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Abstract

A unified method is presented which allows to

estimate all harmonic components, DC-offset and fundamen-

tal frequency in arbitrarily distorted single-phase grids us-

ing a frequency-adaptive observer (FAO) consisting of modi-

fied Second-Order Generalized Integrators (mSOGIs), a DC-

Integrator (DCI) and a modified Frequency Locked Loop

(mFLL). DCI and mSOGIs are tuned by pole placement which allows for an arbitrarily fast detection of DC-offset and harmonic

components if the fundamental frequency is known. If the fundamental frequency must be estimated as well, a mFLL with Gain

Normalization (GN), Rate Limitation (RL), Anti-Windup (AW) strategy and low-pass filters (LPF) must be employed. The

effectiveness of the proposed FAO is validated by experimental results and its enhanced performance is shown by comparisons

to existing estimation methods.
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A unified method for signal parameter estimation of
arbitrarily distorted single-phase grids with dc-offset

C.M. Hackl‡,?, Senior Member, IEEE and M. Landerer‡

Abstract—A unified method is presented which allows to
estimate dc-offset, all harmonic components and fundamental
frequency in arbitrarily distorted single-phase grids using a Fre-
quency Adaptive Observer (FAO) consisting of modified Second-
Order Generalized Integrators (mSOGIs), a DC-Integrator (DCI)
and a modified Frequency Locked Loop (mFLL). DCI and
mSOGIs are tuned by pole placement which allows for an arbi-
trarily fast detection of dc-offset and harmonic components if the
fundamental frequency is known. If the fundamental frequency
must be estimated as well, a mFLL with Gain Normalization
(GN), Rate Limitation (RL), Anti-Windup (AW) strategy and
low-pass filters (LPF) must be employed. The effectiveness of
the proposed FAO is validated by experimental results and
its enhanced performance is shown and compared to existing
estimation methods.

Index Terms—frequency adaptive observer; second-order gen-
eralized integrator; frequency locked loop; frequency estimation;
dc-offset estimation, harmonics estimation.

Notation: N,R,C,Q: natural, real, complex and rational
numbers. x := (x1, . . . , xn)> ∈ Rn: column vector, n ∈ N
(where := means “is defined as” and > means “transposed”).
0n ∈ Rn: zero vector. ‖x‖ :=

√
x>x: Euclidean norm of x.

A ∈ Rn×m: real matrix, n,m ∈ N. det(A): determinant of
A. On×m ∈ Rn×m: zero matrix. z = σ − ω ∈ C: conjugate
complex of z = σ + ω ∈ C with σ, ω ∈ R.

I. MOTIVATION AND LITERATURE REVIEW

In future, as large-scale generation systems will be replaced
by decentralized energy production like wind or solar, which
are coupled to the grid by power electronic devices, the
overall grid inertia will diminish. As a consequence, fast(er)
frequency fluctuations and (more) distorted voltages and/or
currents might occur endangering grid stability and voltage
quality which may lead to partial blackouts, the destruction
of electronic devices or a threat to human’s life. In particular,
the presence of dc-offsets will result in malfunctioning grid
converters [1]. Additionally, distorted grid quantities yield
equivalently distorted powers which then contain, besides dc-
offset, harmonic contents with varying frequencies. To take
appropriate countermeasures, firstly these distortions must be
identified as fast and precise as possible to protect users
from malfunctioning equipment and to prevent destruction
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of electronic devices. Therefore, in the recent years, much
effort has been put into this research question which resulted
in the development of Second-Order Generalized Integrators
(SOGIs) [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

These SOGIs rely on an oscillation capability, i.e. they can
reduplicate any non-distorted sinusoid (and, as side product,
its quadrature signal) with known and constant frequency. For
proper functionality, if the frequency is unknown or varying,
the SOGIs must be equipped with a Phase Locked Loop [13],
[14], [15] or a Frequency Locked Loop [6], [16], [17] to
estimate the signal’s frequency online.

Hereby, multiple SOGIs with different oscillation frequen-
cies can be parallelized to decompose a distorted input signal
into its harmonic components. However, this decomposition
of a distorted input signal with multiple harmonics is mostly
not considered; only few papers [5], [10], [12], [18], [19],
[20], [21] explicitly deal with this topic. In [12], an input
signal with six harmonics and varying fundamental frequency
was considered; the overall estimation time took about 1,5 s.
Additionally, the authors proved the stability of the parallelized
SOGI system (without considering the FLL) but did not give
a reasonable tuning rule for their observer. [18] used a total
of four harmonics and included frequency estimation but also
missed to provide guidelines for a good tuning. [19] analyzed
up to nine harmonics without considering frequency adaption
or tuning parameters; moreover, the implementation of the
observer was not thoroughly discussed. In [10], a modification
of the parallelized SOGIs was discussed to robustify their
performance under frequency fluctuations; however, frequency
adaption itself was not considered. Seven harmonics were
considered for validation. In [20], a thorough stability analysis
of parallelized SOGIs was presented and tuning options were
discussed in detail. But, still, the settling time of the estimation
algorithm was too long with about 120 ms. Besides frequency
adaption and ten harmonics, the presence of a dc-offset was
considered in combination with parallelized SOGIs which is,
to the best knowledge of the authors, the only publication
so far which considers dc-offset and multiple harmonics.
All mentioned papers above have in common that they use
the so called standard SOGI with solely one gain which
only allows for a limited tuning and yields a rather slow
estimation performance (> 40 − 50 ms). In [5], this problem
was solved by introducing a so called modified SOGI with
two gains which allows “(theoretically) for an arbitrarily fast
estimation”. Nevertheless, dc-offset was not considered. A
different approach was shown in [21], where a new estimation
method based on a similarity transformation was introduced
with which an overall stability proof was possible. However,



the authors only considered three harmonic components and
did neglect a dc-offset.

In contrast to harmonics estimation, the consideration of
dc-offsets in the input signal is more present in the literature;
however, the explicit estimation or rejection of the dc-offset
is dealt with in rather few publications [1], [22], [23]. A
good overview of parameter estimation methods in presence
of dc-offset is given in [23], but dc-offset estimation itself is
not its focus. All methods described use a standard SOGI as
prefilter. Some selected methods are (i) the cascaded SOGI: the
first SOGI rejects the dc-offset in its estimated input which
therefore can be fed straightforward to the next SOGI; (ii)
the DC-SOGI: this method includes, besides the SOGI, a
parallel estimation of the dc-offset; and (iii) SOGIs with
subsequent calculations like Delayed Signal Cancellations and
Complex Coefficient Filters. In [22], several methods aiming
at explicit dc-offset estimation are presented. They include (i)
a three-phase Phase Locked Loop, (ii) a common DC-SOGI
(as in [1], [23]) with frequency adaption and (iii) a transformed
DC-SOGI for amplitude-phase and frequency estimation. All
methods have in common that (i) they are not designed for
harmonics estimation (no parallelized SOGIs) and (ii) they
use the slow standard SOGIs with limited tuning capability.

Finally, frequency estimation can be achieved either by
Phase Locked Loops (PLLs) [22], [24], [25] or Frequency
Locked Loops (FLLs) [16], [26], [27], [28]. In the presence
of dc-offsets, the classic frequency adaption is not possible
anymore, so in [23] (see above), multiple PLL designs are
discussed. In [1], [22], FLLs are considered. The frequency
adaption is the bottleneck of the estimation since it signifi-
cantly decelerates the settling time of the overall estimation
process (e.g. [12]: 1,5 s; [20]: 120 ms; [22]: 60 ms). Moreover,
the presented standard FLLs (sFLLs) can get locked at zero
frequency or even become unstable. In general, its perfor-
mance is highly dependent on amplitudes and frequencies
of the signals to be analyzed. To encounter these problems,
several approaches have been reported this far. One is called
gain normalization (GN) [29] and normalizes the frequency
adaption in view of signal amplitudes. This approach was
further extended by Output Saturation [8], [20] and was
finally upgraded to an FLL with GN, sign-correct Anti-Windup
(AW) decision function and rate limitation (RL) in [5] to
prevent overshooting and achieve a more robust and stable
performance.

To the best knowledge of the authors, only one work [20]
deals with the estimation of dc-offset, harmonic components
and frequency adaption. Unfortunately, the proposed approach
has rather slow settling times and implementation is rather
complicated.

That is why this article proposes an overall estimation
system – the Frequency Adaptive Observer (FAO) — which
is capable of estimating (i) dc-offset, (ii) fundamental fre-
quency and (iii) harmonic components with fast estimation
performance and simple implementation. Moreover, for known
frequencies, the FAO can be tuned such that it can estimate
all parameters with a prescribed settling time. Concluding, the
contributions of this paper are extensions of [5] and can be
summarized as follows:

(i) Introduction of a generic and parallelized observer struc-
ture consisting of DC-Integrator (DCI) and modified
Second-Order Generalized Integrators (mSOGIs) and
the analytical computation of the observer gains which
achieves prescribed settling time by pole placement (see
Section III-D);

(ii) Extensions of the modified Frequency Locked Loop
(mFLL) with low-pass filters, gain normalization, anti-
windup and rate limitation for proper functionality in
combination with the parallelized DCI+mSOGIs leading
to the overall FAO (see Section III-E); and

(iii) Implementation and experimental validation of the pro-
posed parallelized DCI+mSOGIs and the overall FAO in
comparison to the existing parallelized sSOGI+sFLL sys-
tem without dc-offset estimation and a non-parallelized
DC+sSOGI+sFLL system (see Section IV).

II. PROBLEM STATEMENT

Single-phase grid signals with arbitrarily many harmonic
components and dc-offset are considered and described by

∀ t ≥ 0: y(t) := a0(t) +
∑
ν∈Hν

aν(t) cos(φν(t))︸ ︷︷ ︸
:= yν(t)

, (1)

where Hν := {ν1, ν2, . . . , νn} ⊂ Q>0 is the set of all
considered (known) harmonic orders (with fundamental order
ν1 = 1). Moreover, the harmonic phase angles

∀ ν ∈ Hν ∀ t ≥ 0: φν(t) :=

∫ t

0

νω (τ) dτ + φν,0(t)

depend on the possibly time-varying1 angular frequency ω >
0 rad

s ; also, the dc-offset a0, the amplitudes aν and angles φν,0
are allowed to be time-varying. Goal is to estimate y as in (1)
by its estimate (indicated by " â ")

∀ t ≥ 0: ŷ(t) := â0(t) +
∑
ν∈Hν

âν(t) cos
(
φ̂ν(t)

)
︸ ︷︷ ︸

:= ŷν(t)

, (2)

which shall be decomposed into the estimates of the harmonic
components ŷν and the dc-offset â0, respectively. This esti-
mation requires the estimate ω̂ of the fundamental angular
frequency. To achieve this goal, this paper proposes (i) the
parallelization of a DC-integrator (DCI) and several modified
SOGIs (mSOGIs) and (ii) the use of a modified Frequency
Locked Loop (mFLL) with Gain Normalization (GN), sign-
correct Anti-Windup (AW), Rate Limitation (RL) and low-pass
filters LPFs. Both lead to the overall FAO for a fast and robust
estimation of all crucial grid signal parameters in real time.

III. PROPOSED SOLUTION: FREQUENCY ADAPTIVE
OBSERVER (FAO)

This section presents the theoretical background for the
development and implementation of the FAO. It consists of the
parallelization of mSOGIs (as introduced in [5]) and a DCI.
The principle idea of the FAO is based on the Internal Model
Principle (as introduced by Wonham in the 1980s [30]). The

1The common representation φν = νω is an unnecessary simplification.



internal model principle states that any observation problem
can be solved by a generating system being (i) capable of
reduplicating its input signal and (ii) equipped with feedback.

A. Generating system (Internal Model Principle)

Note that any constant (such as the dc-offset a0) can be
generated by the following integrator

d
dtx0(t) = 0 · x0(t), x0 (0) = x0,0, a0(t) = 1 · x0(t), (3)

with zero input and appropriate initial value x0,0. Moreover,
any sinusoidal signal yν (e.g. the ν-th harmonic component)
and its respective quadrature signal qν can be reduplicated by
the following second-order dynamical system

d
dt

=:xν(t)∈R2︷ ︸︸ ︷(
xν(t)
qν(t)

)
= ν ω

=:Jν∈R
2×2︷ ︸︸ ︷[

0 −1
1 0

]
xν(t), xν(0) = xν,0,

yν(t) =
(
1, 0

)︸ ︷︷ ︸
=: c

>
ν ∈R

2

xν(t),


(4)

which represents an harmonic oscillator. Amplitude aν and
phase angle φν are determined by the initial values in xν,0.
The overall generating system, which is able to reduplicate y
as in (1), consists of the parallelization of (3) and (4). Hence,
its dynamics are given by (cf. [5]; there without x0)

d
dt

=:x(t)∈R2n+1︷ ︸︸ ︷
x0(t)
x1(t)
xν2(t)
...

xνn(t)

 =ω

=:J∈R(2n+1)×(2n+1)︷ ︸︸ ︷
0 0>2 0>2 · · · 0>2
02 ν1Jν O2×2 · · · O2×2

02 O2×2 ν2Jν · · · O2×2
...

...
...

. . .
...

02 O2×2 O2×2 · · · νnJν

x(t)

y(t) =
(
1, c>ν , · · · , c

>
ν

)︸ ︷︷ ︸
=: c

>∈R2n+1

x(t).


(5)

If all initial values in x(0) = x0 and the angular frequency ω
were known, then (5) could perfectly reduplicate the single-
phase signal y as in (1). But, since those values are not
known a priori, an observer must be designed which is actually
feasible since the dynamics (5) are fully state observable, i.e.

rank
[
c, J>c, · · · , (J>)2nc

]>
= 2n+ 1;

as a straight forward extension of the proof in [31] shows.

B. DC-Integrator (DCI)

To estimate the dc-offset online, the generating system (3)
is equipped with the feedback −ω̂(t)l0

(
y0(t)− ŷ0(t)

)
which

leads to the DC-Integrator (DCI) dynamics
d
dt x̂0(t) = −ω̂(t) l0 x̂0(t) + ω̂(t)l0y0(t), x̂0(0) = 0
ŷ0(t) = x̂0(t)

}
(6)

which is a simple first-order system (see Fig. 1(a)) which
achieves ŷ0 → y0 and can be arbitrarily tuned by the gain
l0 > 0. The estimated angular frequency ω̂(t) scales the

system dynamics and is obtained by the modified Frequency
Locked Loop (mFLL; see Sec. III-E). Note that the real dc-
offset y0 is actually not available for feedback, only the signal
y as in (1) is measured. This fact leads to the parallelization
in Sec. III-D.

C. Modified Second-Order Generalized Integrator (mSOGI)

To estimate the ν-th sinusoidal-like harmonics, the internal
model in (4) is used with ω̂ instead of ω and with the feedback

−ω̂(t)

(
kν
gν

)
︸ ︷︷ ︸

=:lν

(
yν(t)−

(
1, 0

)︸ ︷︷ ︸
=:c
>
ν

(
ŷν(t)
q̂ν(t)

)
︸ ︷︷ ︸
=:x̂ν(t)

)
,

which yields the mSOGI dynamics (for details see [5] and
Fig. 1(b))

d
dt x̂ν(t) = ω̂(t)

[
νJν − lνc

>
ν

]
x̂(t) + ω̂(t)lνyν(t)

ŷν(t) = c>ν x̂ν(t).

}
(7)

The purpose of the mSOGI – similar to the standard SOGI
(sSOGI) with gν = 0 in (7), cf. [5], [29] – is to estimate a
given sinusoidal signal yν and its quadrature signal q̂ such
that ŷν → yν and q̂ν → qν . Its working principle is based
on the oscillating nature of its dynamics whose resonance
frequency is the harmonic angular frequency ω̂. Note that
the mSOGI compared to the sSOGI achieves a (much) faster
estimation, since its poles can be arbitrarily chosen as now
the two feedback gains kν and gν are available for tuning
instead of only one feedback gain kν (and gν = 0) as for the
sSOGI [29]. Similar to the DCI, feedback of yν is not feasible,
as only y as in (1) is available for feedback which motivates
for the parallelization of DCI and mSOGI as discussed next.

D. Parallelization of DCI and mSOGIs

As already noted, the problem is that the sub-signals y0 and
yν are not available for feedback. Only the overall signal y
as in (1) is measured and can be fed to the overall observer.
Hence, a parallelized structure must be set up (see Fig. 4).

To do so, for dc-offset and each harmonic order ν ∈ Hν ,
DCI (6) and each ν-th mSOGI (7) are merged and parallelized
leading to the overall observer dynamics

d
dt x̂(t) = ω̂(t)

[
J − lc>

]
x̂(t) + ω̂(t)ly(t), x̂(0) = x̂0,

ŷ(t) = c>x̂(t)

}
(8)

where x̂ := (x̂0, ŷν1 , q̂ν1 , · · · , ŷνn , q̂νn)> ∈ R2n+1 and l :=

(l0, kν1 , gν1 , · · · , kνn , gνn)> ∈ R2n+1 consist of all sub-
states and sub-feedback gains of DCI and mSOGIs, respec-
tively. Clearly, in (8), only the available measured signal y is
used for feedback. Note that this generic observer structure for
dc-offset and arbitrary harmonics estimation has not yet been
reported in literature. In [1], [23], the trivial observer structure
for dc-offset and fundamental signal estimation (i.e. n = 1)
has been discussed.

Furthermore, note that, for a parallelized sSOGI design
(with gν = 0 for all ν ∈ Hν), the feedback vector l =
(l0, kν1 , 0, · · · , kνn , 0)> has only n + 1 gains whereas the



DCI

y0
Σ l0
ey0 ×

∫−

ω̂

x̂0 = ŷ0

(a) Block diagram of DC-integrator (DCI).

ν-th modified SOGI (mSOGI)

yν
Σ kν

gν

eyν
Σ ×

∫
Σ

−
×

ω̂
ν

∫ x̂βν = q̂ν

x̂αν = ŷν

−

·

·

(b) Block diagram of ν-th modified Second-order Generalized Integrator (mSOGI) [5].

Figure 1: Components of the Frequency Adaptive Observer (FAO): (a) DC-Integrator (DCI) and (b) modified SOGI (mSOGI).

obverser matrix J − lc> has still 2n+ 1 eigenvalues (poles).
Hence, solely the observer with parallelized mSOGIs allows
for an arbitrary tuning by pole placement (cf. [5]). Pole
placement can be easily achieved by MATLAB which provides
the place command, i.e.

l> = place
(
J>, c, p?

)
, (9)

which allows to assign the (desired) eigenvalues p? :=
(p?0, p

?
ν1
, p?ν1 , . . . , p

?
νn
, p?νn)> ∈ R2n+1 of the observer matrix

J − lc>. The vector p? contains the desired poles p∗0 ∈ R of
the DCI and the desired poles p?ν , p

?
ν ∈ C of the parallelized

mSOGIs for all ν ∈ {ν1, . . . , νn}. However, this command
requires that the multiplicity of the poles is not greater than
rank(c) = 1. If, for some reason, this is desired, one could
take advantage of the following analytic gain calculation

l =

0>
2n

1∏
ν∈Hn

ν
2

S − 1∏
ν∈Hn

ν
2Sw

 p̃?A (10)

with Ri :=

[
1 0
0 − 1

νi

]
, S :=

[
S1,1 · · · Sn,1
.
.
.

. . .
.
.
.

S1,n · · · Sn,n

]
,

Sc,r := (−1)c+1ν2(n−c)
r Rr

∏
i=1
i 6=r

(ν2
r − ν2

i )−1, w :=

(1, 0,
∑
ν∈Hn ν

2, 0, . . . ,
∑
ν∈Hn

∏
µ∈Hn
µ6=ν

µ2, 0)> and p̃?A :=(
−

2n+1∑
i=1

p?i ,
2n+1∑
i=1

p?i
2n+1∑
j=i+1

p?j −
∑
ν∈Hn

ν2, . . . ,
2n+1∑
i=1

2n+1∏
j=1
j 6=i

p?j −

∏
ν∈Hn

ν2, −
2n+1∏
i=1

p?i

)>
which is an extension of Eq. (15)

in [31]. A good tuning is achieved by the choices p?0 ≤
minν <(p?ν) and p?ν = −σ?+ν? with σ? > 0 (e.g. σ? = 3

2 or
2) and ν? = ν ∈ Hν to preserve a (damped) oscillating behav-
ior of the mSOGIs. Since the eigenvalue(s) or pole(s) closest
to the imaginary axis (i.e. those poles with maxν <(p?i ))
determine the overall settling time of the parallelized DCI-
mSOGIs system, the minimum settling time can (theoretically)
be specified arbitrarily. However, noise sensitivity and over-
shooting may limit the achievable response; in particular since
the overall poles of the varying matrix ω̂(t)

[
J − lc>

]
are

scaled by the frequency estimate ω̂(t).

E. Frequency adaption by modified FLL (mFLL)

The last ingredient of the FAO is the estimation or – more
precisely – the adaption of the angular frequency by the
modified frequency locked loop (mFLL). Goal is to achieve

asymptotic adaption of ω̂(t) such that ω̂ → ω. The principle
adaption law

d
dt ω̂(t) ∝ γ(t)

(
y(t)− ŷ(t)︸ ︷︷ ︸

=:ey(t)

)
λ>x̂(t), ω̂(0) = ω̂0 (11)

of the mFLL is based on a steady-state analysis of the paral-
lelized DCI and mSOGIs (similar to the analysis in [31]). The
selection vector λ := (0, gν1 , −kν1 , 0, · · · , 0)> ∈ R2n+1

extracts only the fundamental components of the estimated
in-phase signal ŷν1 and its quadrature signal q̂ν1 such that
the product ey λ

>x̂ = ey l
>
ν1
Jνx̂ν1 is in-phase with the input

estimation error ey = y− ŷ. Observe the inverse weighting of
ŷν1 by gν1 and q̂ν1 by −kν1 . The adaption in (11) achieves (on
average over one fundamental period) a sign-correct adaption
of the angular frequency estimate ω̂ for all positive gains
γ(t) > 0. The initial value ω̂0 helps to improve the transient
behavior of the mFLL; e.g. in Europe, the nominal frequency
is f0 = 50 Hz, therefore the initial (nominal) value should be
ω0 = 2π f0.

As proposed in [5], the principle adaption law (11) should be
extended by (i) a gain normalization (GN), (ii) a sign-correct
anti-windup (AW) decision function

faw(ω̂, δ) :=


0, for

(
ω̂ ≥ ωmax ∧ δ ∝ d

dt ω̂ ≥ 0
)

∨
(
ω̂ ≤ ωmin ∧ δ ∝ d

dt ω̂ ≤ 0
)

1, else
(12)

and (iii) a rate limitation (RL)

sat
ω̇max

ω̇min

[
δ
]

:=


ω̇max, δ > ω̇max

δ , ω̇min ≤ δ ≤ ω̇max

ω̇min , δ < ω̇min

(13)

to achieve a stable and smooth(er) frequency estimation.
Moreover, in view of measurement noise, additional low-pass
filters (LPFs) should be included in the mFLL. The considered
LPFs (see Fig. 2) have cut-off frequency ωc and the following
first-order dynamics

d
dtξ

lpf(t) = −ωcξ
lpf(t) + ωcξ(t), ξlpf(0) = 0. (14)

LPF
ξ

Σ ωc
∫ ξlpf

−

Figure 2: Block diagram of the low-pass filters (LPFs) used in the mFLL.



Three LPFs should be implemented for the three signals ey ,
ŷν1 and q̂ν1 to achieve synchronicity (identical phase lag) of
all filtered signals elpf

y , ŷlpf
ν1

and q̂lpf
ν1

, respectively. Bringing all
together, finally, leads to the modified frequency locked loop
(mFLL) as illustrated in Fig. 3 with the overall adaption law

d
dt ω̂(t) = faw

(
ω̂(t), δ(t)

)
sat

ω̇max

ω̇min

[ =:δ(t)︷ ︸︸ ︷
Γ ω̂(t) e

lpf
y (t) l

>
ν1

Jν x̂
lpf
ν1

(t)

max
(
‖x̂lpf

ν1
(t)‖2, ε

) ]
(15)

with some constant gain Γ > 0. In these functions, the
upper and lower limits ωmax, ωmin, ω̇max and ω̇min guarantee
that the frequency estimate ω̂ is (i) always bounded away
from zero (crucial for stability of the FAO, cf. [5]) and stays
within the interval [ωmin, ωmax] and (ii) the adaption is not
too fast yielding a more robust adaption (for details see [5]).
Concluding, note that the standard FLL (sFLL) [29], which is
usually implemented, comes only with GN but without AW,
RL and LPFs.

mFLL [5] with low-pass filters (LPFs)

x̂ν1 LPF

ey LPF

l>ν1J
?x̂lpf

ν1

x̂lpf
ν1

×

elpf
y

1

max
(
‖x̂lpf

ν1
‖2, ε
) ×

sat
ω̇max

ω̇min

[
·
]
×

δ ∫
Γ

ω̂

faw(·, ·)

Figure 3: Block diagram of modified Frequency Locked Loop (mFLL) with
gain normalization (GN), sign-correct anti-windup (AW) decision
function, rate limitation (RL) and low-pass filters (LPFs).

F. Overall structure of FAO

The block diagram of the complete FAO, consisting of
parallelized DCI (6) and mSOGIs (7), and mFLL (15) is
illustrated in Fig. 4. The FAO is fed by the input y as in (1)
and provides the estimates ŷ as in (2) and ω̂ (according to
adaption as in (15)), and the overall estimation state vector
x̂ = (x̂0, ŷν1 , q̂ν1 , · · · , ŷνn , q̂νn)>, which contains the (i) dc-
offset estimate â0 = x̂0 and, for ν ∈ Hν , (ii) all harmonic
in-phase ŷν and quadrature q̂ν estimates. Based on the esti-
mated individual harmonic sub-state vector x̂ν = (ŷν , q̂ν)>,
amplitude estimate âν := ‖x̂ν‖ and phase angle estimate
φ̂ν := arctan 2(ŷν , q̂ν) of each harmonic component can be
computed for all ν ∈ Hν . Note that the mFLL provides the
angular frequency estimate ω̂ to DCI and all mSOGIs.

IV. IMPLEMENTATION AND MEASUREMENT RESULTS

To verify the proposed FAO, experimental results are carried
out where three estimation methods and their estimation
performance are compared to each other. The proposed FAO
consisting of DCI, n parallelized mSOGIs and mFLL (in the
following labeled as mFAO0,n) is compared to the only two
standard approaches for dc-offset and harmonics estimation
available in literature this far. The available methods are (i)
a simple FAO (labeled as sFAO0,1) consisting of a dc-offset
estimator (similar to DCI), one sSOGI (for fundamental signal
only) and sFLL as proposed in [1] and (ii) a parallelization of

FAO (parallelized DCI and mSOGIs with mFLL)

y
Σ DCI

ey

ν1-th mSOGI

ν2-th mSOGI

...

νn-th mSOGI

c>x̂

x̂0

x̂ν1

x̂ν2

x̂νn

x̂

−

ŷ

mFLL

ω̂

Figure 4: Block diagram of the Frequency Adaptive Observer (FAO).

n sSOGIs with sFLL but without DCI (labeled as sFAO∅,n)
as proposed in [18]. For the experiments, the signal to be
investigated is generated in Matlab/Simulink R2018b by the
internal model (5), which is downloaded via LAN to the
dSPACE Processor Board DS1007 where the signal is pro-
duced in real time, converted from digital to analogue by the
dSPACE I/O card DS2103, amplified by a Spitzenberger Spies
PAS 5000 four quadrant amplifier, measured by a LEM CV
3–1000 voltage sensor and converted from analogue to digital
by the dSPACE I/O card DS2004 and, finally, processed by
all three estimation methods described above in real time.
After the experiment, the measured (recorded) input signal
and estimated quantities are analyzed and recorded on a Host-
PC. The dSPACE system and the amplifier are connected via
a ten meters long BNC cable. Four scenarios are discussed:

(S1): For the first scenario, one (fundamental) sinusoidal signal
with dc-offset and known frequency is considered. Since
frequency is known, all three estimation methods are im-
plemented without FLL. The considered signal undergoes
a dc-offset jump of +100 V at t = 0,12 s, an amplitude
sag of −75 % at t = 0,24 s, a phase jump of −π2 rad at
t = 0,36 s and reverse jumps in all changed parameters
at t = 0,48 s (see Figs. 5 and 6).

(S2): For the second scenario, an input signal consisting of
dc-offset, fundamental and nine harmonics with known
frequency is chosen and fed to all three estimation meth-
ods. Since frequency is known, the FLLs are not required
and de-activated. The step-like signal parameter changes
are identical to Scenario (S1). The results are shown in
Figs. 7 and 8.

(S3): The third scenario again considers only one (fundamen-
tal) sinusoidal signal with dc-offset but with unknown and
varying frequency. Hence, all estimation methods require
a FLL to estimate the frequency. The considered signal
undergoes frequency jumps of +2π10 rad

s at t = 0,12 s
and is shifted about +π

2 rad at t = 0,24 s; at t = 0,36 s, an
error is emulated where the fundamental signal is nullified
and only the dc-offset remains. Finally, at t = 0,48 s, all



signal parameter changes are reversed (see Figs. 9 and
10).

(S4): The last scenario uses the signal from Scenario (S2)
containing dc-offset, fundamental and nine harmonics,
but this time, with unknown and varying frequency in-
cluding frequency jumps of +2π10 rad

s at t = 0,12 s
and −2π10 rad

s at t = 0,48 s. Hence, all estimation
methods require a FLL to work properly. The other signal
parameter changes are identical to those in Scenario (S3)
but, now, all harmonic components are nullified such that
only the dc-offset remains for a certain time interval. The
estimation results are illustrated in Figs. 11 and 12.

For Scenarios (S1) and (S3), the initial signal parameters (at
t = 0) are as follows: a0 = −50 V, a1 = 200 V, φ1 = 0 rad
and ω = 2π50 rad

s . For Scenarios (S2) and (S4), the respective
signal parameters are collected in Tab. I. Considering the
system parameters, the gains of sFAO0,1 are taken from [1]
and the ones of sFAO∅,n are copied from [18]. For the
proposed mFAO0,n, pole placement as in (10) is performed
such that all poles and eigenvalues of J are shifted by −2
into the negative half plane which is a reasonable compromise
between noise sensitivity, overshooting and estimation speed.
All system parameters are listed in Tab. II.

Table I: Initial signal parameters (at t = 0) for Scenarios (S2) and (S4).

ν 0 1 2 3 4 5 6 7 8 9 10

aν / V −50 200 80 40 120 0 80 0 120 40 40
φν / rad 0 π

2
3π
2 0 2π

3
π
4 0 5π

4
5π
3 0

ω / rad
s 2π50

Table II: System parameters of all estimation methods for the experiments.

Samp. time Ts 100 µs (Euler forward discretization)

Est. meth. mFAO0,n sFAO0,1 sFAO∅,n
Order n 1, 10 1 1, 10

Gains l Eq. (9) (0.26, 1.28, 0)>
√

2c [18]
Des. poles p?0, p

?
ν −2,−2 + ν

Initial v. x̂(0) 03,021 03 02,020

FLL mFLL sFLL sFLL

Gain Γ 56 1
s 40 1

s 46 1
s

Threshold ε 10−2V2 10−2V2 10−2V2

AWU ωmax 2π61 rad
s

ωmin 2π49 rad
s

RL ω̇max 2π105 rad

s
2

ω̇min −2π105 rad

s
2

Initial value ω̂(0) 2π40 rad
s 2π40 rad

s 2π40 rad
s

Filters LPF (each)

Cut-off f. ωc 2π100 rad
s

Initial v. ξ(0) 0

A. Discussion of Scenario (S1)
For Scenario (S1), a signal with dc-offset, fundamental

component (only) and known frequency with step-like changes

in the signal parameters is fed to the three FAOs without
using the FLLs (which is still implemented but adaption
is turned off ; its initial value is set to the known angular
frequency, i.e. ω̂ = ω⇒ f̂ = f ). All three estimation methods,
i.e. mFAO0,n, sFAO0,1 and sFAO∅,n, are implemented with
only one SOGI (i.e. n = 1).

In Fig. 5, the measurement results for Scenario (S1) are
shown. The first subplot shows input y ( ) and estimation
output ŷ of sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n

( ), respectively. In the second subplot, the respective
estimation errors ey = y − ŷ are plotted. Due to the choice
of the poles, the estimation error of the mFAO0,n decays
significantly faster. Estimation is accomplished within a few
milliseconds. In contrast to that, the sFAO0,1 needs about
40–50 ms to achieve good estimation and the sFAO∅,n is not
capable of estimating the input at all in view of the dc-offset
present.

Figure 5: Measurement results for Scenario (S1) (fundamental signal with dc-
offset and known frequency): The signals shown are input y ( ),
estimate ŷ and estimation error ey = y − ŷ of sFAO0,1 ( ),
sFAO∅,n ( ) and mFAO0,n ( ), respectively.

Figure 6: Zoomed-in estimation errors of dc-offset and harmonic signal for
Scenario (S1) (fundamental signal with dc-offset and known fre-
quency): The signals shown are estimation errors e0 = y0− ŷ0 and
e1 = y1 − ŷ1 of sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n
( ), respectively.

Note that, in view of the length of the BNC cable connecting
amplifier and dSPACE system, the cable acts as a high-pass
filter with rather large time constant such that any dc-offset
jump is damped and decays slowly within the considered time
intervals. Nevertheless, note that sFAO0,1 and mFAO0,n can
track this decaying dc-offset asymptotically. The minor oscil-
lations in all estimation responses are due to the fixed sampling
frequency which yields a time lag between y and ŷ resulting



in these oscillations (it could be decreased by decreasing the
sampling time or using a higher-order discretization method).

To show the individual estimation performances of the three
estimation methods, Fig. 6 shows the dc-offset e0 := y0 − ŷ0

and the fundamental estimation error e1 := y1 − ŷ1 which
contribute equally to the overall estimation error ey := y−ŷ =
e0 + e1. Since the sFAO∅,n is not capable of detecting the dc-
offset, the respective e0 signal is not shown in the first subplot.
However, it is still capable of estimating the fundamental
signal properly. In conclusion, the mFAO0,n has the best
estimation performance overall.

B. Discussion of Scenario (S2)

Scenario (S2) considers a signal with ten harmonics (includ-
ing fundamental) plus dc-offset. It has a known fundamental
frequency and undergoes step-like signal parameter changes in
dc-offset, harmonic amplitudes and phase angles (see above).
mFAO0,n and sFAO∅,n are now implemented with ten mSO-
GIs and sSOGIs (i.e. n = 10), respectively. The sFAO0,1

still comes with only one sSOGI. For all methods, the FLLs
are turned off (as for Scenario (S1)), since the frequency is
assumed to be known (i.e. f̂ = f ).

The results for this scenario are illustrated in Fig. 7 where
the individual subplots show input y ( ), estimate ŷ and esti-
mation error ey = y−ŷ of sFAO0,1 ( ), sFAO∅,n ( ) and
mFAO0,n ( ), respectively. Due to the parallelization of the
mSOGIs, the mFAO0,n is capable of tracking the input within
a few milliseconds whereas the sFAO∅,n with parallelized
sSOGIs exhibits a non-zero estimation error resulting from
the missing dc-offset estimation. Since the sFAO0,1 contains
only one sSOGI, it is not capable of estimating the input
signal correctly. In view of the harmonic content, the error
resulting from the sampling issue is significantly higher for
all estimation methods.

Figure 7: Measurement results for Scenario (S2) (signal with dc-offset, har-
monics and known frequency): The signals shown are input y ( ),
estimate ŷ and estimation error ey = y − ŷ of sFAO0,1 ( ),
sFAO∅,n ( ) and mFAO0,n ( ), respectively.

Fig. 8 shows the individual estimation errors e0, e1, . . . ,
e10 of dc-offset and harmonics estimation. Note that sFAO0,1

detects the dc-offset precisely; whereas the fundamental error
component is affected by all other harmonic estimation errors
as those are not estimated at all. As for Scenario (S1),
the sFAO∅,n estimates the harmonic content correctly but,
clearly, the dc-offset estimation is missing. The mFAO0,n

again provides the best estimation performance concerning

Figure 8: Zoomed-in estimation errors of dc-offset and harmonic signals
for Scenario (S2) (signal with dc-offset, harmonics and known
frequency): The signals shown are estimation error e0 = y0 − ŷ0
and eν = yν − ŷν for all ν ∈ {1, . . . , 10} of sFAO0,1 ( ),
sFAO∅,n ( ) and mFAO0,n ( ), respectively.

estimation speed and accuracy – overall and in each individual
signal component, respectively.

C. Discussion of Scenario (S3)

For Scenario (S3), the considered signal contains a dc-offset
and a fundamental component. It now comes with varying



and unknown angular frequency. The signal undergoes step-
like changes in frequency, phase angle and amplitude; in
particular, note the interval with zero fundamental component.
For all three estimation methods, the FLLs are now activated
to achieve frequency adaption as well.

In Fig. 9, input y ( ) and its respective estimates ŷ
of sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n ( ) are
shown in the first subplot. The second and third subplot show
estimation error ey , frequency f & its estimate f̂ of all three
methods, respectively. All estimation errors ey are only slightly
affected by the frequency adaptions in the FLLs; especially the
settling times do not differ too much from those of Scenario
(S1). The speeds of the frequency adaption by sFLL and mFLL
are almost identical with 60 ms. However, due to the dc-offset,
the sFAO∅,n without the capability of dc-offset detection fails
to estimate the frequency correctly (oscillations around the
correct frequency occur). At t = 0,24 s, when the amplitude
sag of −75 % occurs, the mFLL of the mFAO0,n does not
overshoot like the sFLLs of sFAO0,1 and sFAO∅,n. During the
interval 0,36 s ≤ t < 0,48 s, when there is no ac component in
y, the input signal does not contain any frequency information
anymore (which is visualized by a missing reference). Hence,
all frequency estimators try to track a non-existing reference.
For sFAO0,1 ( ) and sFAO∅,n ( ) with sFLL, this leads
to frequency estimations tending to zero, where the sFLLs
are locked and cannot recover even if the fundamental signal
comes back within the interval 0,48 s ≤ t < 0,60 s. Due to
AW, the frequency estimate of the mFLL is held within the
predefined frequency interval [ωmin, ωmax] and does not tend
to zero. When the ac component is present again, the mFLL
is able to recover and to track the frequency correctly.

Figure 9: Measurement results for Scenario (S3) (fundamental signal with
dc-offset and unknown frequency): The signals shown are input y
( ), estimate ŷ, estimation error ey = y − ŷ, frequency f and
its estimate f̂ of sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n
( ), respectively.

In Fig. 10, the individual estimation errors e0 and e1 for
Scenario (S3) are shown. It can be seen that, also for this case
when the FLLs are turned on, the proposed mFAO0,n ( )
is the fastest method overall and for each individual signal
component.

Figure 10: Zoomed-in estimation errors of dc-offset and harmonic signal for
Scenario (S3) (fundamental signal with dc-offset and unknown
frequency): The signals shown are estimation errors e0 = y0− ŷ0
and e1 = y1 − ŷ1 of sFAO0,1 ( ), sFAO∅,n ( ) and
mFAO0,n ( ), respectively.

D. Discussion of Scenario (S4)

For Scenario (S4), a signal consisting of fundamental, nine
harmonics and dc-offset is considered. It has a varying (angu-
lar) fundamental frequency and jumps in frequency, harmonic
phase angles and amplitudes. Again, for all three methods, the
FLLs are turned on.

Figure 11: Measurement results for Scenario (S4) (signal with dc-offset,
harmonics and unknown frequency): The signals shown are input
y ( ) and the estimates ŷ, the respective estimation errors
ey = y−ŷ, frequency f and the respective estimates f̂ of sFAO0,1
( ), sFAO∅,n ( ) and mFAO0,n ( ).

Fig. 11 depicts input y ( ) and its respective estimates
ŷ of sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n ( ) in
the first subplot and the respective estimation errors ey in
the second subplot (with identical color code). In the third
subplot, actual frequency f and its estimates f̂ are plotted.
Again, the settling times of the input estimation errors are not
significantly influenced by the FLLs. But, since the sFAO0,1

( ) is not designed to estimate harmonics, it fails to estimate
the input properly leading to significant ripples in ey . Similar
results with large ripples in ey are obtained by the sFAO∅,n
( ). Moreover, both methods are not able to estimate the
frequency correctly until t ≤ 0,36 s (oscillations are present);
after t > 0,36 s, both sFLLs fail completely and are not
able to recover when the ac components with frequency
information come back (similar malfunctioning as already



Figure 12: Zoomed-in estimation errors of dc-offset and harmonic signals
for Scenario (S4) (signal with dc-offset, harmonics and unknown
frequency): The signals shown are the respective estimation errors
e0 = y0 − ŷ0 and eν = yν − ŷν with ν ∈ {1, . . . , 10} for
sFAO0,1 ( ), sFAO∅,n ( ) and mFAO0,n ( ).

observed in Scenario (S3)). In contrast to those, the estimation
performance of the mFAO0,n ( ) is still acceptable within
the interval t ∈ [0,36 s, 0,48 s) and very good for the remaining
time intervals. A similar good performance of the mFAO0,n

( ) can be observed in Fig. 12 for the individual dc-offset
e0 and harmonic estimation errors e1, . . . , e10. Nevertheless,

noise sensitivity of the mFAO0,n is rather obvious but less
than that of sFAO0,1 ( ) and sFAO∅,n ( ), which both
are not capable of achieving an acceptable estimation at all.

V. CONCLUSION AND OUTLOOK

A Frequency Adaptive Observer (FAO) – consisting of
DC-intergrator (DCI) and parallelized modified Second-Order
Generalized Integrators (mSOGIs) and a modified Frequency-
Locked Loop (mFLL) with Gain Normalization (GN), sign-
correct Anti-Windup (AW) decision function, Rate Limitation
(RL) and Low-Pass Filters (LPFs) – has been proposed. It
constitutes a unified method to estimate dc-offset, fundamental
and harmonic components and (angular) frequency of arbi-
trarily distorted single-phase signals in grids with dc-offset.
Hereby, the recently reported mSOGIs which allow for a
(theoretically and) arbitrarily fast tuning of the individual
harmonic estimations were used. The key observation for
the design of the FAO was the observability property of the
underlying signal generation system (internal model) which
led to a simple and analytical tuning rule by pole placement.
The effectiveness and improved estimation performance of the
proposed FAO with and without mFLL was shown by exten-
sive measurement results which were compared to available
estimation methods in literature. In future contributions, the
following three main goals shall be achieved: (i) Estimation
of arbitrary harmonic content without knowing the explicit
harmonic orders, (ii) improvement of the frequency adaption
to achieve significantly faster estimation speeds and (iii)
application of the proposed FAO to three-phase systems to
extract symmetrical components of all harmonic components
(i.e. to extend the results in [20]).
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