
P
os
te
d
on

14
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
22
91
03
5.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Sharing Memory in some LIFO Buffers

Charles M. Rader 1

1MIT Lincoln Laboratory

October 30, 2023

Abstract

sampled data, grouped into equal length blocks, The blocks must be individually time-reversed.

1



1

Sharing Memory in some LIFO buffers
Charles M. Rader, Fellow, IEEE

Abstract—There are some signal processing applications in
which an indefinitely long sequence of data arrives one sample
at a time, but where we must segment the incoming data stream
into consecutive non-overlapping blocks of some constant length,
and reverse the sample sequence within each block. For example
we need this to realize a recursive digital filter which has poles
outside the unit circle of the z-plane.

We can accomplish this time-reversal of samples by using a
last-in-first-out (LIFO) buffer, a memory which can store up the
entire block of samples, so that then those samples can be read out
in reverse order. However, we would need two LIFO buffers, one
for the odd numbered blocks and another for the even numbered
blocks. We describe a way in which we can share one small
memory and address register between both LIFO buffers.

I. INTRODUCTION

Consider an application in which a very long, perhaps
indefinitely long, sequence of data xn arrives one sample
at a time, for which we need to segment the samples into
consecutive non-overlapping blocks, each having K samples,
and we want to produce another set of samples, one at a time
in non-overlapping blocks, with each block having its samples
in a time-reversed order. We can illustrate this with K = 4.
This K is much smaller than any likely real application, but
it makes it easier to show examples.

When the signal processing is done by a general purpose
computer, the time-reversal of blocks of samples is not needed
because the signal would reside in the computer memory
and can be accessed in any order. This note is motivated by
signal processing using an application specfic integrated circuit
(ASIC) or a field programmable gate array (FPGA). For such
cases, the logic gates are devoted to specific functions, many
different functions happen at the same time, and most logic
elements are busy almost all the time.

The given input sequence and the desired output sequence,
using K = 4, would be

input : [x1, x2, x3, x4], [x5, x6, x7, x8], [x9, x10, x11, x12]

output : [x4, x3, x2, x1], [x8, x7, x6, x5], [x12, x11, x10, x9]

The µth segment, ending in µK, and its reversal, are

xµK−3, xµK−2, xµK−1, xµK
xµK , xµK−1, xµK−2, xµK−3

There is no way that xn can appear in the output sequence
earlier than it appears in the input sequence. So each output
sequence block must appear with a delay, and the least possible
delay is as shown below, where xµK appears at the same time
in the input and the output.

Charles M. Rader was with the MIT Lincoln Laboratory. Lexington, MA
02173. He is now retired.

xµK−3, xµK−2, xµK−1, xµK
xµK , xµK−1, xµK−2, xµK−3

The µth output block, besides being time-reversed, is de-
layed in time by at least K − 1 clocks.

A normal LIFO buffer used to time-reverse block µ must
have at least K−1 memory registers. The first K−1 samples
of block µ of the input will be written into the first K − 1
registers of the memory, so the memory address will increase
by 1 on each clock. But on clocks K, 2K, . . . the memory
is not used and the input sample goes directly to the output
stream. On the subsequent K− 1 clocks, the memory address
is decreased by 1 on each clock as the successive contents are
read out of the memory and fed to the output.

The following table shows, in detail, how each memory
word is used on each clock for the normal LIFO buffer. This
is shown for the first block but other blocks would all be
treated in the same manner. The notation a→b→ means ”The
quantity b is read from the memory word and passed to the
output, then the quantity a is written into the same memory
word.” When a or b is a t it is a don’t care value.

clk in word 1 word 2 word 3 out

1 x1 x1→ t →
2 x2 x2→ t →
3 x3 x3→ t →
∗K xK xK
5 t →x3→ x3
6 t →x2→ x2
7 t →x1→ x1

In the clk column, the * next to K is to remind us that for
this clock, the sample is passed directly to the output and the
memory is not used.

It takes 2K−1 clocks to put a block into the LIFO and then
read it to the output. But there are only K clocks before the
next block appears. So we cannot use the same LIFO buffer for
every block, but we can time-reverse any number of successive
blocks using two LIFO buffers. Since each output block has
the same K-sample length as an input block, the output blocks
can fit together in a consecutive non-overlapping manner:

However, the K − 1 samples that use the memory require
only K−1 reads and K−1 writes. So it seems worthwhile to
see if one K − 1 word memory could be used for both LIFO
buffers, for the odd numbered and even numbered blocks. In
the table above, the ts are really don’t care values because
they are not taken from the input sequence and not put into
the output sequence. That means that they are available for
some other use.



2

Let’s see what happens if we put more input blocks directly
after the input block we have shown:

clk in word 1 word 2 word 3 out

1 x1 x1→0→
2 x2 x2→0→
3 x3 x3→0→
∗K xK xK
5 x5 x5→x3→ x3
6 x6 x6→x2→ x2
7 x7 x7→x1→ x1

∗2K x2K x2K
9 x9 x9→x7→ x7

10 x10 x10→x6→ x6
11 x11 x11→x5→ x5
∗3K x3K x3K
13 x13 x13→x11→ x11
14 x14 x14→x10→ x10
15 x15 x15→ x7→ x7
∗4K x4K x4K
17 x17 x17→x15→ x15
18 x18 x18→x14→ x14

This shows that we can completely share the memory and
the address generating logic between the two LIFO buffers.
The trick is that for odd-numbered blocks the memory ad-
dresses first increase, and then decrease, but for the even-
numbered blocks the memory addresses first decrease and then
increase. But this is precisely how the addresses would have
behaved if we used only even-numbered blocks in one LIFO
buffer, so we get the hardware for the other LIFO buffer, meant
for odd-numbered blocks, totally free and the resulting time-
reversed output blocks follow one another in perfect sequence.

The memory addressing uses an address register A con-
taining A(n) at clocktime n. We have shown this register as
changing like

A(n+1)←

A(n) n = µK
A(n) + 1 n 6= µK, odd numbered blocks
A(n)− 1 n 6= µK, even numbered blocks

A pulse every Kth clock can signal when the address
register updating mode toggles.

Instead of using an up-down counter, the address register A
could be a maximal length shift register[1] running alternately
forward and backward, which can use slightly fewer gates than
an up-down counter.

II. RECURSIVE FILTERING

Recursive digital filtering is capable of realizing many linear
filtering computations very efficiently. Every recursive digital
filter transfer function is characterized by its poles and zeros.
If one or more of its poles has magnitude greater than 1, the
recursion that implements the filter cannot be run in the normal
time direction because it is unstable.

It is possible, however, to implement the filter as a cascade
of two subfilters, one with poles all inside the unit circle,

and the other having only poles outside the unit circle.[2], [3]
The subfilter with poles inside the unit circle subfilter can
operate directly on the normally ordered and unsegmented
input data. The other subfilter’s input is the first subfilter’s
output, segmented into consecutive non-overlapping blocks
which are time-reversed as shown in the previous section. The
second subfilter uses a recursion which is stable when run in
the reversed time direction.

Filtering a time-reversed block of K samples produces an
output block somewhat longer than K samples. It is not
infinitely long because after the subfilter has processed the
last sample in the input block, subsequent input samples are
all 0 so that the subfilter output decays exponentially. Thus
we can truncate the output after some L samples beyond the
K samples which make up the input block.

Each block’s subfilter output can be segmented into two
parts, a body of length K and a tail of length L. We would
typically choose K greater than L. The filtered blocks are
then combined by using overlap-add, e.g. the tail gets added
to the previous body. So each body, after that addition, is
still of length K, the same length as the original input block,
and the output blocks follow one another as consecutive non-
overlapping samples. They are time-reversed, so they will need
to be time-reversed again to restore normal sample order. A
shared memory LIFO buffer pair identical to the one used in
the previous section can accomplish this.

The hardware that implements the recursion to produce the
body of a block can be used immediately afterward to produce
the body of the subsequent block - as long as when the block
ends the filter’s initial conditions are reset. At the same time,
the state of registers in the filter must be passed to a second
instantiation of the filter which produces the tails. But since
this second instantiation has an all-zero input, it needs slightly
less hardware and, of course, it doesn’t need to function at all
for the last K − L clocks of the block.

REFERENCES

[1] Golomb, S. W., “Shift Register Sequences”, Holden-Day, Inc., San
Francisco, CA 1967

[2] S. R. Powell and P.M. Chau, “Time reversed filtering in real-time,” IEEE
Int. Sympos. on Circuits and Systems, May 1990, vol. 2, pp. 1239-43

[3] C. M. Rader and L. B. Jackson,“Approximating Noncausal IIR Digital
Filters having Arbitrary Poles, including New Hilbert Transformer
Designs, via Forward/Backward Block Recursion,” IEEE Trans. CAS
-I, Dec. 2006, vol. 52, pp. 2779-87


