they are done, so the proposed frame time model is based on the worst-

case scenario in which all the batches are rendered sequentially where b is the batch number in the ith frame: 

𝐹𝑟𝑎𝑚𝑒𝑡𝑖𝑚𝑒𝑖 = ∑ 𝐵𝑎𝑡𝑐ℎ𝑏
𝐵𝑖−1
𝑏=0  (5) 

3.1.1 IA stage 

The vertex data needs to be loaded to GPU memory to process a batch. The Input Assembler (IA) stage reads 

and prepares the vertex data that are required for the current batch by determining their attributes and 

topology. For the IA stage, since the data is read from resource buffers, the available memory bandwidth 

becomes the potential bottleneck, thus, the load of the IA stage (LIA) is chosen to be the size of the input 

vertex data which might vary based on the number of vertices and their attributes.  

𝐿𝐼𝐴 = NVertex. ∑ 𝑆𝑖𝑧𝑒(𝐴𝑡𝑡𝑟𝑚)
𝑁𝐴𝑡𝑡𝑟
𝑚=0       (6) 

𝑇𝑖𝑚𝑒𝐼𝐴 = 𝑃𝑒𝑟𝑓𝐼𝐴(𝐿𝐼𝐴) (7) 

Where 𝑁𝑉𝑒𝑟𝑡𝑒𝑥  stands for the number of input vertices and 𝑆𝑖𝑧𝑒(𝐴𝑡𝑡𝑟𝑚) represents the size of the mth attribute 

of a vertex. The benchmark that obtains 𝑃𝑒𝑟𝑓𝐼𝐴 should focus the overall workload on the IA stage. To this 

end, a certain number of vertices are fed to the pipeline with all the stages either set to off for optional stages 

or set to pass through for other shaders. The value of 𝑁𝑉𝑒𝑟𝑡𝑒𝑥 at which the vertices overburden the data bus 

and the GPU is unable to read them in time (e.g. a maximum of 33.3 ms for rendering at 30 fps), is the 

maximum value to be tested for this parameter in the benchmark. Also, there is a need to make sure that none 

of the vertices are rasterized, otherwise the rasterization delay would also be added to 𝑃𝑒𝑟𝑓𝐼𝐴  which is 

undesirable. This means that the vertices need to be outside the camera’s view so that they are clipped by the 

clipper. Although the clipping and culling operations do affect 𝑃𝑒𝑟𝑓𝐼𝐴  but it is much subtler than the 

rasterization overhead. Since all the vertices are outside the camera view, they will all be clipped, so the 

performance of the clipper directly affects the final results and might even be the real bottleneck which should 

be taken into account as well for this stage and all the other stages that don’t need the rasterization to be 

performed on the vertices. If the clipper becomes the bottleneck, then the number of primitives becomes the 

contributing factor to the IA stage’s delay which is already taken into account in equation (6). 

3.1.2 VS stage 

The Vertex Shader (VS) stage, which is the second unit in the pipeline, manipulates the attributes of a vertex 

based on the functionalities defined in the VS program that is set for the current batch on the pipeline. Since 

VS is a programmable stage, its performance heavily depends upon the complexity of the shader’s code and 

should be reflected in LVS. VS program is invoked individually for each vertex, so LVS is also affected by the 

number of vertices and is defined as follows: 

𝐿𝑉𝑆 = 𝐶𝑉𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥 (8) 

Cvs is the assembly code complexity and NVertex is the number of input vertices. For programmable stages, 

the assembly operators used in shader assembly code are profiled separately and a performance function is 

derived for each operator. Some operators are used exclusively in a specific stage (e.g. sampling operator for 

PS). To benchmark the VS stage, like the IA stage, all the vertices need to be outside the camera view to 

avoid rasterization. VS passes the processed vertices to the Tessellation stages. 
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3.1.3 Tessellation stages 

Hull Shader (HS), the Tessellator and Domain Shader (DS) stages are optional stages that allow hardware-

based tessellation for smoother model rendering and they manipulate the vertices in a patch. A patch is a 

primitive data type used only for tessellation and is comprised of up to 32 arbitrary vertices (in d3d11) with 

no implicit topology. HS consists of a main shader program and a patch constant function that are executed 

once per output control point and once per patch respectively and can generate or remove control points 

statically. So, the load of this stage can also be simply considered as the number of vertices (NVertex) along 

with the number of patches (NPCF) as the input to the patch constant function which is treated like a complete 

shader stage and analyzed by its assembly code. The complexity of HS’s main shader and patch constant 

function are shown by 𝐶𝐻𝑆 and 𝐶𝐶𝐹 respectively while the load for each one is represented by LHS and LCF. 

𝑃𝑒𝑟𝑓𝐻𝑆 and 𝑃𝑒𝑟𝑓𝐶𝐹  are also obtained through custom benchmarks. 

𝐿𝐻𝑆 = 𝐶𝐻𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥         (9) 
𝐿𝐶𝐹 = 𝐶𝐶𝐹.𝑁𝑃𝐶𝐹 (10) 

𝑇𝑖𝑚𝑒𝐻𝑆 = 𝑃𝑒𝑟𝑓𝐻𝑆(𝐿𝐻𝑆) + 𝑃𝑒𝑟𝑓𝐶𝐹(𝐿𝐶𝐹)  (11) 

The Tessellator stage is also a fixed function unit and its inputs are the tessellation factors and patch constant 

data that are produced by HS’s patch constant function. This stage generates the coordinates of new control 

points in a primitive based on the inside and edge tessellation factors for a generic domain shape. For this 

stage, LTess mainly depends on the total number of newly generated points in each patch where the total 

number of patches is shown by P and the number of tessellations in the patch by NTess:  

𝐿𝑇𝑒𝑠𝑠 = ∑ 𝑁𝑇𝑒𝑠𝑠
𝑃−1
𝑛=0  

  (12) 

 Domain Shader (DS) stage is fed with the output of the Tessellator and HS stages, namely UVW coordinates 

of every point in a patch from the Tessellator along with control points and patch constants from the HS 

stage. The DS stage produces a single tessellated vertex per input vertex, So LDS is equivalent to the number 

of vertices: 

𝐿𝐷𝑆 = NDS 
 (13) 

For benchmarking, tessellation shaders (HS and DS) are treated as normal shaders, like VS. The tessellator 

stage on the other hand, is totally different from a programmable stage but easier to benchmark due to its 

fixed functionality. The tessellator produces smooth texture mapping coordinates out of a rough low-detail 

model based on the tessellation factor. So, varying the number of input data and the tessellation factor while 

all the other shaders are off or set to pass-through, results in the performance function of the tessellator stage.  

3.1.4 GS stage 

Geometry Shader (GS) is an optional stage which handles complete primitives instead of a single vertex and 

can add or remove geometry. So LGS is also dependent upon the number of vertices which might be different 

from the input of VS due to being processed in tessellation stages (if tessellation is on): 

𝐿𝐺𝑆 = NGS 
 (14) 

The complexity and the number of geometries that go through GS contributes to the overall delay of this 

stage of the pipeline. It can be benchmarked by varying these parameters for each iteration and taking into 

account the results of the previous stages as well while the Tessellation is off and other stages are set as pass 

through.  

3.1.5 Rasterizer 

Rasterizer is also a fixed function stage that interpolates vertex attributes and performs vertex clipping and 

back-face or front-face culling to map the vertices to the viewport. This stage generates fragments that might 

end up on screen as pixels. The number of primitives and the target resolution directly affect the performance 

of this stage, so, LRas would be as: 

𝐿𝑅𝑎𝑠 =  𝑁𝑃𝑟𝑖𝑚.𝑁𝐴𝑡𝑡𝑟 . 𝑁𝑊𝑖𝑑𝑡ℎ. 𝑁𝐻𝑒𝑖𝑔ℎ𝑡 (15) 
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Resolution can make rasterizer a bottleneck in the pipeline and reducing it strongly improves the performance 

of a graphical application in such situations. Also, an increase in the number of triangles results to an increase 

in the total number of computations that are needed for rasterization because it increases the number of 

fragments that are produced. So, we need to benchmark rasterizer based on resolution, the number of 

attributes associated with vertices and the number of triangles that comprise the scene.  

3.1.6 PS stage 

Pixel Shader (PS or fragment shader) is the last programmable stage that manipulates each input fragment’s 

color [18]. Fragments are mainly candidates for the final pixel values and as the number of fragments that 

are produced by the Rasterizer increases, the number of times that a PS is invocated increases as well. Also, 

the shader code complexity should be considered in the model: 

𝐿𝑃𝑆 =  𝐶𝑃𝑆.𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡  (16) 

In this case, fragments should be rasterized so that PS can be applied to them. The rasterization delay should 

also be accounted for to obtain the proper performance function for the PS stage. 

3.1.7 OM stage 

Output Merger (OM) is the last stage of the pipeline and the fragments that are processed by the PS are fed 

to this stage. OM calculates the final color of a pixel based on fragments and depth information which is also 

received from PS or the Rasterizer. Reading and writing to the render targets are the main cause of the 

performance issues related to the OM stage when blending is utilized. So, this stage is mostly bandwidth 

limited and is affected by the number of fragments along with the render target resolution and is defined as: 

𝐿𝑂𝑀 = 𝑁𝑊𝑖𝑑𝑡ℎ.𝑁𝐻𝑒𝑖𝑔ℎ𝑡. 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 (17) 

As the number of the overlapping fragments for a specific pixel increase, the overhead that the OM stage 

introduces to the final rendering time becomes more significant while blending. Since the rasterization 

performance function is already known at this stage and other stages are set to pass through or are turned off, 

the performance of the OM stage can be obtained through varying the number of overlapping fragments along 

with the target resolution which also agrees with equation (17).  

3.1.8 Compute Shader 

Compute Shader (CS) is also a programmable shader with an independent logical pipeline dedicated to 

general computations. Although it is not part of the main pipeline, this shader should be considered in the 

performance model, following the same rule for input size and cost (code execution time) estimation. 

3.2 Benchmark notes 

CPU also affects frame times immensely and can potentially become the bottleneck in a rendering session. 

But CPUs’ performance model is already discussed in literature [19] from as late as 1977 and are much 

simpler to obtain. So, the estimation of the CPU’s time is not discussed in this work but is considered in the 

experiments.  

Although the underlying hardware (a single GPU core) is the same for all the stages, the programmatical 

differences result in different contributing parameters and performance as defined in the previous section. 

Since actual rendering results are obtained and used as performance functions, a set of extensive benchmarks 

that covers the basic functionalities of the rendering pipeline for a certain number of parameters are required. 

Each benchmark focuses on a single operation in a single stage of the pipeline while isolating other stages 

and omitting other operators as much as possible. 

In addition to each stage’s functionality, other pipeline states, e.g. the presentation model or blend mode, 

directly affect the final performance and need to be addressed in the benchmarks.  For example, in direct3d 

11, DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL and DXGI_SWAP_EFFECT_DISCARD presentation 

models would give two very different performance results based on the rendering resolution, which need to 

be taken into account while designing the benchmarks. 
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Also, the benchmarks should account for the post transform cache [20] implemented in GPUs. This cache 

causes the VS to be invocated less frequently for indexed draw calls. So, to properly have a 1:1 relation 

between the vertices and the number of times that a VS is invoked, indexed draws should be avoided unless 

benchmarking actual post transform cache performance.   

4 Implementation and results 
API Trace [21] is used to intercept API commands that are produced by the rendering engine. Since computer 

games are the main applications that use graphics APIs, like Direct3d, to their maximum capacity, all the 

tests are done on modern AAA games. Also, to cover applications with lower frame  rate demands, workloads 

that lead to a maximum of 100 ms of delay (10 fps) are performed by the benchmarks.  

4.1 Obtaining performance functions 

The results of benchmarking a device are shown in Figures (x-y). The tested device is packed with a Core i7 

7500U working at a 2.70 GHz frequency, a single module of 8 GBs of DDR4 RAM working at 1200 MHz 

along with a dedicated GTX950m GPU with 2 GBs of GDDR5 VRAM and runs the latest x64 version of 

Windows 10. 

Since the Tessellation and GS stages are optional, they are disabled for the current test. Also, blending is not  

used and since the OM stage is not likely to become a bottleneck, the performance function for this stage is 

ignored as well. 

 

 

Figure 3. The IA Stage’s performance chart 
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Figure 4. The VS Stage’s performance chart for Add 
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With a 𝜃 of 6.966 ms, Figure 3 shows the result of the performance benchmark of the IA stage. It is evident 

that if the size of loaded vertices into the pipeline surpasses 1500 MBs, GTX950m would struggle to load 

them. After being prepared by the IA stage, the vertices go through the VS stage. Tens of opcodes are 

available to be used by developers at this stage but, for the sake of an example, only the Add operator is 

considered here. The performance chart of this operator is shown in Figure 4. This benchmark shows that a 

VS can perform of up to 130 million Add operations under a 100-ms time interval. Normally, the performance 

function of this stage would be a 3d chart, but, for simplicity and more comprehensible output, the number 

of attributes and the number of vertices is fixed and set to 1. The only attribute considered in this test is 

position which is a 3-component floating point variable.    

Figure 5 shows the benchmark results for the rasterizer. As the number of primitives increase over 18 million, 

the rasterizer starts to impose larger overhead on the pipeline. Also, as the number of pixels start to surpass 

4K resolution (almost 9 million pixels), the GTX950m starts to struggle with the rasterization process. When 

the rasterization benchmark is 3 million pixels, short of the 8K resolution, the rendering time gets closer 

enough to the unacceptable 100 ms especially for 10 million primitives and more. 

4.2 Estimating frame times  

After establishing the performance functions of the target graphics card, GAMORRA is ready to be used to 

estimate frame times. Six AAA computer games were chosen for the tests, namely, Dirt 3 (Racing), Splinter 

Cell: Blacklist (third person, stealth), Battlefield Bad Company 2 (first person shooter), Far Cry 3 (open 

world first person shooter), Rocket League (sports, racing) and Trine 4 (arcade side scroller). If the 

corresponding game utilizes any of the optional stages, they should be also taken into account.  

Table (1) shows the miss rate of frame time estimation for each game. Higher miss rates indicate more frame 

time under estimation. The results show that the performance of GAMORRA strongly depends upon the 

standard deviation of frame times and doesn’t depend much on factors like genre or average frames per 

second. Usually, consecutive frames tend to have similar structure and consequently, similar frame times. 

Our experiments show three main reasons for high deviation in consecutive frame times: 1- software 

inefficiency or bugs, e.g. graphics driver, OS or game engine 2- weak hardware or incompatibility between 

hardware and software, e.g. not meeting the minimum system requirements and 3- excessive use of GPU 

demanding visual effects e.g. motion blur. The more stable a rendering session is, the more efficient and 

precise becomes the process of frame time estimation by GAMORRA. 

 

Figures (6) and (7) show the results of frame time estimation for Dirt 3 and Splinter Cell Blacklist in 

comparison to the actual frame times in a 100-frame sequence of gameplay for each game. These two games 

are chosen as the best-case and worst-case scenarios since they have the lowest and highest miss rates 

respectively. Dirt 3 utilizes Ego engine [22] which is specifically designed and used for racing games, thus, 

performs efficiently on a mid-range GPU. On the other hand, Splinter Cell uses a pretty much outdated unreal 

engine 2.5 [23] which is pushed to its limits for the best visual output leading to a somewhat unstable 

rendering performance, hence the drop in GAMORRA’s accuracy.   

 

 

Table 1. Results of frame time estimation using GAMORRA 

 

Game Miss Rate (%) Average Frame Time (ms) Standard Deviation Genre 

Battlefield BC2 6.30 12.22 0.943 FPS 

Dirt 3 5.89 7.97 0.588 Racing 

Far Cry 3 6.98 24.51 1.213 FPS 

Rocket League 7.14 16.13 1.247 Sports 

Splinter Cell 11.35 14.74 3.093 TP Stealth 

Trine 4 9.76 16.42 2.582 Side Scroll 
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5 Concluding Remarks 
This paper proposes GAMORRA, an API-level workload model for graphics-based applications (mainly 

computer and mobile games). Modeling the workload of a game’s frames proves useful in different 

applications like DVFS-based power management schemes in smartphones or estimation of performance 

measures like frame times in a graphics streaming-based cloud gaming system. GAMORRA takes into 

account the overall structure of a graphics rendering pipeline along with the size of input data, i.e. vertex and 

texture data. Since modern graphics APIs take advantage of multiple programmable stages called Shaders, 

in their rendering pipeline, the complexity of each stage is defined as the complexity of the stage’s code 

which is accessible by intercepting each frame that is generated by the corresponding application’s engine. 

Also, to account for the processing power of the rendering hardware and the performance of the software 

involved in the rendering session (e.g. the graphics driver or the Graphics API’s software), a thorough 

benchmark suite is designed which evaluates the rendering system’s processing power to estimate frame 

times. 
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