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Abstract

This paper presents a novel algorithm for measuring the linewidth enhancement factor of semiconductor lasers and the optical
feedback level factor in a semiconductor laser with an external cavity. The proposed approach is based on analysis of the
self-mixing phase equation to deduce equations for finding parameters given only knowledge of the perturbed phase. The
effectiveness of the method has been validated with accuracy of 8.6%and 1.7% for ‘C’ and alpha respectively while covering all

feedback regimes.
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Abstract. This paper presents a novel algorithm for measuring the linewidth enhancement
factor of semiconductor lasers and the optical feedback level factor in a semiconductor laser
with an external cavity. The proposed approach is based on analysis of the self-mixing phase
equation to deduce equations for finding parameters given only knowledge of the perturbed
phase. The effectiveness of the method has been validated with accuracy of 8.6% and 1.7% for
C and « respectively while covering all feedback regimes.
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2. Introduction

In optical feedback self-mixing interferometry(OFSMI), the instantaneous distance between
the laser semiconductor diode driven by a constant injection current and a remote surface
which back-scatters a small amount of optical power back into the laser diode cavity[7].
Linewidth enhancement factor (LEF) (denoted as «) is a fundamental parameter of self-mixing
interferometry as it characterizes the linewidth, the chirp, the injection lock range, and the
response to optical feedback [5].The influence of the parameters C and « on the emitted laser
intensity has been extensively analyzed in [1] and [2]. Establishing an accurate measurement has
been a challenging and active research topic that has attracted extensive research work during
the past two decades [5]. Existing approaches include the direct physical measurement of the
subthreshold optical spectrum as the injected current is varied [3] and techniques based on the
analysis of the locking regimes induced by optical injection from a master laser [4]. Moreover,
an analytic method, based on gradient descent approach was presented [6], which showed the
accuracy of 6.7% and 4.63% for C and respectively.

3. Main theory
When the optical feedback phenomenon occurs, the laser wavelength is no longer the constant A,
but is slightly modified and becomes a function of time Af(¢) when D(t) varies. The wavelength
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4 THEORETICAL DERIVATION

fluctuations can be found by solving the phase equation,
zo(t) = xf(t) + C'sin(xs(t) + arctan(a)) (1)

x, and z; are referred as perturbed and unperturbed phase respectively, « is the linewidth
enhancement factor and C is the coupling factor. x, and xy can be represented as,

o(t) = 2o ()7 () (2)

x4(t) = 2mwp (£)7 (1) (3)

where 7(t) = 2D(t)/c is the round trip time, with c as speed of light. v¢(t) and v,(t) represents
optical frequencies with and without feedback. Laser feedback output optical power(LDOOP)
P(t) depends on the SM phenomenon and written as:

P(t) = Py[1 + mcos(zs(t))]

where P, is the power emitted by the free-running state laser diode and m is the modulation
index. Therefore, for purpose of displacement measurement, we track from SM signal P(t)
measurement toward perturbed phase x () to z,(t) toward displacement D(t) measurement.Due
to environmental fluctuations and uncertainty, it is desirable to estimate parameters C and «
for a given condition of the interferometer for robust displacement measurement.

4. Theoretical derivation
4.1. Estimation of alpha
Taking derivative on both sides of (1),

d(ffta = %f(l + C cos(xy + arctan(a))) (4)

dxo
- =1+ Ccos(zy + arctan(a)) (5)
@

When extremas of z, and x; are reached simultaneously, then their derivatives approach zero
simultaneously and their ratio approaches 1 by taking limit on time,i.e, when ¢ = t¢y,
dzo
ity A = 1 (6)

dt

Considering when ¢ = t.y¢,then xy = xf. and x, = Zoe, Putting in (5),

cos(x ¢e + arctan(a)) = 0 (7)
Ty, + arctan(a) = km — 5 (8)

Putting equation(8) in equation(1),as sin(kr — §) = %1
Toe = Tfe £ C (9)

From equation(1), z, — xf is maximally bounded by constant C,when x; is allowed to increase
from 0 to some value (less than § — arctan(ca)).Therefore, on local maximas of displacement, z,
swings z; by C. Lets denote maximas of x, and xy as xoy, and zy,, respectively,then on local
maximas of displacement,
Tom = Tfm + C (10)
Page 2 of 8
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4.2 Estimation of C 5 ALGORITHM DESIGN

Putting in equation(1),

Tfm + C = xfp + Csin(xfy, + arctan(a)) (11)
sin(z f,, + arctan(a)) =1 (12)
Ty +arctan(a) = § + 2k7 (13)
where, k is an integer.

a = tan(§ + 2km — x4,,) (14)

Due to periodicity of tan function by 2k, equation (12) becomes,
a=tan(g — Trpy) (15)
a = tan(arcsin(1l) — zf,,) (16)

4.2. Estimation of C

Now, the perturbed phase (zf) being modified form of z, exhibits sharp transitions (from
moderate to high feedback regime but it can be extended to all regimes once the algorithm is
developed), then at those transitions derivative of s approaches infinity. Let z; be represented
as xf; on transitions of perturbed phase, then equation (5) becomes,

1 + C cos(z ¢ + arctan(a)) = 0 (17)
— -1
~ cos(x i +arctan(a)) (18)

5. Algorithm Design
5.1. Algorithm for alpha estimation
Since derivative of arcsin(t) is given by,

d(arcsin(t)) _ 1
dt - 1—¢2

(19)

Around t=1, darc;in(t) becomes quite large and sensitive, and slight deviations can lead to huge

errors. Therefore, we can add counter sensitivity term as € which has following properties.
e<<lande>0 (20)
So, equation(14) becomes modified as,
a = tan(arcsin(l — €) — x4y, (21)

If we are given information that « is bounded by some threshold '+ > 0’ and 0, then we find «
by following algorithm

step 1: Initially choose € = 0 and step size of varying it as de

step 2: For a given sample of perturbed phase zy, find the maximum positive element as z,,

46

which would be global maxima of xf(t).

otep 3: Plug the values into equation(21).If «v is outside [0, 7], then increase € to € + de and repeat

48

Step 3.0therwise, a would be required estimation.
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5.2 Algorithm for C estimation 6 SIMULATION RESULTS

5.2. Algorithm for C estimation

Due to sharpness of SM signal,a slight deviation of arguments of equation(18), can create huge
errors. Due to this non-smooth property,we have to use statistic of finding globally sharpest
transition and exploiting equation (18).

Step 1: For suitable magnitude threshold M, calculate derivative of sample of xf as %f and find

the set X as, .
X = {zp(0)t = arg[Zf > M]} (22)
Step 2: Plug the values into equation(18), then estimated value of C is,
— —1
¢= max(cos(x—i—arctan(a))) Ve e X (23)

53

54

55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70

71

6. Simulation Results
6.1. Estimation of C and alpha
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Figure 1. Reference unperturbed phase and reconstructed unperturbed phase for a
displacement of 6kHz

6.1.1. Remark The above-mentioned algorithm can be extended and conjugated with an
optimization algorithm, as depicted in [6], which would decrease the number of iterations
for convergence and increase accuracy. Moreover, an obvious observation is that an arbitrary
smoothing digital filter could increase accuracy when reconstructing displacement.

6.2. Reconstruction of unperturbed phase and displacement

For a sinusoidal displacement of 3 peak to peak um and 6kHz, sampled at 10kHz with reference
values of C and « as 4 and 5 respectively, on applying mentioned algorithms with 7 = 0.02
and M = 10000, we get a reconstructed unperturbed phase which gives mean square error of
32.4nm, by utilizing equation(1), as shown in figure(2) and (3) and reconstructed displacement
is mentioned in figure(4). Displacement is reconstructed by using equation (2).

Similarly, for a sinusoidal displacement of 3 peak to peak pm and 6kHz,12kHz and 18kHz,
sampled at 10kHz with reference values of C and « as 4 and 5 respectively, on applying mentioned
algorithms with 7 = 0.19 and M = 10000, we get a mean square error of 96.1nm and results
are mentioned in figure(5), (6) and (7), after utilizing equation (1) and (2). To work with the
mentioned method, the ”feedback regimes” term would be ignored and values of C and o would
be randomly experimented with, from 1 to 9 for C and 2 to 5 for « respectively. For simulation,
a sample of the perturbed phase corresponding to a sinusoidal displacement of 3 peak to peak

Page 4 of 8



6.2 Reconstruction of unperturbed phase and displacement 6 SIMULATION RESULTS
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Figure 2. Plot of reference unperturbed phase and reconstructed unperturbed phase based on
estimated C and « for a displacement of 6kHz
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Figure 3. Plot of absolute error between reference unperturbed phase and reconstructed
unperturbed phase based on estimated C and « for a displacement of 6kHz
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Figure 4. Reference displacement and reconstructed displacement for a displacement of 6kHz
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Figure 5. Plot of reference unperturbed phase and reconstructed unperturbed phase based on
estimated C and « for a displacement having 6kHz,12kHz and 18kHz components
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Figure 6. Plot of absolute error between reference unperturbed phase and reconstructed
unperturbed phase based on estimated C and « for a displacement having 6kHz,12kHz and

18kHz components
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Figure 7. Reference displacement and reconstructed displacement for a displacement having
6kHz,12kHz and 18kHz components
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9 CONFLICT OF INTEREST

pm and 6kHz, sampled at 10kHz, was used. The following table represents values of estimated
values of C corresponding to reference C values, with fixed « = 5, along with 7 = 0.02 and

M = 10000 found by hit and trial.

Estimated C(«a = 5) | Reference C(a = 5) | Percentage error %
1.1708 1 17
2.3401 2 17
4.0779 4 1.9475
5.4588 5 9.17
6.6384 7 5.7
9.1011 9 1.11

The average error for above table is 8.67%, for estimating C independently.

Similarly, following table presents estimated values of o corrosponding to reference values, when

C is kept constant at 5

Estimated «(C=5) | Reference a(C=5) | Percentage error %
2.1098 2 5.49
3.0080 3 0.2667
4.0013 4 0.0325
5.0620 5 1.24

The average error for above table is 1.75%, for estimating « independently.
Simultaneous prediction of values of C and a corresponding to reference values are presented in
following table.

Estimated «,C | Reference a,C | Percentage error %
3.4005, 4.2041 3,4 13.35, 5.1
4.1603, 5.1343 3,5 38.6, 2.6
5.2962, 6.1946 4,6 32.25, 3.16
5.2674, 7.1031 5,7 5.2, 1.42

The average error for estimating C and « simultaneously is 3.07% and 22.35% respectively.
It should be noted that the above-presented data covers all feedback regimes.
Even though some errors appear large, for example, for reference C=6, a=4, give percentage
errors of 3.16% and 32.25% respectively, when used for reconstruction of unperturbed phase from
equation(1) gives means square error of 100nm, which is quite reasonable, and its depiction is
presented in figure(1).

7. Conclusion

Therefore, based on SMI phase equation (1), the algorithm has been developed for estimation of
C and « and is useful for reconstruction of unperturbed phase from sole knowledge of perturbed
phase, for measurement of displacement of the target, under situations where C' and « are known
or vary with the accuracy of 8.67% and 1.75% respectively, when independent estimation and
22.35% and 3.07% for simultaneous estimation. But even still, the mean square error bound for
reconstructed displacement is less than 100nm.
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