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Abstract

To data-driven estimate power system sensitivity matrix considering mitigating data saturation, a series of multivariable least

squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS),

the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS (ML-WRMLS), and the memoryfading ML-WRMLS

(MF-ML-WRMLS). Considering enhancing computational efficiency and accuracy by mitigating data saturation, the last three

of them are specifically derived for sensitivity matrix estimation based on time-varying online-measured data. The effectiveness

of the presented algorithms is verified and compared in the Nordic 32 system for voltage sensitivity matrix estimation. The

results illustrate the prime algorithm in practice.
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Abstract—To data-driven estimate power system sensitivity 
matrix considering mitigating data saturation, a series of 
multivariable least squares (MLS) algorithms are proposed and 
compared, including the ordinary MLS (OMLS), the weighted 
MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the 
memory-limited WRMLS (ML-WRMLS), and the memory-
fading ML-WRMLS (MF-ML-WRMLS). Considering 
enhancing computational efficiency and accuracy by mitigating 
data saturation, the last three of them are specifically derived 
for sensitivity matrix estimation based on time-varying online-
measured data. The effectiveness of the presented algorithms is 
verified and compared in the Nordic 32 system for voltage 
sensitivity matrix estimation. The results illustrate the prime 
algorithm in practice. 

Keywords—power system sensitivity matrix estimation, 
multivariable regression, data saturation, recursive least squares 

I. INTRODUCTION  

Power system sensitivity, which is defined as the 
coefficients in the linear function of multiple system state 
variables with respect to multiple control variables, is widely 
applied for power system operation and control [1-8]. 
Specially, voltage sensitivity is used for reactive power 
planning and voltage stability control [1-2], power loss 
sensitivity is for economic operations [3], eigenvalue 
sensitivity is for small signal stability analysis [4-5], and 
various kinds of sensitivities are widely employed for control 
design and system security assessment [6-8]. 

In conventional deterministic power systems, sensitivities 
can be obtained using offline models of the systems, such as 
the calculation by performing inversion of augmented 
Jacobian matrix [9], by the perturbation method [10], and by 
direct calculation using the power system offline equations 
[11]. However, in modern stochastic power systems, the 
sensitivity changes along with the time-varying operating 
conditions; therefore, owing to the ensuing model 
incompatible, the results from conventional methods may no 
longer be suitable in practice.  

To address this issue, sensitivity estimation based on 
online-measured data of system operations and conditions has 
been developed. Recent researches in this field have focused 
on estimation algorithms (e.g., the ordinary least squares in 
[12], the locally weighted least squares in [13], and neural 
networks in [14]), considerations on different input data 
conditions and the corresponding solutions (e.g., solutions for 
data multicollinearity in [15] and solutions for noise issues in 
[16]), and applications of estimated sensitivity for various 

system operations and controls (e.g., the voltage control in [17] 
and the power loss minimization in [18]). Nevertheless, most 
existing methods are for sensitivity vector estimation rather 
than sensitivity matrix estimation. Regarding the applications 
of sensitivity estimation to real power systems with multiple 
states variables and multiple control variables, sensitivity 
matrix estimation is required.  

For sensitivity matrix estimation based on online-
measured data, data saturation often happens, i.e., when the 
sample size is large, the most recent samples have slight 
influence on estimation, which makes the estimator cannot 
“track” and reflect the near real-time relationships between 
state variables and control variables. To enhance feasibility to 
estimate the sensitivity matrix from online-measured data of 
time-varying power system operations and conditions, data 
saturation should be mitigated, which can enhance 
computational efficiency and accuracy. 

To fill up the aforementioned research gaps, this paper 
investigates a series of multivariable least squares (MLS) 
algorithms for data-driven power system sensitivity matrix 
estimation, with the specific consideration on mitigating data 
saturation. Assume that in a linear function of multiple system 
state variables with respect to multiple control variables, the 
errors of outputs have zero means and equal variances, thus 
Gauss-Markov regression model can be used. Our 
investigation starts with transforming the ordinary least 
squares from a multiple-input single-output (MISO) version 
to a multiple-input multiple-output (MIMO) version, which 
derives the first algorithm named the ordinary multivariable 
least squares (OMLS). Next, considering the different 
importance of different data samples, a weighted version of 
the OMLS is developed, and the second algorithm named the 
weighted multivariable least squares (WMLS) is proposed. 
Then, to reduce data saturation when estimate the sensitivity 
matrix from a large amount of data, a recursive version of the 
OMLS using sliding window method is advanced, which is 
the third algorithm called the memory-limited ordinary 
recursive multivariable least squares (ML-ORMLS). Further, 
the recursive version of the WMLS is also presented to better 
mitigate data saturation (i.e., to stress different importance of 
data samples in each snapshot of recursion), leading to the 
fourth algorithm called the memory-limited weighted 
recursive multivariable least squares (ML-WRMLS). Finally, 
by applying forgetting factor method to the ML-WRMLS, the 
fifth and the final algorithm called the memory-fading LM-
WRMLS (MF-ML-WRMLS) is upgraded. Compared to the 
fourth algorithm, the fifth algorithm can put higher weights to 
the most recent data and gradually and  automatically slighter 



weights to the less recent ones, while limiting the sample size 
for each recursion. 

Contributions of the work are to conduct sensitivity matrix 
estimation and mitigate data saturation by providing a series 
of solutions to the following issues progressively: 1) the 
OMLS and the WMLS are to provide mathematical 
formulations for sensitivity matrix estimation and for our 
derivations of further algorithms; 2) the ML-ORMLS and the 
ML-WRMLS  are to mitigate data saturation and enhance 
computation accuracy and efficiency when estimating 
sensitivity matrices from online-measured data; and 3) the 
MF-ML-WRMLS is to automatically adjust weights while 
limiting the sample size in each recursion, which better fits the 
time-varying characteristic of power systems. To the best of 
our knowledge, it is the first research work that focuses on 
sensitivity matrix estimation with specific consideration on 
mitigating data saturation, aiming to find a fast and accurate 
algorithm. More generally, we provide feasible computational 
techniques for data-driven estimation issues in power systems 
where the time-varying online-measured data usually have 
large sample sizes and incur data saturation.  

This paper proceeds as follows. Section II describes the 
methodology and mathematical formulations for power 
system sensitivity matrix estimation. Section III proposes 
algorithms of the OMLS, the WMLS, the ML-ORMLS, the 
ML-WRMLS and the MF-ML-WRMLS progressively, 
including their brief introductions, mathematical formulations 
and algorithm implementation procedures. Section IV 
presents three case studies based on the Nordic 32 system for 
voltage sensitivity estimation using the proposed algorithms 
compared with the conventional perturbation method and each 
other. Section V draws the conclusions. 

II. POWER SYSTEM SENSITIVITY MATRIX ESTIMATION 

The power system operation behavior can be 
characterized by the following nonlinear equation at each 
time t [19]: 

  (1) 

where c is a vector of system control variables, s is a vector 
of state variables, and f is the function of a MIMO model.  

Suppose that the system is stable and operates around an 
equilibrium operating point, the following increment 
equation holds: 

 
 (2) 

where the differential term f c  is the sensitivity matrix of 
s with respect to c  at time t, and α is the error vector that 
assumed to be zero mean and independent and identical 
normally distributed (IID). 

    Let  TT
1t t tmx xx  represent  tc and 

TT
1t t tpy y   y  represent  ts , where p is the amount of 

state variables, and m is the amount of control variables. For 
N measurements, (2) can be transformed to its matrix form 
shown as the following model: 

  (3) 

where X is an N × m matrix containing N sample units of m 

input control variables, i.e.,      
T

1 1N m
    X x x x x  , 

where 1j j jmx x   x  is the j-th row vector of X, 

   T1i Nii x xx  is the i-th column vector of X, and jix is the 

element of X with the coordinate of (j,i), with j=1,2,...,N, 
i=1,2,…,m; Y is an N × p matrix containing N sample units 
of p output state variables , i.e., 

     
T

1 1N p
    Y y y y y  , where 1j j jp   y y y is the 

j-th row vector of Y,    T1k Nkk y y y is the k-th column 

vector of Y, and jky is the element of Y with the coordinate of 

(j,k), with k=1,2,…,p; B is an m × p sensitivity matrix 
containing the coefficients, i.e., containing elements of the 
transposed matrix of f c ; and ε is an N × p matrix of error 
terms containing elements of the transposed matrix of α. 

Equation (3) is a standard multivariable linear regression 
model where N is infinite theoretically. However, for 
sensitivity matrix estimation, B is estimated based on a finite 
N. Therefore, Gauss-Markov regression model is adopted: 

 
 

(4) 

where B̂  is the estimator, and e is the residual error matrix 
defined by 

 
 

(5) 

The residual error matrix e and error matrix ε  are of identical 
multivariate normal distributions. Equation (4) can be solved 
by MLS algorithms. 

III. MLS ALGORITHMS FOR SENSITIVITY MATRIX 

ESTIMATION CONSIDERING MITIGATING DATA SATURATION 

A. The OMLS Algorithm 

According to Gauss-Markov theorem and the IID 
assumption of output errors, the best linear unbiased 
estimator of the coefficients is given by the MLS estimator 
[20]. Given the sample data matrices X and Y, the OMLS 
minimizes the quadratic sum of elements in the residual error 
matrix e as follows: 

 

 
(6) 

where ˆ jky  is the element of Ŷ  with the coordinate of (j,k), 

and jke  is the element of e with the coordinate of (j,k), which 

have the same meanings in the WMLS as below. 

By matrix transformations, the estimator B̂  is given by: 

  (7) 

The implementation procedure of the OMLS is: build the 
sample regression model by (4) with N sample units of the 
online-measured data X and Y, and then calculate the 
estimator B̂  by (7). 

    t f ts c

    
     0

f t
t t

t


   



c
s c α

c

 Y XB ε

ˆ Y XB e

ˆ e Y Y

 22

1 1 1 1

ˆmin min min
p pN N

jk jk jk
j k j k

Q e y y
   

   

  1T Tˆ 
B X X X Y



B. The WMLS Algorithm 

Different to the OMLS that treats all data samples with 
equal weights, to distinguish the different importance of 
different data samples, the WMLS is developed by 
minimizing the weighted quadratic sum of elements in e as 
follows: 

  (8) 

where jkw is the element of the weighting matrix W with the 

coordinate of (j,k). 

By matrix transformations, the estimator B̂  is given by: 

  (9-a) 

 
 

(9-b) 

with 

  (10) 

where  
ˆ

kβ  is the k-th column vector of B̂ , and  kw  is the k-

th column vector of W. 

In some cases, weights to the residual errors from 
different variables are the same, i.e., 

  (11) 

where w is the each of column vectors in W. Then (9) can be 
simplified as:  

  (12) 

The implementation procedure of the WMLS is: first, 
build the sample regression model by (4) with N sample units 
of the online-measured data X and Y; next, set the weighting 
matrix W; then calculate the estimator B̂  by (9) or (12). 

C. The ML-ORMLS Algorithm 

Based on the OMLS, the ML-ORMLS is developed using 
sliding window method to limit the sample size for each 
recursion, which can mitigate data saturation. The brief 
derivation is as follows. 

Suppose the total sample size adds one to itself per 

iterative time unit, and the sensitivity matrix estimators ˆ
N nB  

and 1
ˆ

N n B  at the time N+n and N+n+1 are 

 
 

(13-a) 

 
 

(13-b) 

respectively, with 

     (14-a) 

 (14-b) 

       (14-c) 

   (14-d) 

where N is the length of the sliding window (and also the 
sample size for each recursion), n is the recursive time, and 

 1 ,2 , ,  and 1j n n N n N n      . 

Equations (14) reveal that online-measured data matrices 
X and Y at the time N+n and N+n+1 have common parts of 

,R N nX and ,R N nY  respectively. Based on this mathematical 

relationship, the recursion is built by adding the most recent 
rows of X and Y, and removing their oldest rows, while 
holding ,R N nX and ,R N nY  in each recursion. Therefore, 

during the recursion, the sample size for estimation in each 
recursion is kept constant N and thus the memory is “limited”.  

To obtain the estimator 1
ˆ

N n B  via ˆ
N nB , we partition 

ˆ
N nB  and turn the crank on the matrices considering the 

common parts ,R N nX and ,R N nY  in ˆ
N nB  , thus have (15) 

and (16): 

 (15) 

       (16) 

Then the estimator ˆ
N nB  at the time N+n is expanded as 

 
(17) 

Based on (15), the expansion of 1N n P  is derived as 
follows: 

 

(18) 

with (19),  (20) and (21) as follows: 

  (19) 

               (20) 

 (21) 

Based on (16), the expansion of 1N n Z  is derived as the 
following (22) and (23) through a series of omitted derivation 
processes: 

              (22) 

    (23) 

 Based on (17) and because of (18) to (23), the recursive 

 22

1 1 1 1

ˆmin min min
p pN N

jk jk jk jk jk
j k j k

Q w e w y y
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   
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ˆ ˆ ˆˆ , , , p

   B β β β

        

1
T Tˆ

k k k k


β X W X X W y

    diagk kW w

   T1 2 k k Nkk w w w w w

  1T Tˆ 
B X WX X WY

  1T Tˆ
N n N n N n N n N n



    B X X X Y

  1T T
1 1 1 1 1

ˆ
N n N n N n N n N n



         B X X X Y

T TT T T T
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T TT T T T
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T TT T T T
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T TT T T T
1 2 1 , 1  N n n N n R N n N n              Y y y Y y

   1 1T T T
1 1 , ,N n N n N n n n R N n R N n

 

        P X X x x X X

T T
1 1 , ,N n N n N n n n R N n R N n        Z X Y x y X Y

   1T T T
1 1 , , 1 1 , ,

ˆ
N n N n N n

n n R N n R N n n n R N n R N n
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B P Z
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formulation of 1
ˆ

N n B  is derived as follows: 

    
(24) 

To sum up, the sensitivity matrix estimator 1
ˆ

N n B  is 
given by (24), (18), (21), (19) and (23). The implementation 
procedure of the ML-ORMLS is as follows: 

Step 1: build the sample regression model by (4) with N 
sample units of the online-measured data X and Y; 

Step 2: set the total recursive time  1r rn n  ; 

Step 3: calculate initial values by (25) and (26): 

  (25) 

  (26) 

Step 4: calculate ˆ
N nB  and N nP  based on N n  units 

of online-measured data, and get the most recent sample 
vectors 1N n y  and 1N n x  for the ( 1N n  ) -th 
measurement; 

Step 5: calculate 1
ˆ

N n B  by (24), (18), (21), (19) and (23) 
orderly; 

Step 6: remove the oldest data vectors 1ny  and 1nx ; 
therefore, the online-measured data matrices 1N n Y  and

1N n X are renewed; 

Step 7: if the recursive time 1rn n  , then let 1n n 

and return to Step 2; else, output 1
ˆ

N n B . 

D. The ML-WRMLS Algorithm 

Based on the WMLS and the ML-ORMLS, the ML-
WRMLS is advanced on the strength of both recursive and 
weighted methods, i.e., Similar to the WMLS, the ML-
WRMLS can assign different weights to different samples; 
and similar to the ML-ORMLS, the ML-WRMLS has a 
recursive definition to mitigate data saturation.  

The following derivation of the ML-WRMLS is similar 
to that of the ML-ORMLS.  

At the time N+n and N+n+1, the sensitivity matrix 
estimators ˆ

N nB  and 1
ˆ

N n B  are 

   (27-a) 

 

(27-b) 

  (27-c) 

 

(27-d) 

respectively, with (14-a), (14-b) and the following (28): 

              (28-a) 

  (28-b) 

           (28-c) 

                 (28-d) 

        (28-e) 

      (28-f) 

where      

T

1k N n k n k N nw w  
   w   and 

     

T

1 2 1k N n k n k N nw w    
   w   are the k-th column vectors 

of weighting matrices N nW and 1N n W at the time N+n and 
N+n+1 respectively. 

To obtain the estimator 1
ˆ

N n B  via ˆ
N nB , we partition 

ˆ
N nB  and turn the crank on the matrices considering the 

common parts ,R N nX ,  ,R k N ny  and  ,R k N nW in ˆ
N nB  , thus 

have (29) and (30): 

 (29) 

   (30) 

Derive similarly to the ML-ORMLS, let 

   (31) 

 (32) 

After a series of omitted derivation steps, the 

sensitivity matrix estimator 1
ˆ

N n B  is given by: 

           (33-a) 
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The implementation procedure of the ML-WRMLS is as 
follows: 

Step 1: build the sample regression model by (4) with N 
sample units of the online-measured data X and Y; 

Step 2: set the total recursive time  1r rn n  ; 

Step 3: get initial values by (38) and (39): 

               (38-a) 

  (38-b) 

               (39-a) 

                    (39-b) 

where  

 
(40) 

Step 4: calculate ˆ
N nB  and N nP  based on N n  units 

of online-measured data, get the sample vectors 1N n y  and 

1N n x  for the 1N n  measurement, and renew the latest 
weighting row vector 

     1 1 1 2 1 1, , ,N n N n N n p N nw w w       
   w  ; 

Step 5: calculate 1
ˆ

N n B  by (33), (34), (35), (36) and (37) 
orderly; 

Step 6: remove the oldest data vectors 1ny , 1nx  and the 

oldest weighting row vector      1 1 1 2 1 1, , ,n n n p nw w w   
   w  ; 

therefore, the sample matrices 1N n Y , 1N n X  and weighting 

matrix 1N n W  are renewed; 

Step 7: if the recursive time 1rn n  , then let 1n n 

and return to Step 2; else, output 1
ˆ

N n B . 

E. The FM-LM-WRMLS Algorithm  

For estimating the sensitivity matrix that can track the 
time-varying functional relationship between state variables 
and control variables in near real-time, it is reasonable to put 
heavier weights to the most recent data and gradually and 
automatically lessen weights to the old ones. However, In the 
WRMLS and the ML-WRMLS, the assignments of weights 
are unspecified. To overcome the limitations of the WRMLS 
and ML-WRMLS, the MF-ML-WRMLS is proposed, which 
can automatically adjust the weights while limiting the 
sample size for each recursion. In the MF-ML-WRMLS, 
forgetting factor method is used, which enables the weights 
to be gradually fading by column, so the memory is “fading”.  

The brief derivation of MF-ML-WRMLS is as follows. 

First, for the WRMLS, suppose that the weights are 
assigned by row, and the original weighting matrix oriW  is: 

     (41-a) 

                         (41-b) 

When a forgetting factor (0,1]  is applied to wori(k), 
vectors of the weighting matrix is as follows: 

  (42) 

Next, drawing an analogy with the WRMLS, vectors of 
the weighting matrix in the ML-WRMLS are derived as 
follows: 

  (43-a) 

  (43-b) 

Then, the weighting factors in (36) and (37) are 
accordingly turned to be: 

  (44-a) 

  (44-b) 

By employing a forgetting factor, the MF-ML-WRMLS 
automatically assigns time-varying weights on N data vectors 
that are used for estimation in each recursion, so as to put 
larger weights on recent data than those of the old data, and 
distinguish the diverse importance of different data to the 
estimation more precisely. The sensitivity matrix estimator 

1
ˆ

N n B  is given by (33) to (35) and the following (45) and 
(46): 

  (45) 

  (46) 
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The implementation procedure is similar to that of the ML-
WRMLS, just replacing (36) and (37) with (45) and (46) 
respectively. The weighting matrix in the MF-ML-WRMLS 
can be automatically renewed, which does not require the 
steps of adding or removing some weights during recursion 
manually (i.e., Step 4 and Step 6 in the implementation 
procedure of the ML-WRMLS), hence is rewarding to speed 
up the calculation. 

IV. CASE STUDY 

A. System Introduction 

In this study, the Nordic 32 system, which is widely used 
in power system dynamic analysis and control [21], is 
employed to emulate online power system operations. The 
system has 20 generators and 22 loads. Among of all 
generators, one is a synchronous condenser, another is the 
generator at slack bus considered as V-  node, and others 
are P-V nodes. All loads are considered as P-Q nodes. 

B. Data Generation 

Real online-measured data recorded by the PJM 
(Pennsylvania-New Jersey-Maryland) companies in 2013 [22] 
was used to verify the proposed algorithms.  

The procedure of data generation is detailed as follows. 
First, extract the load fluctuation data in 40 days at different 
areas from the PJM recoded dataset, and transform them into 
per-unit values. Next, take the outputs given by the generators 
and loads in the Nordic 32 system as the initial operating 
values, and 40 variation trend curves extracted as 40 relevant 
system parameters (i.e., 18 generators and 22 loads except the 
generator at slack bus and the synchronous condenser). Then, 
to improve the simulated sampling rate, run 
cubic spline interpolation function in MATLAB software; by 
interpolation, the measurement data is in the same condition 
of collecting one sample unit of data every 20ms. Afterwards, 
select of 22 load fluctuations in 6,000 operation modes near 
an operation point as the control variables. Finally, calculate 
the voltages of these 6,000 operation modes using 
DigSILENT / PowerFactory software [23], and take voltages 
of 54 buses other than those of the generator buses and load 
buses in each operation mode as the state variables. 

By data generation, there are 6,000 sample units in the 
primary sample dataset. In each sample unit, the 22 reactive 
powers, which function as control variables, are regarded as 
input variables; the 54 bus voltages, which function as state 
variables, are regarded as output variables. After centralizing 
and standardizing the primary sample data set, the sample 
data set for sensitivity estimation is formed with a 6000 22
input variable matrix X and a 6000 54 output variable 
matrix Y. The sensitivity matrix B calculated by the 
perturbation method is regarded as the benchmark, i.e., the 
real sensitivity matrix.  

C. Performance Analysis I:  Computational Accuracy 

To verify estimation accuracy of the algorithms, 
dispersion ratio matrix (DRM) is defined as follows: 

 
 (47) 

Four indices based on DRM are designed to evaluate the 
accuracy of B̂  as follows: the Frobenius norm of DRM 
(DRM-F), the mean of DRM (DRM-M), and the variance of 

DRM (DRM-V). To avoid random results, Monte Carlo 
method is adopted.  

1.  Case I: Verifications on Correctness of Algorithm 
Derivations 

In this case, the correctness of algorithm derivations and 
the consistency of algorithm results are addressed. To 
compare weighted algorithms (i.e., the WMLS, the ML-
WRMLS and the MF-ML-WRMLS) with unweighted ones 
(i.e., the OMLS and the ML-ORMLS) when weights are 
equal, let all elements in the weighting matrix be 1. To 
compare recursive algorithms (i.e., the ML-ORMLS, the ML-
WRMLS and the MF-ML-WRMLS) with non-recursive ones 
(i.e., the OMLS and the WMLS) when they are conducted 
once only, let the recursive time be zero. Let the forgetting 
factor   in weighted algorithms be one. Fifty Monte Carlo 
repetitions are carried out, and the accuracy verification 
results are shown in Table I. 

Table I demonstrates that in all algorithms, values of all 
estimation indices are similar, with minor differences caused 
by stochastic errors. Therefore, the accuracy of weighted 
algorithms and their corresponding unweighted ones is 
consistent respectively, and the accuracy of recursive 
algorithms and their corresponding non-recursive ones is 
consistent respectively too, which proves that all algorithm 
derivations are correct. 

2.  Case II: Verifications on Weighting Effects 
This case focused on weighting effects, i.e., the 

performances of all algorithms on distinguishing of 
importance of different samples.  

Let the recursive time be zero, and the forgetting factor 
  be 0.98. Fifty Monte Carlo repetitions are carried out, and 
the results are shown in Table II. In Table II, the results of the 
OMLS and the ML-ORMLS are the same in Case I. 

From Table II, after assigning suitable weights by row, 
the WMLS, the ML-WRMLS and the MF-ML-WRMLS 
have better overall performances than their corresponding 
unweighted algorithms respectively. Besides, assigning 
weights by row in weighted algorithms not only enhance the 
accuracy of sensitivity estimations, but also have a 
conspicuous good effect on estimating Y, which proves that 
the weighted algorithms have superior weighting effects on 
different samples. 

TABLE I.       THE RESULTS OF CASE I 
INDEX ALGORITHM 

OMLS WMLS ML-
ORMLS 

ML-
WRMLS 

MF-
ML-

WRMLS 
DRM-F 4.683 4.683 4.665 4.661 4.661 
DRM-M 0.082 0.082 0.082 0.082 0.082 
DRM-V 0.078 0.078 0.082 0.077 0.077 

TABLE II.           THE RESULTS OF CASE II 
INDEX ALGORITHM 

OMLS WMLS 
 

ML-
ORMLS 

ML-WRMLS MF-ML-
WRMLS 

DRM-F 4.683 4.023 4.694 4.025 4.025 
DRM-M 0.082 0.090 0.022 0.020 0.020 
DRM-V 0.078 0.072 0.087 0.072 0.072 

3.  Case III: Verifications on Data Saturation Mitigation 
In this case, the validities of all algorithms to mitigate 

data saturation were put under tight scrutiny considering the 
time-varying characteristic of power systems.  

estimated value real value
DRM

real value

  
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Suppose data saturation was severe, and several most 
recent sample units were regarded as the most important data 
to the sensitivity matrix estimation, the amount of these 
recent data determines the setting of forgetting factor value. 
Simulations verify that when the forgetting factor is around 
0.98 and the amount of the most important recent sample size 
is about 40, the estimation results can reach their optimums. 
Therefore, let the forgetting factor be 0.98 and the most 
important recent sample size be 40. 

The weights are assigned both by row, and the way to 
assign them by row was the same as Case II. The recursive 
times are set to be ten. Fifty Monte Carlo repetitions are 
carried out. Estimation results were compared with the most 
recent data, so estimated values and real values in (47) were 
the elements of latest 40 rows of data. The accuracy 
verification results are shown in Table III and are analyzed 
from two perspectives: 1) all estimation indices in an 
algorithm; and 2) the performance of all algorithms according 
to an index. 

TABLE III.        THE RESULTS OF CASE III 
INDEX ALGORITHM 

OMLS WMLS 
 

ML-ORMLS ML-
WRMLS 

DRM-F 1.176E+3 1.001E+3 27.333 25.346 
DRM-M 4.585 4.302 0.122 0.091 
DRM-V 48.342 46.723 28.849 26.352 

From the first perspective, the results are analyzed from 
three facets : first, as all estimation indices of the WMLS and 
the ML-WRMLS are better than that of the OMLS and the 
ML-ORMLS respectively, indicating that assigning weights 
by row is feasible in conditions where data saturation is 
severe; second, as all estimation indices of the MF-ML-
WRMLS, ML-WRMLS and ML-ORMLS are better than that 
of the OMLS and the WMLS, recursive algorithms are 
superior to their corresponding non-recursive ones on 
mitigating data saturation. 

From the second perspective, it is found that according to 
B-DRM-F, B-DRM-V, Y-DRM-F and Y-DRM-V of all 
algorithms, weighted algorithms perform excellent in 
enhancing the result stabilities of sensitivity matrix 
estimation and dependent variable matrix estimation; In 
addition, according to B-DRM-M, B-DRM-Q, Y-DRM-M 
and Y-DRM-Q of all algorithms, recursive algorithms 
contribute to improve the result precisions of sensitivity 
matrix estimation and dependent variable matrix revert. 

According to all estimation indices of all algorithms, 
based on the above findings and analyses, recursive and 
weighted algorithm with forgetting factor, i.e., the FM-LM-
WRMLS, has the best accuracy. 

D. Performance Analysis II: Computational Efficiency 

In this part, performances of presented algorithms were 
evaluated on the computational efficiency. The CPU used to 
run the algorithms was Intel (R) Core (TM) i5-3230M CPU 
@ 2.60GHz. The computational efficiency of all provided 
algorithms was compared with that of the MISO methods 
mentioned in Chapter I. The WMLS and the MF-ML-
WRMLS algorithms were tested with the forgetting factor 
value of 0.98, and the recursive time of the ML-ORMLS and 
the MF-ML-WRMLS algorithms was one. The running time 
of the algorithms in Case III is shown in Table IV.  

From Table IV, the proposed algorithms have higher 
computational efficiency than conventional MISO methods. 

What’s more, the recursive algorithms have shorter execution 
time than that of non-recursive ones because of decreasing 
sample sizes, which manifests that the recursive algorithms 
have higher computational efficiency. 

TABLE IV.            COMPUTATIONAL EFFICIENCY 
ALGORITHM COMPUTING TIME 

PROPOSED ALGORITHM CONVENTIONAL 

MISO METHOD 
OMLS 0.088S 1.108S 
WMLS  4.643S 5.224S 

LM-ORMLS 0.017S - 
LM-WRMLS  1.323S - 

FM-LM-WRMLS  1.472S - 

E. Further Discussions: The Stability of Estimator 

In this part, further discussions on sensitivity matrix 
estimation algorithms based on the above results are 
presented from a more comprehensive view. 

In Case I, DRM obtained by the OMLS are shown in Fig. 
1. The dispersions of most elements in B̂  are approximate to 
zero and very few of them are extremely large, leading to 
large values of B-DRM-F, which indicates that B̂  estimated 
based on all data may lose accuracy as for few elements. 

In Case III, DRM obtained by the FM-LM-WRMLS is 
shown in Fig. 2. The values of elements in DRM become 
smaller conspicuously comparing with those in Fig. 1, and 
extremely large values are diminished, indicating that the 
MF-ML-WRMLS has the superiority of overall high 
accuracy and stability considering severe data saturation. 

Comprehensively taking accuracy, efficiency and 
stability into consideration, the MF-ML-WRMLS will be a 
preference for power system sensitivity matrix estimation, 
next the ML-ORMLS, then WMLS, followed by the OMLS, 
orderly. 

 
Fig. 1. DRM of estimated sensitivity matrix using the OMLS in Case I. 

 
Fig. 2. DRM of estimated sensitivity matrix using the MF-ML-WRMLS in 
Case III. 
 

V. CONCLUSIONS 

This paper presented a series of MLS algorithms for 
power system multivariable sensitivity matrix estimation 
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progressively, with specific consideration on mitigating data 
saturation. The proposed algorithms were tested in three 
cases studies based on the Nordic 32 system for voltage 
sensitivity estimation compared with the conventional 
perturbation method and each other. Simulation results prove 
that 1) All algorithms are derived correctly; 2) The weighted 
algorithms have good weighting effects to stress different 
importance of different samples; 3)the recursive algorithms 
can mitigate data saturation and estimate sensitivity matrix 
fast and accurately. The presented algorithms are verified to 
be of high accuracy, efficiency and stability, among of which 
the MF-ML-WRMLS algorithm performs best. 
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