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Abstract

In this paper, we propose an AC optimal power flow (ACOPF) model considering distributed flexible AC transmission system

(D-FACTS) devices, in which the reactance of D-FACTS equipped lines are introduced as decision variables. This is motivated

by increasing interests in using D-FACTS devices to address system operational and cyber-security concerns. First, D-FACTS

devices can be incorporated in real-time operations for economic benefits such as managing power congestions and reducing

system losses. Second, D-FACTS devices can be utilized by moving target defense (MTD), an emerging concept against cyber-

attacks, to prevent attackers from knowing true system configurations. Therefore, system operators can use the proposed

ACOPF model to achieve economic benefits and provide the setpoints of D-FACTS devices for MTD at the same time. In

addition, we rigorously derive the gradient and Hessian matrices of the objective function and constraints, which are further

used to build an interior-point solver of the proposed ACOPF. Numerical results on the IEEE 118-bus transmission system

show the validity of the proposed ACOPF model as well as the efficacy of the interior-point solver in minimizing system losses

and generation costs.
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Abstract—In this paper, we propose an AC optimal power flow 

(ACOPF) model considering distributed flexible AC transmission 

system (D-FACTS) devices, in which the reactance of D-FACTS 

equipped lines are introduced as decision variables. This is 

motivated by increasing interests in using D-FACTS devices to 

address system operational and cyber-security concerns. First, D-

FACTS devices can be incorporated in real-time operations for 

economic benefits such as managing power congestions and 

reducing system losses. Second, D-FACTS devices can be utilized 

by moving target defense (MTD), an emerging concept against 

cyber-attacks, to prevent attackers from knowing true system 

configurations. Therefore, system operators can use the proposed 

ACOPF model to achieve economic benefits and provide the 

setpoints of D-FACTS devices for MTD at the same time. In 

addition, we rigorously derive the gradient and Hessian matrices 

of the objective function and constraints, which are further used 

to build an interior-point solver of the proposed ACOPF. 

Numerical results on the IEEE 118-bus transmission system show 

the validity of the proposed ACOPF model as well as the efficacy 

of the interior-point solver in minimizing system losses and 

generation costs.  

Index Terms—ACOPF, D-FACTS device, Interior-point solver, 

moving target defense. 

I. INTRODUCTION 

The integration of distributed energy resources (DERs) and 

high penetration of DERs challenge power grids with a series 

of adverse effects, including line flow, reliability, and power 

quality issues [1]. Recently, distributed flexible AC 

transmission system (D-FACTS) devices have been designed 

and applied in power systems to enhance system stability and 

improve the power quality [2]. As the distributed version of 

conventional lumped FACTS devices, D-FACTS devices 

overcome the drawbacks of FACTS devices, such as bulky size, 

low reliability and high cost. In addition, scalable, light-weight 

and cost-effective D-FACTS devices can provide a variety of 

advanced functions and solve operational problems in the smart 

grid such as voltage sags, voltage fluctuations, and harmonics 

[3]. Therefore, D-FACTS devices are gaining recent traction 

and have been deployed in real-world power grids. 

In addition to the benefits in power system operation, D-

FACTS devices are also used in moving target defense (MTD) 

strategies for enhancing cyber-security in modern power grids 

[4]–[6]. MTD actively changes the setpoints of D-FACTS 

devices to prevent attackers from knowing the true system 

configurations. It has been proven that the time-varying system 

configurations stemming from MTD can enable system 

operators to detect false data injection (FDI) attacks against the 

power system state estimation [4]–[6]. 

Since D-FACTS devices can be used to control the line 

impedance dynamically, system operators can utilize D-

FACTS devices to effectively control power flows and system 

power losses in real-time operations. To fully utilize D-FACTS 

devices, integration of D-FACTS device into the mathematical 

model of real-time operations is necessary. As significant tools 

in real-time power system operation and control, optimal 

power flow (OPF) models can determine the minimum 

operating cost and system losses, as well as retain the control 

variables in secure boundaries. In the literature, a rectangular 

representation of FACTS devices such as Phase Shift 

Transformer and the Unified Power Flow Controller were 

integrated into AC optimal power flow (ACOPF) [7]. Work 

also has been done on the incorporation of D-FACTS devices 

in DC optimal power flow (DCOPF) to study the impact of 

MTD on system costs [6]. However, the DCOPF model cannot 

be used to minimize system losses, which is one of the main 

functions of D-FACTS devices.  

Although AC power flow models are widely used in 

practical power systems, ACOPF with the model of D-FACTS 

devices is still missing in the literature. To fill this gap, we 

propose an ACOPF model considering the D-FACTS devices, 

in which the reactance of lines equipped with D-FACTS 

devices are introduced as decision variables. The proposed 

ACOPF model can be applied in the control center to achieve 

the minimum system losses and generation costs in real-time 

while determining the setpoints of D-FACTS devices in MTD 

simultaneously. Note that an important reason for the existence 

of this gap is that the development of an efficient solver to 

solve the ACOPF model considering D-FACTS devices 

remains challenging, as the impedance variables introduced 

substantially complicate the solution of the ACOPF problem. 

Even though intelligent computational algorithms, such as 

particle swarm optimization (PSO), genetic algorithm (GA), 

simulated annealing (SA), and differential evolution (DE), can 

be used to resolve ACOPF considering the FACTS device 

without deriving the gradient and Hessian matrices [8], low 

computational efficiency of these algorithms exclude 

themselves to be used in real-time. On the other hand, it has 

been proven that interior-point methods are efficient tools to 

resolve the ACOPF problem [9], [10]. Therefore, we first 

derive the gradient and Hessian matrices of the objective 

function and the constraints in the proposed ACOPF model 

with respect to branch impedance. Then, we develop an 



interior-point solver to resolve the proposed ACOPF by 

modifying and extending Matlab Interior-Point Solver (MIPS) 

in MATPOWER developed for the conventional ACOPF [11]. 

It is worth mentioning that there are mainly three types of 

D-FACTS devices, namely, distributed series static 

compensator (DSSC), distributed series reactor (DSR), and 

distributed series impedance (DSI). DSR and DSI are designed 

to adjust the impedance of power lines while DSSC is similar 

to a phase shifter. Since the ACOPF model considering phase 

shifter transformer has been studied in [7], this paper focuses 

on integrating DSR and DSI into the ACOPF model. 

The rest of this paper is organized as follows. The 

formulation for the ACOPF model considering D-FACTS 

devices is proposed in Section II. Gradient and Hessian 

matrices for the proposed interior-point solver are rigorously 

derived in Section III. Case studies are conducted in Section IV. 

The paper is summarized and concluded in Section V. 

II. PROBLEM FORMULATION 

After the installation of D-FACTS devices on power lines, 

system operators can change the setpoints of D-FACTS 

devices to control the impedance of these lines. Since the line 

impedance parameters are independent variables in the steady-

state power flow problem, system operators can utilize D-

FACTS devices to control power flows, manage power 

congestion, and reduce system power losses. Therefore, we 

introduce the reactance of lines equipped with D-FACTS 

devices as decision variables in the conventional ACOPF 

model. The proposed ACOPF model with an objective of 

minimizing system losses and generation costs is formulated 

as: 
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where    g g
X θ V P Q x are decision variables 

corresponding to voltage angle, voltage magnitude, generator 

active generation, generator reactive generation, and reactance 

of D-FACTS lines, respectively; 1  and 2  are weight 

parameters; , ,b l gn n n  and DFn  are the number of buses, lines, 

generators, and D-FACTS lines, respectively;  sL X  is the 

system loss; 
if is the active power generation cost of the i-th 

generator; f

iS and t

iS  are complex power flows at the from-

end and to-end of the i-th line; (1b) and (1c) are nonlinear 

equality constraints of the nodal active and reactive power 

balance, respectively; (1d) and (1e) are nonlinear inequality 

constraints of line power flow limits corresponding to lines 

starting from from-end and to-end, respectively; (1f) and (1g) 

are voltage angle and magnitude constraints; (1h) and (1i) are 

generator constraints; in (1j),   in % reflects the physical 

capacity of D-FACTS devices.  

III. SOLUTION METHODOLOGIES 

In this section, we utilize the interior-point solver to solve 

the proposed ACOPF model by modifying and extending the 

MIPS in MATPOWER [11]. Work in [11] provides the first 

derivatives and Hessian matrices of objective function and 

constraints in the conventional ACOPF model. More 

specifically, voltages are in polar coordinates and nodal 

balance equations are expressed by complex power. Here, we 

follow suit and extend the interior-point solver for the proposed 

ACOPF model. We derive the gradient and Hessian matrices of 

nonlinear equality constraints, inequality constraints, and 

objective function with respect to the reactance of lines 

equipped with D-FACTS devices. 

A. Preliminaries in Derivatives in ACOPF Model 

Let V be a vector of complex voltages of all buses. Then, 

the first derivatives of complex voltage with respect to voltage 

angle and magnitude are given as follows: 

[ ]j


 


θ

V
V V

θ
                                (2) 

[ ]

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

υ

V
V E

υ
                                (3) 

where θ is the voltage angle vector; υ is the voltage magnitude 

vector; 
1[ ] ;E υ V [ ]  is a diagonalizable operator defined in 

[11], which converts a vector to a diagonal matrix, i.e., 

[ ] : .n n n For example, when we apply the 

diagonalizable operator on 

1

2

3

 
 


 
  

b , we have 

1 0 0

[ ] 0 2 0

0 0 3

 
 


 
  

b .  

As independent variables in the proposed ACOPF model, 

the line reactance controlled by the D-FACTS devices directly 

determines the nodal admittance matrix. Since the nodal 

admittance matrix plays an important role in deriving the 

derivatives of objective function and constraints with respect to 

the reactance, we present the definition of nodal admittance in 

MATPOWER. MATPOWER models line parameters, 

transformers and shunt elements in the nodal admittance matrix, 

which is defined as:  

   [ ] [ ] [ ] [ ] [ ] (4)T T

bus f ff f ft t t tf f tt t shC C C C C C    Y Y Y Y Y Y

where
1( ) ,shji i

ft sY y e
    1( )shji i

tf sY y e
   , 0.5i i

tt s cY y j b   

and 2( 0.5 )i i

ff s cY y j b    are equivalent admittance of the i-th 

line between different ends in the standard   transmission line 

model; 
i

sy  is the admittance of the i-th line, i.e., 

1( )i

s i iy r jx   , and ir  and ix  are resistance and reactance of 

the i-th line, respectively;  is the transformer tap ratio 

magnitude, and sh  is the transformer phase shift angle; 
i

shY  is 

admittance of shunt elements of the i-th bus; tC and fC are 



connection matrices used in building the system admittance 

matrices, defined in [11]. The first and second derivatives of 
i

sy  with respect to the line reactance are calculated as:  
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The gradient of , ,ff ft tfY Y Y  and 
ttY  with respect to line 

reactance are diagonal matrices and their diagonal entries can 

be calculated as follows: 
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Similarly, the Hessian matrices of , , ,ff ft tf ttY Y Y Y  are 

diagonal matrices as shown in (11), whose diagonal entries can 

be calculated as
2 2

2 2

2 2 2

1
( , ) ,  ( , ) ,  

i i

s s

ff tt

i i

y y
i i i i

x x

 
   

 
xx xxY Y  

2

2

2
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( , )
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i i
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
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2

2

2

1
( , ) ,

sh

i

s

tf j

i

y
i i

xe



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
xxY  

respectively. Note that the first and second derivatives of the 

admittance of shunt elements with respect to reactance are zero 

matrices, i.e., sh xY 0  and 
2

sh 
xx

Y 0 . For presentation 

simplicity, the subscripts of the gradient and Hessian matrices 

of all admittance matrices with respect to the reactance are 

omitted hereinafter, i.e., 
ff ff 

x
Y Y  and 2 2

ff ff 
xx

Y Y .  
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where 
1ln 

 a 1 . 

B. Gradient of Power Injection Constraints 

The complex power balance equations can be expressed as 

  ,s bus

d g gG    X S S C S 0 where dS  is a complex power 

load vector of all buses; gS  is a complex power generation 

vector of all buses; bus
S  is a complex power injection vector 

of all buses, i.e.,
*[ ] ,bus busS V I and 

bus
I  is a complex current 

injection vector, i.e., .bus

busI Y V The gradient of power 

balance equations can be expressed as follows: 

  [ ]s s s s s sG G G G G G
g gX θ ν P Q xX           (12) 

where the first four items irrelative to the line reactance are 

consistent with the results in [11]. We can calculate sG
x  by 

using (4) and (7-10) as follows: 
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C. Hessian Matrix of Power Injection Constraints 

The Hessian matrix of complex power balance constraints 

in the proposed ACOPF can be expressed as:  
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where   is a constant vector for calculating the Hessian 

matrix; the expressions of ,sG
θθ

,sG
θν

sG
νθ  and 

sG
νν can be found 

in [11]; , , , ,s s s sG G G G
xx xν xθ θx and 

sG
νx  need to be derived for the 

proposed ACOPF model. Due to the space limit, we ignore the 

derivation process and directly present the calculation results. 

First, we calculate 
sG
xx  using (13).  
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Similarly, we calculate , , ,s s s sG G G G
xν νx xθ θx as follows: 
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D. Gradient of Power Flow Constraints 

In the power flow constraints, we derive the gradient and 

Hessian matrix for the complex power flow at the from-ends of 

the lines. The derivative results for the to-ends of the line can 

be identically calculated by replacing all f sub/super-scripts 

with t. Similar to power injection constraints, the first 

derivatives of the power flow with respect to voltage angle, 

voltage magnitude, real and reactive power generation are 

identical to that in [11]. We only derive the first derivatives of 

power flow with respect to reactance as follows.  

 * * *

* * * *

[ ]([ ] [ ] )
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x x x
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E. Hessian Matrix of Power Flow Constraints 

The Hessian matrix of complex power flow constraints in 

the proposed ACOPF has the same form as that of power flow 

constraints. In the Hessian matrix, , , ,f f f

θθ θν νθ
S S S and

f

νν
S  are 

identical to that in [11]; , , ,f f f f

xx xν xθ θx
S S S S  and 

f

νx
S  can be 

derived as follows, using 
f

θ
S  and 

f

ν
S  in [11]. 

* 2 * * 2 *( ) [ ][ ]([ ] [ ] )f T

f f ff t ftC C C 


    

xx xx
S S V V Y V Y  (21) 

* * *

* * *

[ ]([ ] [ ] [ ] [ ])

       [ ]([ ] [ ] [ ] [ ])

f

ff f f f f

ft f t t f

C C C C

C C C C





  

 

xv
S Y V E V E

Y V E V E
         (22) 

* * *

* * *

[ ]( [ ] [ ] [ ] [ ])

       [ ]( [ ] [ ] [ ] [ ])

f

ff f f f f

ft f t t f

j C C C C

j C C C C





   

   

xθ
S Y V V V V

Y V V V V
     (23) 

* * * *

* * *

[ ] [ ]([ ] [ ] )

       [ ]( [ ][ ] [ ][ ] )

ff ft

ff ft

f T

f f t

T T

f f t f

C C C

C C C C



 

   

   

vx
S E V Y V Y

E V Y V Y
   (24) 

* * * *

* * *

[ ] [ ]([ ] [ ] )

        [ ]( [ ][ ] [ ][ ] )

ff ft

ff ft

f T

f f t

T T

f f t f

j C C C

j C C C C



 

   

   

θx
S V V Y V Y

V V Y V Y
   (25) 

F. Gradient and Hessian Matrix of System Losses 

The system complex power loss is the sum of complex 

power loss of each line, and the line power loss is the sum of 

complex power flows at the from-end and to-end of this line, as 

shown in (1a). The system loss can be expressed in matrix form, 

i.e., ( )s T f tL a S S , where 
1ln

a


 1 . Therefore, the first 

derivative of the system loss is ( )s T f tL a 
x x x

S S . 

 The Hessian matrix of the system loss has the same form as 

that of power injection constraints in (14). Take 
sL
xx  for 

example, 
sL
xx  can be calculated as follows: 

(( ) ) ( )

      = ( ) ( )

     

s s T fT tT

fT tT

a a

f t

a a

L L a a

 

 

 

 

 

 

  

 

  



 

xx x x xx x

x xx x

xx xx

S S

S S

S S

              (26) 

Note that we have ( )fT f

a
a





 


x xxx
S S according to (21).  

Similarly, the remaining none-zero matrix blocks in the 

Hessian matrix can be calculated as follows: 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

θθ θ θ θ θθ θθθ θ
S S S S    (27) 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

vv v v v vv vvv v
S S S S    (28)  

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

xθ x x x xθ xθθ θ
S S S S    (29) 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

xv x x x xv xvv v
S S S S    (30) 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

θν θ θ θ θv θvv v
S S S S    (31) 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

νθ ν v v vθ vθθ θ
S S S S    (32) 

(( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

θx θ θ θ θx θxx x
S S S S    (33) 

 (( ) ) ( )s s T fT tT f t

a a
L L a a

 

 

   
    

νx ν v v vx vxx x
S S S S    (34) 

In this paper, we only minimize the active power loss. Then, 

the gradient and Hessian matrix of the real power loss can be 

simply obtained by taking the real part of that of the complex 

power loss. Note that matrix blocks in the gradient and Hessian 

matrix of generation costs related to line reactance are zero 

matrices, and the remaining matrix blocks are identical to the 

results in [11].  

IV. CASE STUDY 

To validate the validity of the proposed ACOPF model and 

effectiveness of the developed interior-point solver, we conduct 

case studies on the IEEE 118-bus transmission system. The 

algorithms are performed on a laptop with Intel Core i7 

processor CPU 2.90 GHz with 8 GB RAM. 

We compare generation costs, system losses, and CPU time 

in the following three cases. Case 0: the conventional ACOPF 

is applied; Case 1: the proposed ACOPF model with 1 0   

and 2 1   is used only to minimize the generation cost; Case 

2: the proposed ACOPF model with 1 1000   and 2 1   is 

used to minimize the generation cost and the system loss. We 

identify the maximum line power flow using the conventional 

ACOPF under the default load in MATPOWER, denoted by 

max

fS . Then, we make the power flow limit of each line equal to 

max ,fk S where factor {0.4,  0.6,  0.8,  1}k   in different tests. 

We assume that D-FACTS devices are installed on all lines, 

and set 20%   to be consistent with the D-FACTS setting in 

[6]. 

The simulation results are listed in Table I. The generation 

cost in the proposed ACOPF is always less than that in the 

conventional ACOPF since the dispatchable line reactance can 

reduce the congestion in the system. The system loss in Case 2 

is always less than that in Cases 0 and 1 under different flow 

limit conditions, which indicates the effectiveness of the 

proposed ACOPF model in minimizing system losses. The 

CPU time for solving the proposed ACOPF is less than 15 

seconds in most cases, suggesting that the proposed ACOPF 

model can be applied in real-time system operations using the 

modified interior-point solver.  

TABLE I 
COSTS, LOSSES AND CPU TIME UNDER DIFFERENT FLOW LIMIT CONDITIONS 

k   0.4 0.6 0.8 1.0 

Generatio

n 

Cost ($) 

Case 0 131,395 130,337 129,830 129,660 

Case 1 131,219 130,150 129,643 129,475 

Case 2 131,242 130,170 129,664 129,498 

System 

Loss 

(MW) 

Case 0 67.33 70.73 73.54 77.39 

Case 1 65.45 67.09 70.25 74.07 

Case 2 60.63 63.04 65.91 69.18 

CPU  
Time (s) 

Case 0 0.22 0.20 0.41 0.45 

Case 1 5.58 3.93 2.41 3.26 

Case 2 4.81 5.66 4.64 13.24 



To further verify the effectiveness of the proposed ACOPF 

model, we investigate the impact of D-FACTS placement on 

system losses. We use power loss to impedance sensitivity 

(PLIS) to determine the most appropriate D-FACTS locations 

for minimizing system losses, which is a linearized weight of 

the transmission line to indicate a system loss change due to a 

change in the line impedance [12]. Simulations are also 

carried out in the IEEE 118-bus system under heavy load 

conditions. To focus on studying the system loss, we set 

1 1  and 
2 0  . We construct the following five D-FACTS 

placement cases, in which we install D-FACTS devices on 62 

out of 179 lines. 

Case 0: This is the base case where no D-FACTS devices 

are used in the system.  

Case 1: D-FACTS devices are installed on 62 lines with 

the lowest PLIS.  

Case 2: D-FACTS devices are placed on 62 randomly 

selected lines. 

Case 3: D-FACTS devices are installed on 62 lines with 

the highest PLIS. 

Case 4: D-FACTS devices are installed on all 179 lines in 

the system.  

The total PLIS of the lines equipped with D-FACTS 

devices, system losses, and the loss reduction in the above five 

cases are summarized in Table II. Installing D-FACTS devices 

on the lines with the highest PLIS values in Case 3 can reduce 

1.52% of system loss compared with that in Case 0, while 

installing D-FACTS devices on the lines with the lowest PLIS 

values can only reduce 0.25% of system loss compared with 

that in Case 0. The comparison in Table II illustrates that the 

loss reduction increases with the increase in PLIS values, 

which is consistent with the conclusion in [12]. The simulation 

results verify the effectiveness of the proposed ACOPF model 

and the modified interior-point solver. 

TABLE II 
SYSTEM LOSSES UNDER DIFFERENT D-FACTS PLACEMENTS 

D-FACTS 

placement 

PLIS 

sum 

Loss 

(MW) 

Decrease 

(%) 

Case 0 0     30.67 -- 

Case 1 0.10 30.59 0.25 

Case 2 1.55 30.55 0.38 

Case 3 8.55 30.21 1.52 

Case 4 9.19 30.08 1.93 

 

V. CONCLUSION 

This paper proposes an ACOPF model considering the D-

FACTS devices, in which the reactance of lines equipped with 

D-FACTS devices are introduced as the decision variables. The 

proposed ACOPF model can be seamlessly integrated into the 

existing energy management system of a power system in the 

control room. System operators can apply the proposed 

ACOPF model to manage the real-time system operation and 

determine the setpoints of D-FACTS devices. Furthermore, the 

setpoints of D-FACTS devices can be adopted by MTD to 

safeguard a cyber-secure power system. In addition, we derive 

the gradient and Hessian matrices of the objective function and 

constraints with respect to the line reactance, which are used to 

build an interior-point solver of the proposed ACOPF. Since 

the derivations in this paper adopt the same voltage coordinate 

and complex power expression as MATPOWER, the derived 

gradient and Hessian matrices can be simply integrated into 

MATPOWER. The case study compares the proposed ACOPF 

with the conventional ACOPF regarding generation costs, 

system losses and CPU time under different power flow limits. 

The results show that D-FACTS devices can effectively reduce 

the system loss, and CPU time of solving the proposed ACOPF 

is generally less than 15s. The case studies also investigate the 

impact of D-FACTS placement on system loss. The results 

verify the effectiveness of the proposed ACOPF model and the 

interior-point solver.  

In future work, we will utilize the proposed model in MTD 

to detect cyber-attacks in the transmission system. We will 

investigate the impact of the setpoints of D-FACTS devices on 

the detection effectiveness of MTD.  
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