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Abstract

This work considers the exact bit error rate (BER) analysis of a two-user non-orthogonal multiple access (NOMA) system using

quadrature amplitude modulation (QAM). Unlike existing work, no constraints on the modulation order of the QAM symbols

for any user. Closed-form expressions are derived for the BER of joint multiuser detector (JMuD), which is demonstrated

that it is equivalent to the successive interference cancellation (SIC) receiver. Moreover, a general expression is derived for the

relation between the power allocation factors for the two users, which depends on the modulation order for each user.
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Abstract—This work considers the exact bit error rate (BER)
analysis of a two-user non-orthogonal multiple access (NOMA)
system using quadrature amplitude modulation (QAM). Unlike
existing work, no constraints on the modulation order of the QAM
symbols for any user. Closed-form expressions are derived for the
BER of joint multiuser detector (JMuD), which is demonstrated
that it is equivalent to the successive interference cancellation
(SIC) receiver. Moreover, a general expression is derived for the
relation between the power allocation factors for the two users,
which depends on the modulation order for each user.

Index Terms—Non-orthogonal multiple access, NOMA, bit er-
ror rate, BER, joint detection, successive interference cancellation,
SIC, quadrature amplitude modulation, QAM.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is an efficient mul-
tiple access technique, which is considered as a promising can-
didate for future wireless communication networks. NOMA can
improve the spectral efficiency by allowing multiple users to
share the transmission resources simultaneously, at the expense
of some additional receiver complexity and bit error rate (BER)
degradation [1]. Several NOMA schemes have been proposed in
the literature, but the main categories are the code-domain [2],
[3] and power-domain NOMA [4], [5], which is the focus of
this work. In the literature, successive interference cancellation
(SIC) has been widely considered as the main detection scheme
for power-domain NOMA [3], [6]–[11]. However, SIC detectors
(SICDs) suffer from long processing times because the th user
has to sequentially detect and subtract the signals of all users
whose indices are less than  [12]. To reduce the processing
time, joint multiuser detection (JMuD) has been proposed as an
alternative for the SICD [12]–[15].
Bit error rate (BER) analysis of NOMA using SICD has

received extensive attention in the recent literature. For example,
the authors of [11] derived the pairwise error probability for
downlink NOMA using quadrature phase shift keying (QPSK),
and used the union bound to represent the BER. However, the
bound may considerably deviate from the actual BER in several
operating conditions. In [6], the BER performance of two and
three-user downlink NOMA systems with QPSK over Nakagami-
 channels using SICD, and hence, the main drawback is that
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derived expressions are not applicable for higher order quadrature
amplitude modulation (QAM). In [16], the BER performance
for three-user downlink NOMA network using SICD is investi-
gated where space shift keying (SSK) is considered. The main
limitation is that the BER expression is only valid for QPSK
scheme. The BER is investigated for both downlink and uplink
NOMA systems using SICD under Rayleigh fading channels
in [8], where exact and approximate closed-form expressions
are derived for downlink and uplink, respectively. The derived
expressions are applicable only two-user NOMA systems using
BPSK and QPSK. In [17], the BER for downlink NOMA systems
is derived for any number of users using binary phase shift keying
(BPSK) considering SICD. Exact symbol error rate analysis of
downlink NOMA using QAM is presented in [18]. Although SER
is a useful indicator for the system error performance, the BER
is more informative and it is the standard metric for error rate
performance.
Although the error rate analysis of NOMA systems has re-

cently attracted extensive research, to the best of the authors’
knowledge, there is no work in the literature which considers the
exact BER analysis of NOMA systems using QAMwith arbitrary
modulation orders for the individual users. The main objective of
this work is to derive the exact BER for two-user NOMA system
which considers QAM with arbitrary modulation orders. JMuD
is used as detection scheme for the NOMA system. Furthermore,
a general expression is derived for the relation between the
power allocation factors for the two users, which depends on
the modulation order for each user. Moreover, we demonstrate
that the SICD is just a low complexity implementation of the
maximum likelihood detector (MLD), which is denoted as the
JMuD.
The rest of the paper is organized as follows. In Sec. II, the

system and channel models are presented. The JMuD and SICD
schemes are represented in Sec. III and IV, respectively. The
exact BER analysis for the first and second users are presented in
Sec. V and VI, respectively. The numerical and simulation results
are shown in Sec. VII. Finally, the work is concluded in Sec. VIII.

A. Notations

To notations used throughout the paper are shown in Table I.

II. SYSTEM MODEL

Consider a downlink power-domain NOMA system that sup-
ports two simultaneous users, 1 and 2. The users’ equipment
(UEs) and the base station (BS) are equipped with single antennas
[6], and the data for the th user is modulated using a square
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 = log2  = log2
√


 = max (12)  =
Q

=1

Λ =
√
 − 1 1 = (1− 2−)Λ

1 =
1
4

¡p
1 +

p
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¢
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2(
√
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1
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¡p
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p
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−1√
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m
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j
2−1√


k
 =

j
(−1)
2−1

k
± ( ) = 

µ


q
1
1
± 

q
2
2

¶
 =


n

 (1 ( )) = 
¡
+1 ( )

¢−
¡
−1 ( )

¢
TABLE I
NOTATIONS

QAMwith modulation order. Gray coding is used to map

bits of each user before being multiplexed to form the NOMA
symbol. The in-phase and quadrature components of a QAM
symbol are respectively given by

 = ± (2 − 1) ,  ∈ {±1±3    ±Λ} (1)

and

 = ± (2 − 1) ,  ∈ {±1±3 ± (Λ)}  (2)

Given that all symbols are equally probable with unity minimum
Euclidean distance, the average energy for the th user can be
expressed as



=
2

3
( − 1)  (3)

The NOMA multiuser signal transmitted from the BS can be
described as

 =

X
=1

r




 (4)

where  is the data symbol of the th user that is selected
uniformly from a gray coded QAM constellation with modu-
lation order ,  is the BS total transmit power. which is
normalized to unity, and  is the power allocation coefficient
for the th user,

P
=1  = 1. Given that the transmitted

symbol of the th user is represented as  =  +  ,
then E

£||2¤ = 1, where E [·] denotes the statistical average.
The symbol  ∈ S = {0, 1     −1} 
In flat fading channels, the received signal at the th UE can

be expressed as
 = +  (5)

where  represents the complex channel frequency response
between the BS and the th user, the channel gain || , ,
and  is the additive white Gaussian noise (AWGN),  ∼
CN (0 0). In NOMA systems, it is typically assumed that
1  2. Thus, the power coefficients should be allocated in
the opposite order of the channel gains, i.e., 1  2. Moreover,
for proper implementation of NOMA systems and avoid overlap
between the users’ symbols, the power allocation coefficients

Fig. 1. The constellation diagram of the transmitted symbol  for  = 2

must satisfy the following range constraint,

1
2


1 − 1
2 − 1Λ

2
2 (6)

An example for the case of  = 2 is shown in Fig. 1 where
1 = 2 = 4. In the figure, the first user bits are the leftmost
two bits and the second user bits are the rightmost two bits. As
can be noted from the figure, the NOMA symbol  has a 16-point
constellation.
For coherent detection, the channel phase arg {} , 

should be estimated and compensated in the received signal. The
received signal after phase equalization can be written as

̌ = e
− = + ̌ (7)

where ̌ = e
− . Given that  is circularly symmetric,

then ̌ ∼  ∼ CN (0 0). To extract the information
symbols  ∀, two possible detectors can be utilized, the SICD,
and JMuDwhich can give identical error performance. The JMuD
is similar to the MLD used with QAM signals, except that the bits
in each symbol belong to multiple users.

III. JMUD FOR NOMA SYMBOLS

Based on the constellation diagram of a general NOMA sys-
tem, e.g. Fig. 1, the JMuD of the th user can be written as,

{̂1 ̂2 . . .  ̂} = arg min
∈S

¯̄̄̄
¯ − ̂

X
=1

r





¯̄̄̄
¯
2

(8)

where ̂ is the estimated value of . Therefore, the JMuD com-
putes the Euclidean distance (ED) between the received signal
and possible constellation pints, and selects the minimum ED.
The number of constellation points in this case is , and thus, the
complexity of the detector increases exponentially as a function
of the number of users. However, by noting the constellation
in Fig. 1, it can be noted that the bits of 1 in each of the
four quadrants {0 1 2 3} are fixed regardless the bits of
2. Therefore, computing and comparing the EDs with any four
symmetrical points would result in the same decision when the
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ED with the 16 constellation points is computed. For example,
the constellation points that correspond to 0, 6, 10 and 15 in
Fig. 1 are symmetrical and they can be used for detecting ̂. Or
equivalently, we can use1 virtual constellation points obtained

from the scaled set
q



S1, which are marked using the solid

squares in Fig. 1. Consequently, the JMuD in (8) for1 is reduced
to

̂1 = arg min
1∈S1

¯̄̄̄
¯1 − ̂1

r
1
1

1

¯̄̄̄
¯
2

(9)

which is the conventional MLD for a QAM signal. It is worth
noting that the detector in (9) is identical to the SICD for 1 [6].
Consequently, the JMuD and SICD are identical for the case of
1 in terms of complexity and BER.
For the case of 2 bits, the rightmost bits, it can be noted

that the constellation points in each quadrant are identical. For
example, the rightmost two bits in {0 8} are equal, and the
same note can be made for {2 10} and {1 5}. Therefore,
if the received signal is in quadrant , then the point with the
minimum ED will necessarily be one of the constellation points
in. Thus, given that we know the received signal falls in which
quadrant, we limit the ED computation to the constellation points
in that quadrant. However, the quadrant can be easily identified
from the 1 estimated symbol where 00 → 0, 01 → 1, and
so forth. Once the quadrant is identified, the detection process
can be performed by shifting the quadrant center to the {0 0}
point, and then use conventional MLD of order 2 to recover
̂2. By noting that the centers of the four quadrants are actually
the virtual constellation points of 1, it can be realized that the
JMuD for 2 is also equivalent to the SICD [6], except that the
SICD has lower complexity. It is interesting to note that selecting
the wring quadrant is equivalent to the unsuccessful SIC process.

IV. DETECTION OF NOMA SIGNALS USING SICD

The NOMA signals can also be detected using the SICD
approach, where the signal for the th user is detected after
detecting and subtracting the signals of the first  − 1 users.
Therefore, MLD is applied  times, however, the constellation
size in each round is equal to the modulation order of the th
user signal, and thus,

̂ = argmin
̃

¯̄̄̄
¯ − ̂

−1X
=1

r



̂ − ̂

r



̃

¯̄̄̄
¯
2

 (10)

For the first user, it is clear that both the MLD (9) and SICD
(10) have the same structure, and hence, the same BER, which is
given in [6]. Moreover, it is worth noting the similarity between
the SICD and JMuD in the sense that the signals of 1,  −1
are involved in the detection of the signal of 

V. BER ANALYSIS OF 1
The bit representation for each constellation point in the

NOMA symbol can be expressed as , { } where ∈ {1 2}
is the user index,  ∈ {1 2     } is the bit index. For the first
user, the detection is performed using (9) where the first leftmost
1 bits belong to the first user. To simplify the presentation, we
initially consider the case of 1 = 2 = 4 shown in Fig. 1,

and then the approach is generalized for an arbitrary. For this
scenario, each NOMA symbol consists of 4 bits, 2 bits from each
user.

For 11, the constellation can be divided into two regions
based on the decision boundary, which is the -axis. In this
case, the decision boundary and the constellation point can be
at a distance of 1 or 2. The error event for 11 depends on
the transmitted NOMA symbol. For example, if 0, 1, 4 or
5 is transmitted, then Pr

³
̂11 6= 11

´
= Pr(n1  −1),

< (̌1) , n1, and similarly, if 2, 3, 6 or 7 is transmitted,

then Pr
³
̂11 6= 11

´
= Pr(n1  −2). The case for 12 is

similar to 11, except that the decision boundary in this case is the
-axis. Therefore, it is straightforward to show that 11 |1 =
12 |1. By considering all cases and taking into consideration
that 11 |1 = 12 |1, the average conditional BER for 1 can
be expressed as

1 |1 = 1
2

2X
=0

1 |1

= 1
2
[ (11) + (12)] (11)

where (·) is the-function and 2n1 = 02.

After exhaustive study to the NOMA constellation where every
user uses QAM with arbitrary, it can be noted that the errors
events have specific patterns and features that allow extending
the analysis for an arbitrary. One of the main features is that
the error probabilities of the 1

2
(1 +2) leftmost and rightmost

are identical, and hence, only one of them should be derived.
Therefore, the generalization of the same approach used in the
example yields the following for an arbitrary

1 |1 =
1√


XX
 (1 )

×

Ã
1

"
1 (1 )

r
1
1

+ 2 (1 )

r
2
2

#!
 (12)

For 11  (11 ) = 1, and it is repeated 22 times For the 1
where  = 1, the value of the first term of  (11 ) begins
with

√
12, which is repeated Λ2 times. The

¡√
2 + 1

¢


value of  (11 ) is the first value decremented by 1 and re-
peated Λ2 times. The

¡
3
√
2

¢
 value is the

¡√
2 + 1

¢


term with a different sign and repeated Λ2 This pattern repeats
for the remaining terms until the value of becomes  (11 )
becomes −1 and repeated Λ2. The other patterns  (1 ) is
presented in Table II. As for 1 (1 ), it starts from 1 and ends by
2
£¡
1− 2¢Λ1¤+ 1 where each term is repeated√2 as shown

in Table II Similarly, the 2 (1 ) patterns can be obtained from
Table II which is repeated

√
2 times.

From the regularities shown in Table II, the probability that the
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 (11 ) 1  .. .. 1 1 .. .. 1 .. 1  1

1 (11 ) 1 .. .. .. 1 3 .. .. 3 .. Λ1 .. Λ1
2 (11 ) 1 −1 .. .. ∓Λ2 1 .. .. ∓Λ2 .. 1 .. ∓Λ2
 (12 ) 2  .. .. 2 1 .. .. 1 .. −1 .. −1
1 (12 ) 1  .. .. 1 3 .. .. 3 .. 3

2
Λ1 .. 3

2
Λ1

2 (12 ) 1 −1 .. .. ∓Λ2 1 −1 .. ∓Λ2 .. 1 .. ∓Λ2
... ...
 (11 )

1
2

√
1  .. .. 1

2

√
1

1
2
Λ1

1
2
Λ1 .. −1 −1

1 (11 ) 1  .. .. 1 3 .. .. 3 .. 2
√
1 − 3 .. 2

√
1 − 3

2 (11 ) 1 −1 .. .. ∓Λ2 1 −1 .. ∓Λ2 .. 1 .. ∓Λ2
TABLE II

REGULAR PATTERNS FOR (1), 1(1) AND 2(1) FOR THE BER OF THE FIRST USER .

bit 1 is in error can be formulated as follows:

1 |1=
1√
1

11X
=0

Λ2X
=0

(−1)1
µ
2−1 −

¹
2−1√
1

+
1

2

º¶

×

Ã
1

"
(2 + 1)

r
1
1

+
³
2 −

p
2 + 1

´r 2
2

#!
(13)

Now, the exact closed-form for conditional BER for the first
user can be obtained by averaging the BER in (13) as given by

1 |1 =
1

212

1X
=1

1 |1 (14)

It is worth mentioning that the results in [6] confirm that both
SICD and JMuD have identical BER performance for the first
user.

VI. BER EXPRESSION OF 2

This section considers the derivation of the BER for the 2 in
a two-user NOMA system using gray coded square −QAM
modulation. The same patterns regularities approach can be fol-
lowed to derive the conditional BER for the second user. The
conditional BER for the second user can be expressed as follows

2 |2=
1√
2

12X
=0

21X
=0

1(  )
h

³
+2

³
2

1

 2 + 1
´´

−(1− 0)
³
−2
³
2

1

 2 + 1
´´i

(15)

where

 = b−1c0 + 2
¡
1− b−1c0

¢
(17)

and

2 (  ) = 1+

µ¹


2 − 1
º
(− 1)− 

¹


2 − 1 +
1

2

º
− 1
¶

× 1 (18)

Now, the exact conditional BER for the 1st user can be obtained
by averaging the BER in (15) as given by

2 |2 =
1

2 log2
√


2X
=1

2 |2 (19)

It is worth mentioning that the results in [6] confirm that both
SICD and JMuD have identical BER performance for the first
user. Table illustrates the implementation of (14) and (19) on
NOMA systems. Appendix I shows the exact BER formulae for
several cases of interest.

VII. NUMERICAL AND SIMULATION RESULTS

This section presents the analytical and Monte Carlo simula-
tions results for the exact BER of NOMA systems. All users are
assumed to be equipped with a single antenna. The randomly
generated channels are ordered based on their strength, where
the weakest channel is assigned to the 1st user and the strongest
channel is assigned to th user. The channel gain values are
selected randomly as follows, 1 = 01789 and 2 = 06902.
The transmitted symbols for all users are selected uniformly from
a Gray coded−QAM constellation. The total transmit power
from the BS is unified for all cases,  = 1. Moreover, the power
allocation values  are chosen to satisfy (6).
Fig. 2 shows the conditional BER for the first user

for four different NOMA systems, {1 = 4 2 = 4} 
{1 = 16 2 = 4}  {1 = 4 2 = 16}  and
{1 = 16 2 = 16}  For fair comparison, the power
allocation 1 = 091 and 2 = 009 are unified for all
the systems and chosen based on the power constraint for
{1 = 16 2 = 16}. As can be noted from the figure,
the analytical results obtained using (14) perfectly match the
simulation results for all the considered values of 1, 2,
and 0 It can be noted that for low 0 = 1

2n1
values, the effect of AWGN becomes dominant and hence
the BER is affected mainly by 1. For example, for the
cases where 1 = 16, both {1 = 16 2 = 4} and
{1 = 16 2 = 16} NOMA systems have the same BER
performance over 0 = [0 30] dB. As 0 increases, the
inter-user interference (IUI) affects the error performance. As
2 increases, the BER performance degrades which is a result
of the decreased Euclidean distance between the constellation
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Fig. 2. Conditional BER for the first user witth different 1 and 2 and
1 = 091

points. For example, for the cases where {1 = 4 2 = 4}
and {1 = 4 2 = 16}, the BER for {1 = 4 2 = 4}
is lower than {1 = 4 2 = 16} beyond 0 = 24 dB.
Moreover, it can be noted that both SICD and JMuD have
identical BER performance for all considered scenarios.
Fig. 3 shows the conditional BER for the second user

for four different NOMA systems, {1 = 4 2 = 4} 
{1 = 16 2 = 4}  {1 = 4 2 = 16}  and
{1 = 16 2 = 16}  The power allocation value for all
the system is 1 = 091. It can be noticed that, the theoretical
results evaluated using (19) perfectly match the simulation results
for all the considered values of 1, 2, and 0 It can be
concluded that at low 0, the effect of AWGN is controlling
the error performance. For example, {1 = 4 2 = 4} and
{1 = 16 2 = 4} have the same BER up to 5 dB. As0

increases, the impact of IUI becomes more dominant than
AWGN hence the greater1 is, the worse BER we obtain. This
is a result of the decreased distance between the superimposed
constellation points. For example, the BER for the system
{1 = 4 2 = 4} preforms better compared to the system
when {1 = 16 2 = 4}. Furthermore, it can be noted that
both SICD and JMuD have identical BER performance for all
considered scenarios.

VIII. CONCLUSION

In this work, exact and closed-form BER expressions for two-
user NOMA systems using arbitrary square−QAM per user
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Fig. 3. Conditional BER for the second user witth different1 and2 and
1 = 091

are derived. The detection method, namely, JMuD, is considered
instead of the commonly used SICDmethod to reduce the compu-
tational time of NOMA systems. Although the two detectors are
fundamentally different, the obtained analytical and simulation
results show that both detectors have identical BERs in the case
of perfect channel estimates. The JMuD would be preferable
for cases where the processing delay is paramount. In addition,
a derived power allocation range must be satisfied in order to
ensure proper NOMA implementation.

APPENDIX I

The BER for the two-user NOMA system for any 1

and 2 values can be obtained by direct substitution in
(14) and (19). Table shows the BER for four different
NOMA systems, {1 = 4 2 = 4}  {1 = 4 2 = 16} 
{1 = 16 2 = 4}, and {1 = 16 2 = 16}
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