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Abstract

It is proposed that spacetime is not the most proper space to describe metamaterials with nonlocality. Instead, we show that

the most general and suitable configuration space for doing electromagnetic theory in nonlocal domains is a proper function-

space infinite-dimensional (Sobolev) vector bundle, a special case of the general topological structure known as fiber bundles.

It appears that this generalized space explains why nonlocal metamaterials cannot have unique EM boundary conditions at

interfaces involving spatially dispersive media.
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Abstract. The main goal of the present paper is to provide a fresh general view
on the resurgent research area of nonlocal metamaterials. We explain how the
concept of nonlocality had risen historically in the field of plasma and crystal
optics and highlight the recent interest in using nonlocality as a new type of
metamaterials. The paper will develop in increasing complexity the concept of
nonlocality starting from general considerations, going through spatial dispersion,
and ending up with an abstract but quite broad formulation that unveils
the link between general topology and electromagnetic nonlocality in material
media. It is shown that electromagnetic nonlocality naturally leads to a Banach
(vector) bundle structure serving as an enlarged space on which electromagnetic
processes take place. The added structures, essentially fiber space, model the
topological microdomains of electromagnetic nonlocality and provide a fine-
grained picture of field-matter interactions in nonlocal metamaterials. We use
standard techniques borrowed from differential topology to construct the Banach
bundle structure by paying careful attention to the relevant physics. The
electromagnetic response tensor is then reformulated as a bundle homomorphism
and the various expressions needed to connect the local topology to global
domains are developed. The paper also introduces a discussion of various
applications, including elucidating why nonlocal electromagnetic materials often
require additional boundary conditions or extra input from microscopic theory in
comparison with local electromagnetics.

1. Introduction

In classical electromagnetics, there are no nonlocal interactions or phenomena in
vacuum because Maxwell’s equations, which capture the ultimate content of the
physics of electromagnetic fields, are essentially local differential equations [1]. An
effect applied at point r in space will first be felt at the same location but then
spread or propagate slowly into the infinitesimally immediate neighborhood.1 Long-
term disturbances such as electromagnetic waves propagate through both vacuum and
material media by cascading these infinitesimal perturbations in outward directions
(rays or propagation paths) emanating from the time-varying point source that
originated the whole process. On the other hand, nonlocal interactions differ from
this vacuum-like picture in allowing fields applied at position r′ to influence the
medium at different location r, i.e., a location that is not infinitesimally close to

1It is commonly accepted that Aharonov-Bohm effects, which lead to observable nonlocal
electrodynamic effects, have their origin in quantum physics. In this paper we focus on classical
field theory described using phenomenological models. Some authors, however, suggest that classical
electromagnetics may induce nonlocal effects but such topic is outside the scope of the present paper.
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the source position r′. The distance |r − r′| could be very small in most media (and
certainly zero in vacuum), but in some types of materials, the so-called nonlocal media,
observable response can be found such that the “radius of nonlocality” |r − r′| is
appreciably different from zero [2–4]. The main goal of the present paper is to explore
the conceptual foundations of nonlocality in connection with applied electromagnetics,
especially the potential of using nonlocal media as a new generation of metamaterials in
antenna and circuit systems. Our main approach is conceptual and theoretical. While
a massive amount of numerical and experimental data on all types of nonlocal materials
abound in literature since the 1950s, the purpose of the present paper is attaining
some clear understanding of the essentials of the subject, particularly in connection
with the ability to build a very general formalism of nonlocal electromagnetics that
can help foster new numerical methods and applications. The key motivation for
our work is explicating the subtle but important difference between infinitesimal
interactions, which characterize local electromagnetics, and interactions occurring
in small topological neighborhoods around the observation point. We believe that
this topological difference has not received the attention it deserves in the growing
theoretical and methodological literature on nonlocal media. In particular, the author
believes that a majority of present approaches to nonlocal metamaterials conflate the
topologically nonlocal domain of neighborhoods and global domains. However, general
topology and much of modern mathematical physics is based on clearly distinguishing
the last two topological levels. It turns out that the standard formalism of local
electromagnetics, which is based on spacetime points and their differential but not
topological neighborhoods as the basic configuration space of the problem, is not the
most natural or convenient framework for formulating the electromagnetics of nonlocal
materials. This is mainly because the physics-based domain of electromagnetic
nonlocality (to be defined precisely below), which captures the effective region of field-
matter nonlocal interactions, is not usually built into the mathematical formalism of
classical boundary value problems in applied electromagnetics. By investigating the
subject, we will show that a natural space for conducting nonlocal metamaterials
research is the vector bundle structure, more specifically, a Banach bundle [5] where
every element in the fiber space is a vector field on the entire domain of nonlocality.
The derivation of the various vector bundle structures starting from a generic
phenomenological model of electromagnetic nonlocality is the main contribution of
the present work.

We first provide a non-exhaustive and selective review of the development of
nonlocal electromagnetic materials research.2 Some of the physical phenomena that
cannot be understood using local electromagnetic theory include spatial dispersion
effects, superconductivity, natural optical activity [4]. Outside electromagnetics but
within wave phenomena, there also exists processes that cannot be fully accounted
for through simple local material models, for instance, we mention phase transitions
and streaming birefringence [6]. By large, spatial dispersion has attracted most of the
attention of the various research communities working on nonlocal electromagnetic
materials. Indeed, few book-length researches on spatial dispersion already exist in
literature, most notably [2–4,7]. Moreover, several other researches conducted within
condensed-matter physics and material science implicitly or explicitly assume that
nonlocality is essentially based on microscopic (hence quantum) processes, and develop

2More information and proposals regarding engineering applications are given in Sec. 66.2, where
additional references can be found.
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an extensive body of work where the spatially dispersive dielectric tensor is deployed
as the representative constitutive material relation [8–12]. On the other hand, one can
also treat nonlocality without resort to spatial dispersion by modeling certain classes
of material media as periodic structures [13] where the susceptibility tensor is derived
from the symmetry of the overall structure [8, 14, 15] or from the lattice dynamics
approach [16, 17]. For solving nonlocal problems, several methods exists in order to
deal with the lack of universal model at the interface between a nonlocal material
and another medium. The Additional Boundary Condition (ABC) approach adjoins
new boundary conditions to the standard Maxwell’s equations in order to account
for additional waves excited at the interface, which otherwise could not explained by
the standard local theory. All ABC formulations are inherently model-specific since
they assume particular types of nonlocal media or postulate specific ABCs based on
the physics and applications [18]. We note that this ABC formalism is not inevitable
since there exists several boundary-condition free formulations, e.g., see [9,10]. In the
field of numerical methods, a number of discretization strategies for dealing with full-
wave analysis in the presence of nonlocal materials were proposed. For example, an
FDTD method was proposed in [19] to deal with metallic spatially dispersive objects.
Surface integral equations for nonlocal plasmonic materials were also proposed in [20],
with discretizstion done using the RWG basis functions. The idea of exploiting
nonlocality to design and develop a new generation of metamaterials (MTMs) has
also received a revival in recent years, though the key idea is not new and go back
to at least [4]. Examples include spatial dispersion in wire media [21–23], hyperbolic
metamateials [24], nanostrucutres nonlocal domains [25], plasma-based metamaterials
[26], Chern metamaterials [27], and nonlocal uniaxial metamaterials [28]. Nuemrous
homogenization theories for nonlocal MTM with averaging operations considered over
multiple spatial scales have been reported, e.g., see [29], [22]. We note that the
subject of electromagnetic metamaterials (with or without nonlocality) is enormous
and it is beyond the scope of this paper to even summarize the main papers in the field.
However, most publications (till recently) have focused on non-spatially dispersive and
local scenarios. This situation has began to change in recent years, and increasing
numbers of reports appear to move from the old opinion that nonlocality is a “bug”
to the more positive and fruitful perspective that nonlocality provides new dimensions
to be exploited in metamaterial system design.

A particularly interesting direction of research in nonlocal media is the recent
subject of topological photonics. The main idea was inspired by previous researches in
Chern insulators and topological insulators [30], where the focus has been on electronic
systems. There, it has already been observed that the nonlocal behaviour of the
fermionic wavefunction may exhibit a rather interesting and nontrivial dependence
on the entire configuration space of the system, in that case the momentum space
(the wavevector k space). In addition to the already established role played by
nonlocality in superconductors, quantum Hall effects are among the most intriguing
physically observable phenomena that turned out to depend fundamentally on purely
topological aspects of the electron wavefunction [31]. The major themes exhibited
by electrons undergoing topological transition states include topological robustness of
the excited edge (surface) states moving along a 2-dimensional interface under the
influence of an external magnetic fields. More recently, it was proposed that the
same phenomenon may apply to photons (electromagnetics) [32], where the key idea
was to use photonic crystals to emulate the periodic potential function experienced by
electrons in fermionic systems. However, since photons are bosons, the transplantation
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of the main theme of topological insulators to photons is not trivial and is currently
generating great attention, see for example the extensive review article [33], which
provides a very comprehensive literature survey of the field. One of the most important
applications of topological photonics is the presence of “edge states,” which are
topologically robust unidirectional surface waves excited on the interface between two
metamaterials with topologically distinct invariants. Since edge states are immune to
perturbations on the surface, they have been advocated for major new applications
where topology and physics become deeply intertwined [34]. Topology can also be
exploited to devise non-resonant metamaterials [35] and to investigate bifurcation
transitions in media [36]. Another related exciting subject illustrating the synergy
between topology, physics, and engineering is non-Hermitian dynamics, especially in
light of recent work related to the origin of surface waves [37,38], which is now being
considered as essentially non-trivial topological effect.

The previous old and recent directions of research all point out toward a basic
fact: topology and physics are destined to come closer to each other within the next
decade. However, the unique feature in this convergence, though in itself is not totally
new since Herman Weyl introduced topological thinking to physics in the 1920s,
is the focus on engineering applications, in our case metamaterials and topology-
based devices. For that reason, we propose that in addition to the now mainstream
approach to topological materials where the focus is on the global dependence of
the wavefunction on momentum (Fourier) space, there is a need to consider how
materials can be assigned a direct structure in the configuration space, i.e., space-time
or space-frequency. Our key observation is that EM nonlocality requires gathering
information at microdomains (small regions around every point where the response
is nonlocal), then aggregating these microdomains together in order to arrive into
a global topological structure. The fundamental insight coming from topology is
precisely how this process of “moving from the local to the global” can be enacted.
We have found that a very efficient method to do this is the natural formulation of the
entire problem in terms of a fiber bundle (described in details below, but also see the
Appendix for review.) In other words, in contrast to most existing works on topological
materials, we don’t first solve Maxwell’s equations to find the state function in the
Fourier k-space then study topology over momentum space; instead, we work directly
in spacetime (or space-frequency) and formulate the dual problem of the topology over
a fiber bundle. It is the hope of the author that such new perspective may provide
a complementary approach to the exciting subject of topological materials and help
generate new insights into the physics and novel algorithms for the computation of
suitable topological invariant characterizing complex material domains.

The main result of this paper is that every generic nonlocal domain can be
topologically described by a Banach (infinite-dimensional) vector bundle M. If
two materials described by their corresponding vector bundles M1 and M2 are
juxtaposed, then one may use topological methods to combine them and to compare
their topologies. The present paper focus mainly on the first part, how to construct
the material bundle M. Because of the complexity of the subject, and to make it
more accessible to a wider audience involving physicists, engineers, and topologists,
we have divided the argument into different stages with different flavors as follows. In
Sec. 2, we kick off our presentation by introducing a general review of electromagnetic
nonlocality targeting a wide audience of engineers and applied scientist. The key
ingredients of nonlocal metamaterials/materials are illustrated using an abstract
excitation-response model. This is followed in Sec. 3 by a more detailed description of
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the special but important case of spatial dispersion, which tends to arise naturally in
many investigations of nonlocal metamaterials. In Sec. 4, we begin the elucidation of
the main topological ideas behind electromagnetic nonlocality, most importantly, the
concept of EM nonlocality microdomains, which provides the key link between physics,
engineering, and topology in this paper. The various physical and mathematical
structures are spelled out explicitly, followed in Sec. 5 by a more careful construction
of a very natural fiber bundle structure that appears to satisfy simultaneously both
the physical and mathematical requirements of EM nonlocality. The material response
function is then shown to be representable as a special fiber bundle homomorphism
over the metamaterial base space. In Sec. 6, various applications to both fundamental
theory and engineering are outlined in brief form. Some basic familiarity with vector
bundles and Banach spaces is assumed, but since the target of the paper includes
engineers and applied scientist, essential definitions and concepts will be reviewed
briefly within the main formulation and references where more background on vector
bundles can be found will be pointed out. The Appendix at the end provides a
general guideline for readers who would like to learn more about the actually used
mathematical background and should be consulted by those completely unfamiliar
with differential topology. However, even such readers may benefit from reading the
other portions directly. The paper intentionally avoids the rigid theorem-proof format
to make it accessible to a wider audience. Most of the time we give only proof sketches
and leave out straightforward but lengthy arguments. In general, only the very basic
definitions of manifolds, vector bundles, Banach spaces are needed to comprehend
this theory. The only place where the treatment is mildly technical is toward the
end of Sec. 5 when the bundle homomorphism is constructed using partition of unity
technique. That part can be skipped in first reading but the general concept can be
grasped from the text.

2. Overview of Electromagnetic Nonlocal Materials

In order to introduce the concept of nonlocality in the simplest way possible, let
us start in a scalar field theory setting. As mentioned in the introduction, vacuum
classical fields cannot exhibit nonlocality, so in order to attain this phenomenon, one
must consider fields in specialized domains. We then begin by reviewing the broad
theory of such media. The main goal is to outline the main ingredients of the spacetime
configuration space on which such theories are often formulated in literature. To
further simplify the presentation, we work throughout this paper in the regime of linear
response theory: all media are assumed to be linear with respect to field excitation.
If the medium response is described by the function R(r, t), while the exciting field is
F (r, t), then the most general response is given by an operator equation of the form

R(r, t) = L{F (r, t)} , (1)

where L is a the linear operator describing the medium, and is ultimately determined
by the laws of physics relevant to the structure under consideration. Now, the entire
physical process will occur in a spacetime domain. In nonrelativistic applications (like
this paper), we intentionally separate and distinguish space from time. Therefore, let
us consider a process of field-matter interaction where t ∈ R, while spatially restricted
to a small region r ∈ D ⊂ R3 , where D is an open set containing r.3 Since the

3We assume the normal Euclidean topology on R3 for all spatial domains.
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operator L is linear, one may argue (informally) that its associated Green’s function
K(r, r′; t, t′) must exist. Strictly speaking, this is not correct in general and one needs
to prove the existence of the Green’s function for every given linear operator on a case
by case basis by actually constructing one.4 However, we will follow (for now) the
common trend in physics and engineering by assuming that linearity alone is enough
to justify the construction of the Green’s function. If this is accepted, then we can
immediately infer from the very definition of the Green’s function itself that

R(r, t) =

∫
D

∫
R

d3r′ dt′K(r, r′; t, t′)F (r′, t′). (2)

The relation (2) represents the most general response function of a (scalar) material
medium. It is in general valid for linear field-matter interaction regimes. The kernel
(Green’s) function K(r, r′; t, t′) is often called the medium response function. If we
further assume that all of the material constituents of the medium are time-invariant
(the medium is not changing with time), then the relation (2) maybe replaced by

R(r, t) =

∫
D

∫
R

d3r′ dt′K(r, r′; t− t′)F (r′, t′), (3)

where the only difference is that the kernel function’s temporal dependence is replaced
by t − t′ instead of two separated arguments. Such superficially small difference has
nevertheless considerable consequences. Most importantly, working with (3) instead
of (2), it becomes possible to apply the Fourier transform in time to simplify the
formulation of the problem. Indeed, taking the temporal Fourier transform of both
sides of (3) leads to

R(r, ω) =

∫
D

d3r′K(r, r′;ω)F (r′;ω), (4)

where the Fourier spectra of the fields are defined by

F (r;ω) :=

∫
R

dtF (r; t)e−iωt, R(r;ω) :=

∫
R

dtR(r; t)e−iωt. (5)

On the other hand, the medium response function’s Fourier transform is given by the
essentially equivalent formula

K(r, r′;ω) :=

∫
R

d(t− t′)K(r, r′; t− t′)e−iω(t−t
′). (6)

In this paper, we focus on time-invariant material media and hence work exclusively
with frequency-domain expressions like (4). The generalization to the 3-dimensional
(full-wave) electromagnetic picture is straightforward when the dyadic formalism is
employed. The relation corresponding to (2) is

R(r, t) =

∫
D

d3r′
∫
R

dt′ K(r, r′; t− t′) · F(r′, t′), (7)

where we have replaced the scalar fields F (r) and R(r) by vectors F(r),R(r) ∈ R3.
The kernel function K, however, must be transformed into a dyadic function (tensor

4This is argued in details in [39]. In particular, the recently-introduced current Green’s function
of electromagnetic devices was inspired by finding a Green’s function structure similar to that
corresponding to nonlocal media [40], [41], [42].
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of second rank) K(r, r′; t− t′) [2, 43]. In the (temporal) Fourier domain, (7) becomes

R(r, ω) =

∫
D

d3r′ K(r, r′;ω) · F(r′;ω), (8)

where

K(r, r′;ω) :=

∫
R

d(t− t′) K(r, r′; t− t′)e−iω(t−t
′), (9)

F(r;ω) :=

∫
R

dtF(r; t)e−iωt, R(r;ω) :=

∫
R

dtR(r; t)e−iωt. (10)

The very essence of electromagnetic nonlocality can be captured by the mathematical
structure of the basic relation (7). In words, it says that the field response R(r) is
determined not only by the excitation field F(r′) applied at location r′, but at all points
r′ ∈ D. Consequently, knowledge of the response at one point requires knowledge of
the cause (excitation field) at an entire topologically local set D. On the other hand,
if the medium is local, then the material response function can be written as

K(r, r′;ω) = K0(ω)δ(r− r′), (11)

where K0 is a constant tensor and δ(r− r′) is the 3-dimensional Dirac delta function.
In this case, (8) reduces to

R(r;ω) = K0(ω) · F(r;ω), (12)

which is the standard constitutive relation of linear electromagnetic materials. Clearly,
(12) says that only the exciting field F(r) data at r is needed to induce a response at
the same location. In a nutshell, locality implies that the natural configuration space
of the electromagnetic problem is just the point-like spacetime manifold D ⊂ R3

or the entire Euclidean space R3. In addition, one may attach the “infinitesimally
immediate neighborhood” to a given point r where a response is sought. Indeed,
according to (12), only the exciting field at r is needed to compute the response, but
since Maxwell’s equations will still need to be coupled with that local constitutive
relation, then the fact that these equations are differential equations, the “largest”
domain beside r needed to carry over the mathematical description of the field-matter
interaction physics is just the infinitesimally close region. Conventional boundary-
value problems in applied electromagnetics are formulated in this manner [39,43,44],
i.e., with a 3-differential manifolds as the main problem space on which spatial fields
live. Note that strictly speaking, the full configuration space in local electromagnetics
(also called normal optics) is the 4-dimensional manifolds D×R or R4 since either time
t or the (temporal) radian frequency ω must be included to engender a full description
of electromagnetic fields. However, nonlocal materials are most fundamentally a spatial
type of materials/metamaterials where it the spatial structure of the field what carries
most of the physics involved [39, 45]. For that reason, throughout this paper we
investigate the required configuration spaces with focus mainly on the spatial degrees
of freedom.

3. Spatial Dispersion in Homogeneous Nonlocal Materials

Spatial dispersion is currently considered by some researchers as one of the most
promising routes toward nonlocal metamaterials [45]. It is by large the most intensely
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investigated class of nonlocal media, receiving both theoretical and experimental
treatments by various research groups since the early 1960s. In essence, the basic idea
is to restrict the electromagnetics to the special but important case of media possessing
transnational symmetry, a case that is obtained when the medium is homogeneous.
In such situation, the material tensor function satisfies

K(r, r′;ω) = K(r− r′;ω). (13)

The spatial Fourier transforms are defined by

K(k, ω) :=

∫
R3

d3(r − r′) K(r− r′;ω)eik·(r−r
′), (14)

F(k, ω) :=

∫
R3

d3r F(r; t)eik·r, R(k, ω) :=

∫
R3

d3r R(r; t)eik·r, (15)

Inserting (13) into (8) and taking the spatial (3-dimensional) Fourier transform of
both sides, the following relation is obtained

R(k, ω) = K(k, ω) · F(k, ω), (16)

The dependence of K(k, ω) on the wavevector (“spatial frequency”) k in addition to
the the temporal frequency ω is the signature of spatial dispersion. As a spectral
transfer function of the medium, K(k, ω) includes all the information needed in
order to obtain the nonlocal material domain’s response to arbitrary spacetime field
excitation functions F(r, t) through the inverse 4-dimensional Fourier transform [4]. In
many treatments of the subject, the excitation field is taken as the electric field E(r, t)
while the response function is D(r, t). In such formulation, the material tensor function
K(k, ω) takes into account both electric and magnetic effects [2–4,8,11], [9,10,12,46].
This is different from the permitivity tensor often used in local electromagnetics, which
is based on the multipole model of material media. A comparison between the two
material response formalisms, the one based on K(k, ω) and the multipole model is
given in [39].

Historically, spatial dispersion had been under the radar since the 1950s, especially
in connection with researches on the optical spectra of material domains. However,
the first systematic treatment of the subject appeared in 1960s in the first edition
of Ginzburg book on plasma physics, which was dedicated electromagnetic wave
propagation in plasma media. The second edition of the book, published in 1970,
contained a considerably extended treatment of the various mathematical and physical
aspects of the electromagnetics of spatially dispersive media [2]. Media obtained by
homogenizing arrays of wires, already very popular because of their connection with
traditional (temporal) metamaterials, are known to exhibit spatial dispersion effects,
though many researchers ignore that effect to focus on temporal dispersion [47–49].
Other types of periodic or large finite arrays of composed of unit cells like spheres and
desks also exhibit spatial dispersion effects [50]. Nonlinear materials with observable
nonlocality have also been investigated in the optical regime [51]. More recently,
much of the reemergence of interest in spatial dispersion stems from the observation
that the phenomenon cannot be ignored at the nanoscale, especially those of low-
dimensional structures like carbon nanotubes [14] and graphene [52]. The subject
was also introduced at a pedagogical level for applications involving current flow in
spatially dispersive conductive materials like plasma and nanowires [53].



9

K2(r, r′)K1(r, r′) K3(r, r′)

K4(r, r′)

Topological holes

D2D1

D3
D4 Spatial dispersion

cellular domains

Figure 1: A generic depiction of an electromagnetic nonlocal metamaterial system.
Each of the domains Dn is captured by a general linear nonlocal response function
Kn(r, r′).

Complex heterogeneous arrangements of various nonlocal materials can be
realized by juxtaposing several subdomains where each is homogeneous, hence, can be
described by a spatial dispersion profile K(k, ω. The idea is that even materials
inhomogeneous at a given spatial scale tend to become homogeneous at a finer
spatial level, leading to a “grid like” spatially dispersive cellular building blocks at
the lower level. In Fig. 1, we show a nonlocal metamaterial system with various
multiscale structures. A large nonlocal domain, e.g., in this figure K3(r, r′) acts
like a “substrate” holding together several other smaller material constituents, such
as Kn(r, r′), n = 1, 2, 4. We envision that each nonlocal subdomain may possess
its own especially tailored nonlocal response function profile serving one or several
applications.5 By concatenating several regions, interfaces between subdomains with
different material constitutive relations are created. We show here subdomains
Dn, n = 1, 2, 3, 4, and the possible material interfaces include D1/D2, D1/D3, D2/D3,
D3/D4. In local electromagnetics, each material interface should be assigned a special
electromagnetic boundary condition in order to ensure the existence of a unique
solution to the problem [43]. However, as mentioned earlier, nonlocal electromagnetics
introduces a tension absent in the local case. Indeed, additional boundary conditions
are often invoked to handle the transition of fields along barriers separating different
domains, like between two nonlocal domains or even one nonlocal and another local
domain [4]. The topological fiber bundle theory to be developed in Sec. 5 will provide
a clarification of why this is so since it turns out the traditional spacetime approach
usually connected with local electromagnetics is not necessarily the most natural one.
There is a need to examine in more details the existence of multiple topological scales
in nonlocal metamaterials, and this paper will provide some initial insights such issue.
For the time being, we note here three directly observable topological scales that don’t
require the most detailed analysis to be given later. The first is the already mentioned
separation between different nonlocal domains like D1 and D2. The second is the case
captured by the inset in the right hand side in Fig. 1. Fine “microscopic” cells, each
homogeneous and hence describable by a response function of the form K(k, ω), can
be combined to build up a complex effective nonlocal response tensor Kn(r, r′) over its
topologically global domain Dn. Such juxtaposition at the microscpoically local level
leading to global behaviour is a classic example of multiscale physics, but here it is of
further interest since both the constituent cells (rectangular “bricks” in the inset of Fig.

5Discussion of some possible engineering applications is given in Sec. 6 6.2.
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1) and the global domain level Dn are already electromagnetically nonlocal. In other
words, the terms ‘local’ and ‘global’ possess two different senses, one electromagnetic,
the other spatio-geometric. Elucidating this subtle interconnection between the two
senses will be one of the main objectives of the present work. Finally, the third directly
observable topological scale is that connected to what we termed “topological holes”
in Fig. 1. These are arbitrarily-shaped gaps, like holes, vias, etchings, etc, that are
introduced purposefully to influence the the electromagnetic response by modifying
the topology of the 3-dimensional material manifolds Dn.

4. The Main Topological Structure of Nonlocal Electromagnetic Domains

Let the domain of nonlocality of the electromagnetic media, the region D ⊂ R3

in (8), be bounded. Corresponding to (1), a similar operator equation in the
frequency domain can be assumed to represents the most general form of a nonlocal
electromagnetic media, namely

R(r;ω) = Lω {F(r;ω)} , (17)

where the nonlocal medium linear operator is itself a function of frequency.6 We are
going to propose a change in the mathematical framework inside which electromagnetic
nonlocality is usually defined. This will be done in two stages. First, in the
present Section, we introduce the rudiments of the main physics-based micro-
topological structure associated with EM nonlocality without going into considerable
mathematical details. The aim is to familiarize ourselves with the minimal necessary
physical picture and how it gives rise to a finer picture of the material domain
compared with the more familiar (and much simpler) topological structure of local
electromagnetics based on spacetime points. In the second stage, Sec. 5, a more careful
mathematical picture is developed using the theory of topological fiber bundles. We
eventually show that the EM nonlocal operator (17) can be constructed as Banach
bundle map (homomorphism) over the 3-dimensional space of the material domain
under consideration.

In conventional local electromagnetics, the boundary-value problem of multiple
domains is formulated as a set of partial differential equations or integero-differential
equations coupled with some boundary conditions dictating how fields change while
crossing the various regions through which the equations hold [43, 44, 54]. This has
been done traditionally by taking the electromagnetic response function K(r, r′;ω)
as an essential key ingredient of the problem description, which can be exploited
in two ways: First, the constitutive relations enter into the governing equations in
each separate solution domain. Second, the constitutive relations themselves are used
in order to construct the proper electromagnetic boundary conditions prescribing
the continuity/discontinuity behaviour of the sought field solutions as they move
across the various interfaces separating domains with different material properties.
Unfortunately, it has been well known for a long time that it is not possible to formulate
a universal electromagnetic boundary condition for nonlocal medium, especially for
the case of spatial dispersion. This will be discussed in more detailed later when we
treat the special but important case of spatial dispersion in Sec. 3 and again in Sec.
6. For now, we concentrate on understanding a deeper structure of the problem of

6For simplicity, we often drop the dependence on ω when the operator is understood from the
context to be applying to the frequency domain.
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nonlocality in electromagnetics. Later, we will suggest that this topological content
of the theory may help resolving some of the major problems encountered in spatial
dispersion and applications.

Kn(r, r′)Km(r, r′)

Dn
Dm

Vr1

r1

Vr2
r2

Figure 2: The micro-topological structure of nonlocal metamaterial systems includes
more than just the 3-dimensional spatial domains Dn, n = 1, 2, .... It is best captured
by classes V(Dn) composed of various open sets Vr ⊂ Dn based at each point r ∈ Dn.
On every such subset a vector field is defined, representing the EM excitation field. The
collection of all vector fields on a given set Vr gives rise to a linear topological function
space F(Vr). The topologies of the base spaces Dn, the nonlocal micro-domains Vr,
and the function spaces F(Vr) collectively give rise to a total “macroscopic” topological
structure considerably more complex than the base spaces Dn.

A key starting observation is how nonlocality forces us to associate with every
spacetime point (r, t), or frequency-space point (r;ω), a topological neighborhood of
r, say D, such that r ∈ D. For now, let us assume that D is just an open set
in the topology of the Euclidean space R3 inherited from the standard Euclidean
metric. By restricting D for now to be open, we avoid the problem of dealing with
boundary or an interface. That is, the topological closure of D, denoted by cl(D),
is excluded from the domain of nonlocality. Let D be the maximal such topological
neighbored for the problem under consideration.7 We now associate with each point
r a smaller open set Vr such that r ∈ Vr, so Vr ⊂ D for all r ∈ D. (The fact that D is
assumed open makes this possible.) Now, instead of considering fields like R(r) and
F(r) defined on the entire maximal domain of nonlocality D (which can grow “very
large,”) we propose to reformulate the problem of nonlocal electromagnetic materials
in a topologically local form by noting that the physics of field-matter interactions
gives the EM response at location r due to excitation fields essentially confined within
a “smaller domain” around r, namely the open set Vr. On the other hand, if the
response at another different point r′ (i.e., r 6= r′) is needed, then a new, generally
different small open set Vr′ will be required. That is, in general we allow that Vr 6= Vr′ ,
even though we expect that typically there is some overlap between these two small
local domains of electromagnetic nonlocality, i.e., Vr ∩ Vr′ 6= Ø, especially if |r − r′|
is small. The “smaller sets” Vr, r ∈ D, will be dubbed nonlocal microdomains or just
microdomains in short. They explicate the fine micro-topological structure of nonlocal
electromagnetic domains at a spatial scale different from that of the (topologically
“larger”) material domain D itself.

Consider now the set of all sufficiently differentiable vector fields F(r) defined on
Vr, r ∈ D, for all r′ ∈ Vr. This set possesses an obvious complex vector space structure;
namely, for any complex numbers a1, a2 ∈ C, the sum a1F1(r′) + a2F2(r′) is defined

7If D approaches asymptotically an unbounded region, the problem transforms into that of
unbounded domain (bulk media), well treated in the basic literature on spatial dispersion.
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on Vr whenever F1(r′) and F2(r′) are, while the null field plays the role of the origin.
We denote this function space by F(Vr). It is possible to equip F(Vr) by a topology in
order to measure the distance between any two fields defined on Vr [55,56]. Therefore,
F(Vr) becomes a topological vector space. In general, depending on r and the topology
of Vr, each function space will have a different topology. A very convenient choice for
this function space topology is that induced on the Sobolev space W p,2(Vr), p ≥ 2,
through its standard norm [57]. This is a topological vector space that is also a
Hilbert space (and hence a Banach space.) In this way, each microdomain Vr induces
an infinite-dimensional linear function space (Sobolev) F(Vr) indexed by the position
r ∈ D, with topology essentially determined by the geometry of Vr. On the other
hand, this latter geometry is obtained from the physics of field-matter interaction in
nonlocal media. Consequently, the physical content of nonlocal materials is encoded
at the topologically micro-local level of the following structure

D 3 r
Physical Data−−−−−−−−−−−→
EM Nonlocality

Vr
Mathetmatical Data−−−−−−−−−−−−−−→

Sobolev Space
F(Vr). (18)

If we define the collections of subsets

V(D) := {Vr ⊂ D|r ∈ D,Vr is open}, (19)

G[V(D)] := {F(Vr)|r ∈ D,F(Vr) : Sobolev function space}, (20)

then (18) can be summarized by the ordered triplet

D × V(D)× G[V(D)]. (21)

Each open domain in D ⊆ R3 will then by assigned a distribution V(D) of open
sets Vr, the micro-topological fine structure of electromagnetic nonlocality, which
is determined solely by the field-matter interaction physics. In order to provide a
complete description of this domain, we further emphasize that the sets forming the
elements of V(D) constitute an open cover of D, that is, we have

D =
⋃
r∈D

Vr. (22)

In this way, the model can accommodate excitation fields F(r) applied at every point in
r ∈ D. Next, the set V(D) induces the space G[V(D)] of function spaces F(Vr), r ∈ D,
where each vector field is defined on elements chosen from the set V(D). It is
interesting to see how in the proposed framework some kind of constructive “division
of labour” is distributed between physics and mathematics in order to generate the
various required structures. This is also the source of some potential difficulties hidden
in the topological structure (21). Indeed, we will next try to smooth out the differences
between the two main substructures V(D), which is controlled mostly by physics,
and G[V(D)], dominated by mathematical considerations, by unifying the entire total
topological structure (21) using a vector bundle formulation.

It is now possible to provisionally construct the response function by working on
the fundamental topological domain structure (21) instead of the global domain D.
The response function R(r) will be re-expressed by the map

R : D × V(D)→ C3, (23)
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where the codomain is taken to be C3 because the electric or magnetic response
functions D or B, respectively, are complex vector fields in the frequency domain.8

The value of the EM nonlocal response function due to excitation field F(r) applied
at a microdomain Vr can be computed by means of

R(r;ω) =

∫
Vr

d3r′ K(r, r′;ω) · F(r′;ω). (24)

Although (24) appears to be only slightly different from (8), the similarity is superficial.
In essence, the construction of the EM response functions via the map (23) amounts to
topological localization of electromagnetic nonlocality where the EM response function
is now no longer allowed to extend globally onto “large and complicated material
domains.” Indeed, only the response to small or topological local domains, namely
the microdomains Vr, is admitted. On the other hand, in order to find the response
field R(r) everywhere in D, one needs to use sophisticated topological techniques to
extend the response from one point to another till it covers the entirety of D.9 In
this manner, it becomes possible to provide an alternative, more detailed explication
of the behaviour of the medium at topological interfaces10 and also explore the
effect of the topology of the bulk medium itself on the allowable response functions
and the production of non-trivial edge state, with obvious applications to nonlocal
metamaterials.11

5. Fiber Bundle Formalism for Electromagnetic Nonlocality

In order to investigate in depth the fundamental physico-mathematical constraints
imposed on EM nonlocal metamaterials, the material domain D considered so far
should be promoted to a manifold structure. There are several reasons why this is
highly desirable. First, it provides a natural and obvious generalization of the basic
structure (21) from the mathematical perspective. Second, engineers often need to
insert metamaterials into specific device settings, hence the shape of the material
becomes highly restricted. It is therefore important to develop efficient tools to
deal with variations of geometric and topological degrees of freedom and how they
could possibly impact the design process. Third, applied scientists and engineers are
often interested in deriving fundamental limitation on metamaterials, e.g., what are
the ultimate allowable response-excitation relations or constitutive response functions
possible given this material domain topology or that. Fourth, sophisticated full-wave
electromagnetic numerical solvers prefer working with local coordinates in order to
handle complicated shapes, even if a global coordinate system is sometimes available,
making the deployment of 3-manifold structures for describing the material domain D
useful. Fifth, in topological photonics and materials [33], most applications seem to
focus on lower-dimensional states of matter like those associated with quantum Hall
effects and edge states (surface waves). There, new phenomena appear at materials

8In this paper, we don’t worry much about the details of the electromagnetic model and for
simplicity assume that only one vector field F acts as excitation and one response function R is
induced. More complex media like bianistropic domains and others can also be treated within this
formulation. For example, if two response functions are needed, the codomain in (23) can be simply
changed to C6.

9This local-to-global extension application of differential topology is briefly discussed in Sec. 6
6.1.

10Boundary conditions in nonlocal metamaterials are treated (provisionally) in Sec. 6 6.1.
11See the discussion of nonlocal and topological metamaterials applications in Sec. 6 6.2.
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where the base space (material domain D) is a 2-surface, which is best described
mathematically as a differential 2-manifold. For all these reasons, it is expedient to
describe the domain D in the most general mathematical form, which in our case
amounts to equipping it with a manifold structure. If we denote by D this 3-manifold,
then, being a subset of R3, there is a natural differential structure defined on it, that
inherited from the 3-dimensional Euclidean space itself. This differential 3-manifold
structure will be presupposed in the remaining parts of this paper.

Let (Ui, φi) be a collection of charts (an atlas), labeled by i ∈ I, an index
set, and equipping D ⊂ R3 with a differential 3-manifold structure.12 Our goal is
to attach a vector fiber (linear function space in our case) at every point r ∈ D,
namely the function space F(Vr). That would require finding suitable “compatibility
laws” dictating how coordinates change between two intersecting charts Ui and Uj
interact with each other. In particular, we will need later to find the law of mutual
transformation of vectors in the fibers F(Vφi(r)) and F(Vφj(r)).

13 The major technical
problem facing us here is the following: Since the differential structure associated with
charts (Ui, φi(r)) is fully determined by purely mathematical considerations alone,
while the collection of microdomains Vr, r ∈ D, is determined mainly by the physics
of EM nonlocality, there is no direct and simple way to express the transformation
of vectors in F(Vφi(r)) into vectors in F(Vφj(r)) because several different coordinate
patches other than Ui and Uj , belonging to the differential 3-manifold D atlas, might
be involved in building up the microdomain Vr. This technical problem will be solved
in this Section by using the technique of partition of unity borrowed from differential
topology [5, 55, 58]. It will allow us to split each full microdomain Vr into several
suitable sub-microdomain, which can be later be pieced up to give back the original
EM nonlocality microdomain Vr.

We start by noting that the collection V(D) := {Vr, r ∈ D} is an open cover of
the manifold D. Therefore, and since D has countable basis, it possesses a locally
finite open cover subordinated to V(D) [5, 58]. In fact, an atlas (Ui, φi), i ∈ I, with
diffeomorhisms,

φi : Ui → R3, (25)

exists such that the elements {Ui, i ∈ I} constitutes the above mentioned locally
finite subcover, while the images φi(Ui) are open balls centered around 0 in R3 with
finite radius a > 0, which we denote by Ba [5]. Moreover, the sets φ−1i (Ba/3), i ∈ I,
cover D [58]. In this way, the physics-based open cover set V(D) provides a first step
toward the construction of a completely mathematized description of the EM nonlocal
topological micro-structure since the coordinate patches (Ui, φi), i ∈ I, turn out to be
subordinated to {Vr, r ∈ D} [5]. It is also known that there exists a partition of unity
associated with the chart (Ui, φi), i ∈ I, constructed above [5, 55, 56, 58]. This is a
collection of functions

ψi : Ui ⊂ D → R (26)

satisfying the following requirements: ψi(r) ≥ 0 and each function is Cp, p ≥ 1. The
support of ψi(r), i.e., the closure of the set such that ψi(r) 6= 0, is contained within
Ui. Finally, since the open cover Ui, i ∈ I, is locally finite, at each point r ∈ D, only

12For simplicity, we will refer to the points of the manifold D by r, i.e., using the language of the
global (ambient) Euclidean space R3.

13Here, the expression F(Vφi(r)
) means the fiber space attached to the point whose coordinates

are φi(r), i.e., the function space where all functions are expressed in terms of the language of the
ith chart (Ui, φi(r)).
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a finite number of Ui will intersect r. Let the set of indices of those intersecting Uis
be Ir. Then we require that ∑

i∈Ir

ψi(r) = 1, (27)

where the sum is always convergent because Ir is finite. We may take the closure
cl{φ−1i (Ba/3)} to be the support of ψi(r), which is denoted by supp{ψi(r)}, while
ψi(r) = 0 for all r /∈ supp{ψi(r)} [5, 58,59].

The motivation behind the deployment of the partition of unity technique and
how it very naturally arises in connection with our fundamental EM nonlocal structure
should now be clear. Initially, the physics-based collection of sets {Vr, r ∈ D}, the
EM nonlocal microdomains based on each point r in the nonlocal metamaterial D,
is given. Next, we introduce a differential atlas (Ui, φi(r)), i ∈ I on D. Finally,
the same atlas is linked to a set of functions ψi(r) that can be used as “basis” to
expand any differentiable function defined on open subsets in D. The key idea, to be
developed next, is that both the base manifold D and the nonlocal EM microdomain
Vr are described locally by the same collection of charts, namely (Ui, φi(r)), which will
permit us to construct a direct unified description of both the base manifold D and its
fibers, i.e., the linear topological function spaces F(Vr), the latter being the models of
the physical electromagnetic fields exciting the nonlocal material D. The construction
of a fiber bundle space for nonlocal electromagnetic materials (metamaterials) will be
accomplished in two steps. First, we construct a tailored fiber bundle based on the
partition of unity charts (Ui, φi(r)) introduced above. Second, the original physical
structure (21) is recovered by gluing together various sub-microdomain Ui of each EM
nonlocal microdomain Vr.

We start with the first step and consider the (Ui, φi(r)), i ∈ I, as our atlas on
the 3-manifold D. At each point r ∈ Ui, we attached a linear topological space F(Ui)
defined as the Sobolev space W p,2(Ui) of functions on the open set Ui, that is,

F(Ui) := {ψi(r)F(r), r ∈ Ui| Sobolev Space W p,2(Ui)}, (28)

where F(r) is a suitable Cp,2 vector field. However, because the Cp functions ψi(r)
have compact support supp{ψi} ⊂ Ui, it follows that F(Ui) is effectively a local
Sobolev space on Ui. In fact, we can alternatively define a less complicated function
space on Ui by

F ′(Ui) := {ψi(r)F(r), r ∈ Ui| Cp Sup-norm function space}, (29)

where the sup norm is given by

||ψi(r)F(r)|| := supr∈supp{ψi} [ψi(r)F(r)] . (30)

In the case of F ′(Ui), one may further consider only Cp vector fields F(r). The choice
of which linear function space to work with depends on the applications. In what
follows, we further simplify notation by writing Fi instead of F(Ui) whenever the
partition of unity differential atlas coordinate patches Ui are used.

In the remaining parts of the Section, an outline of the direct construction of a
fiber (Banach) bundle over D is given, where our purpose is to build into every point
r ∈ Ui a fiber space Fi. Let the fiber bundle be denoted by M, which is called the
total bundle space. We define this space as the disjoint union of all spaces Fi as follows

M := {(r,Fi)|∀i ∈ I, r ∈ Ui}. (31)
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Associated with M is a surjective map

p :M→D, (32)

which “projects” the fiber onto its corresponding point in the base manifold D, i.e.,
p((r,F)) := r. More rigorously, the fiber of M at r ∈ M is defined as the set p−1(r)
provided the map p is given as part of the bundle data.14 The map p is called the
projection of the vector bundle M onto its base space D. Moreover, from now on we
will also use the notation Fr to denote the fiber p−1(r). By construction, it should be
clear that p−1(r) = Fi iff r ∈ Ui. Locally, M appears like a product space Ui × Fi.
The map p should behave locally as a conventional projection operator, i.e., in a local
domain Ui, the total space M is isomorphic to Ui × Fi, and p(Ui × Fi) should be
isomorphic to Ui. We next introduce the linear function space Xi defined by

Xi :=
{
ψi
[
φ−1i (x)

]
F
[
φ−1i (x)

]
, x ∈ Ba| Sobolev function space

}
, (33)

which is the Sobolev space of W p,2(Ba) functions on the Euclidean 3-ball Ba. Here,
each function is defined with respect to the local coordinates x := φ−1(r), where
r ∈ Ui. In fact, it should be straightforward to deduce from the above that there
exists maps

τi : p−1(Ui)→ Ui ×Xi, (34)

for all i ∈ I, that are isomorphisms (diffeomorphism in our case), which may be
written as

∀i ∈ I : p−1(Ui) ∼= Ui ×Fi. (35)

The fact that (34) is such an isomorphism follows from the definitions of the spaces
Fi and Xi by (28) and (33), respectively, and from the fact that each φi is a
diffeomorphism from Ui into R3 (or equivalently the unit 3-ball Ba with radius a.)
We further note that by construction the diffeomorphism τi satisfies

proj1 ◦ τi = p, (36)

where proj1 is the standard projection map defined by proj1(x, y) := x. Finally, if we
restrict τi to p−1(r), the resulting map

τi|p−1(r) : p−1(r)→ {r} ×Xi (37)

is a (linear) topological vector space isomorphism from Fr to Xi, i.e.,

∀i ∈ I, r ∈ Ui : Fr
∼= Xi. (38)

The charts (Ui, τi) are called trivialization covering of the vector bundle M. They
provide a coordinate representation of local patches of the vector bundle. The global
topology of the bundle, however, is rarely trivial. Since here all maps are Cp smooth,
τi are also called smooth trivialization maps. The details of the diffeomorphism (35)
and the topological vector space isomorphism (38) are straightforward but lengthy
and the full proofs are omitted.

Consider two patches Ui and Uj with Ui ∩ Uj 6= Ø. By restricting τi and τj to
Ui ∩ Uj , two diffeomorphisms

τi : p−1(Ui ∩ Uj)→ (Ui ∩ Uj)×Xi, τj : p−1(Ui ∩ Uj)→ (Ui ∩ Uj)×Xj (39)

14This is how fiber bundles are often introduced in the mathematical literature. However, in this
paper, we construct the bundle data starting with the physics-based topological structure (21).
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are obtained, which in turns implies that

(Ui ∩ Uj)×Xi
∼= (Ui ∩ Uj)×Xj , (40)

or Xi
∼= Xj as expected. In particular, it can be shown that the composition map

τj ◦ τ−1i : (Ui ∩ Uj)×Xi → (Ui ∩ Uj)×Xj (41)

possesses the simple form

τj ◦ τ−1i (r,F) = (r, g(r)F). (42)

Here, F ∈ Xi and g ∈ L(Xi, Xj), where L(Xi, Xj) is the set of linear operators from
Xi to Xj . In particular, g(r) is a Cp-Banach space isomorphism. The smooth maps
τj ◦ τ−1i are called the vector bundle transition maps and are essential for building
up global data by gluing together local data. We have now succeeded in directly
constructing a specialized smooth Banach vector bundle (M,D, τ, p) consisting of a
total fiber bundle space M, base 3-manifold D, a set of smooth trivialization charts
τi, i ∈ I, and a projection map p. The base manifolds D itself is described by a
differential atlas (Ui, φi) associated to the partition of unity (Ui, ψi), i ∈ I.

At this point, we need to describe how the evaluation process of the
electromagnetic response field (23) may be enacted. The most obvious method is
to introduce a new vector bundle with the base space being the same base space D,
but with the fibers now taken as the complex Hilbert space C3. This is a well-known
vector bundle, which we denote by R, and call the range vector bundle. Formally,
the structure of this vector bundle is written as (R,D, τ ′, p′), where τ ′ and p′ are its
own smooth trivialization and projection maps. The source vector bundle is taken
as M. The physical process of exciting a nonlocal electromagnetic medium can be
understood as follows: i) The material domain is mathematically modeled by the
Banach bundleM. The response of the medium is to be sought at some point r ∈ D.
ii) The bundle structure M will associate a linear function space at r, namely the
fiber p−1(r), which is a Banach space of functions defined on the region Ui. iii) A
vector bundle homomorphism (to be formally defined shortly) will map one element
of this fiber function space, namely, the particular excitation field F(r), r ∈ Ui, to its
value in the fiber isomorphic to C3 at r in the range vector bundle R.

Formally, a (smooth) bundle homomorphism over a common base space D shared
between the two vector bundles M and R is defined as a (smooth) map

L :M→R (43)

satisfying p′ ◦ L = p. Moreover, the restriction of L to each fiber p−1(r) induces a
linear operator on the vector space of that fiber [58]. Such mapping is best illustrated
graphically through the simple commutative diagram

M R

D
p

L

p′

We note that because M and R share the same base manifold D, the action of the
map L is effectively reduced to how it acts on each fiber p−1(r) as a linear operator.
Since the Banach space Xi is isomorphic to p−1(r), we will express L by giving its
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expression locally in each element Ui ⊂ D of the open cover {Ui|i ∈ I}. In particular,
we define the local action using the source and range bundles’ trivialization maps τi
and τ ′i by

τ ′i ◦ Lω ◦ τ−1i : Ui ×Xi → Ui × C3, (44)

with
τ ′i ◦ Lω ◦ τ−1i := (r,Li,ωF), F ∈ Xi, (45)

where
Li,ω : Xi → C3 (46)

is the linear operator defined by

Li,ω(∗) =

∫
Ui

d3r′ K(r, r′;ω) · (∗), (47)

in which ‘*’ stands for an element of the smooth Banach function space Xi. The map
L then will leave every point in the base space unchanged, while it maps each smooth
function on Ui (component of the total electromagnetic excitation field, see below) to
its vector value in C3 at r ∈ Ui.

The final step is tying up together the fundamental source Banach bundle M,
range bundle R and the EM nonlocal microdomain physics space (21). As it stands,
the latter was developed for one domain D, not a manifold D, but the essential
ingredients of the physics of nonlocal EM field-matter interaction are encoded in
the geometrical construction of the collection of microdomains Vr, r ∈ D, and the
excitation fields F(r) defined on them, i.e., the sets V(D) and the function spaces
G(D). So far, the vector bundle homomorphism L introduced above takes care of
excitation fields supported on the open sets Ui, i ∈ I. However, these are mathematical
fundamental building blocks used to construct the source vector bundle M. The
question now is to how to extend the description of nonlocal EM response operators
for excitation fields applied to the entire cluster of EM nonlocality microdomains
{Vr|r ∈ D). As mentioned before, it is the partition of unity (Ui, ψi), i ∈ I, what will
make this expansion of the topological formulation possible. To see this, let us consider
an electromagnetic field F(r) interacting with a nonlocal medium extended over the
manifold D. Our goal is to compute the response field R(r), that is, at point r. The
fundamental idea of EM nonlocality is that to know the response at one point r, one
must know the excitation field in a entire open set Vr, a topological neighborhood of
r, and that in general this microdomain will change depending on the position r. The
goal now is to find R(r) using the vector bundle map L (43) given the data i) region
Vr and ii) vector field F(r) acting on Vr. We exploit the properties of the partition of
unity functions ψi to expand the field F(r) over all patches Ui that cover Vr and write

F(r′;ω) =
∑
i∈Ir

ψi(r
′)Fi(r

′;ω), (48)

where (27) was used. The truncated function Fi is equal to F(r) only if r ∈ Ui and
zero elsewhere, i.e.,

Fi(r
′;ω) :=

{
F(r′;ω), r ∈ Ui,

0, r /∈ Ui.
(49)

Recall that Ir is defined as the indices i ∈ I of all Ui having the point r in their common
set intersection. In other words, each function ψi(r

′)Fi(r
′;ω) is a smooth component
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of the total excitation field F with support contained fully inside the coordinate patch
Ui. Thus, the vector bundle map constructed in (43) can be applied to each such
component field. From (44)-(46) and (48), the following can be deduced

R(r;ω) =
∑
i∈Ir

Li,ω[ψi(r
′)Fi(r

′;ω)]. (50)

Finally, using (47), we arrive at our main expression

R(r;ω) =
∑
i∈Ir

∫
Ui

d3r′ K(r, r′;ω) · ψi(r′)Fi(r′;ω). (51)

The relation (51) indicates that the source bundle M, R, and the response map
L provide a skeleton through which the total response to any EM excitation field
defined on an arbitrary EM nonlocality microdomain can be computed. In this way,
the vector bundle formalism for electromagnetic nonlocality is essentially complete
and the connection between the purely mathematical fiber space and the physical
microdomain structures is secured by (51).

6. Applications and Future Work

We provide a general outline of several possible applications, where some of them
highlights the theory developed in this paper. Issues pertinent to fundamental
considerations (physical and mathematical) and engineering functions are taken up
in Secs. 6 6.1 and 6 6.2, respectively. All of the coming discussions is kept very brief
and only the essential main ideas are given. Some of these applications are expected
to be investigated more extensively in the near future.15

6.1. Fundamental Theory

Limitations on Nonlocal Metamaterials. Maps like L (43) can be reformulated in the
space of vector bundle sections [55, 58,59], a subject that is extremely well developed
in classic differential topology. In fact, the electromagnetic response function R
itself can sometimes be obtained by working directly with the source bundle M.
For example, under some conditions, this can be achieved by replacing each fiber
Xi by Xi × C3. In this way, the entire electromagnetic nonlocal response problems
becomes identical to the investigation of how vector bundle sections interact with the
topology of the underlying base manifold D. There is an extremely large literature
in differential topology and geometry focused on this problem, especially how local
information can be propagated to extend into global structures [5,56,58]. The author
believes that by starting from local data in a given nonlocal metamaterial domain,
e.g., the global shape of the device, the distribution of topological holes, etc, one may
then use existing techniques borrowed from differential topology, e.g., the theory of
characteristic classes, to determine the allowable EM response functions permissible
in principle at the global level. Engineers are typically interested in knowing in
advance what the best (or worst) performance measures obtainable from specific
topologies are, and hence reformulating the electromagnetics of nonlocal metamaterials

15No attempt at providing anything even remotely close to a comprehensive review of the large
literature on nonlocal metamaterials is given here and he list is inherently selective.
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in terms of vector bundles could be of help in this respect since it opens a pathway
toward a synergy between general topology, physics, and engineering in the field of
metamaterials.

Numerical Methods. Traditional full-wave numerical methods are sometimes
deployed to deal with nonlocal EM materials, often using the additional boundary
conditions framework, in spite of the latter’s lack of complete generality. By
formulating the source space of field-matter interaction in terms of a Banach bundle,
it should possible to reformulate Maxwell’s equations to act on this extended
geometric space instead of the conventional spacetime framework. Some of the
advantages expected from such reformulation is the ability to resolve the issue
of generalized boundary condition (more on this below). Moreover, since every
point belonging to a fiber space is in itself a smooth function defined on an entire
material sub-microdomain, by building a new system of discretized recursive equations
approximating the behaviour of electromagnetic solutions living in the enlarged spaces
M and R, one may expect deeper understanding of the physics of nonlocality since
the topology of the nonlocal interaction regime is explicitly encoded into the geometry
of the new expanded solution space M itself. It is also possible that such numerical
methods may emerge as more computationally efficient and broader in applicability
than the conventional methods rooted in local electromagnetics. One reason for this
is that the Banach vector bundle formulation introduced in this paper is quite natural
and appears to reflect the underlying physics of nonlocal metamaterials in a direct
manner.

Electromagnetic Boundary Conditions. The well-known tension between nonlocal
electromagnetics and material interfaces has been already mentioned several times
above. Here, we provide some application of the fiber bundle theory of Sec. 5 aiming
at elucidating the nature of the tension and to suggest some possible new formulation
of the problem. The starting point is Fig. 2, where a zoomed-in topological picture
based on the general structures explicated in Sec. 4 is given. The focus now is on
the interface between two generic nonlocal domains Dm and Dm. In traditional local
electromagnetics, the constitutive relation material tensor Kn is exploited to deduce
conditions dictating how various electromagnetic field components behave as they
cross the Dm/Dm interface. However, even if each Kn(r, r′) was to be treated as
that belonging to a spatially dispersive domain, i.e., by replacing it by Kn(r − r′),
the presence of a boundary completely destroys the translational symmetry of the
structure on which the very form of the spatial dispersion nonlocal response tensor
Kn(r − r′) is based. This was very clearly explained in [4], with several proposals
for a solution of the electromagnetic problem. For example, since close to the
interface it is very obvious that the material tensor must be reverted back to the
most general nonlocal form, namely Kn(r, r′), it was then proposed that one may use
the latter form only in a thin region containing the interface on both sides. Outside
this region, a gradual transition or a continuous profile (tapering) is introduced to
transition from the forms Kn(r, r′) and Km(r, r′) to the spatially dispersive forms
Kn(r−r′) and Km(r−r′) characteristic of “bulk” homogeneous material domains [4].
Another proposal is to keep the spatial dispersion profiles Kn(r− r′) and Km(r− r′)
everywhere but introduce specialized additional boundary conditions (ABCs) at the
interface suitable for the problem at hand. Although this latter approach is neither
consistent mathematically nor physically (because of the breakdown of symmetry
caused by the presence of an interface), it nevertheless remains popular because –
at least in outline – nonlocal electromagnetics is thereby held up in a form as close
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as possible to familiar local electromagnetic theory methods, especially numerical
techniques such as Finite Element Method (FEM), Method of Moment (MoM), and
Finite Difference Time-Domain Method (FDTD), i.e., established full-wave algorithms
where it is quite straightforward to replace one boundary condition by another without
essentially changing much of the code.16 However, both of these approaches discussed
above require a considerable input from microscopic theory, mainly to determine the
tapering transition region in the case of the first, and the ABCs themselves in the
second. That motivated the third approach, called, the ABC-free formalism, where the
relevant microscopic theory was utilized right from the beginning in order to formulate
and solve Maxwell’s equations. For example, in [9, 10], a global Hamiltonian of the
matter-field system is constructed and Maxwell’s equations are derived accordingly.
In [11], the rim zone (field attached to matter) is investigated using different physical
assumptions to understand the transition from nonlocal material domains to vacuum
going through the entire complex near-field zone. We believe that main common
conclusion from all these different formulations is that in nonlocal electromagnetics
it is not possible in general to formulate the electromagnetic problem at a fully
phenomenological level. In other words, microscopic theory appears to be in demand
more often than in the case of systems involving only local materials. However, since
all existing solutions use the traditional spatial manifold D as the main configuration
space, the question now is whether the alternative formulation proposed in this paper,
the extended fiber bundle approach, may provide some additional insights.

Dm
Dn

XnXm

Interface between

the nth and mth domains

Dm � Dn ⇒ Xm � Xn

Fiber space boundary condition

p−1(r) (fiber at r)

r

Figure 3: An abstract representation of the fiber bundle structure behind Fig. 2.

We provide a provisional elucidation of the topological nature of electromagnetics
across material interfaces by nothing that in Fig. 2, not only the behaviour of the fields
F(r) in the two domains is relevant, but also the entire local topological microdomains
Vr clustered inside, and in particular how these topological regions with fields on them
behave as they move across the boundary. In general topology, boundaries are defined
fully in terms of the behaviour of open sets. We will build on this key concept in
order to show the the problem of nonlocal electromagnetics across interfaces may
be reformulated. First, Fig. 3 provides a finer or more structured picture of the
topological structure of Fig. 2 based on replacing the spaces Dm and Dn by the
corresponding Banach bundlesMm andMn, respectively. The thick horizontal curved
lines represent the bases spaces Dm and Dn, while the wavy vertical lines stands for the
fibers spaces Xm and Xn attached to each point in the corresponding base manifolds.
The double discontinuous lines at the “junction” of the two base spaces Dm and Dn
indicate the joining together of the two vector bundles Dm and Dn. It is clear now

16This is more obvious in FEM and FDTD than MoM.
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that since the two nonlocal material domains possess an extra structure, namely that
of the fiber spaces attached to each point in the base space, we must also indicate how
the various elements belonging to the Banach function spaces, the fields defined on the
microdomains Vr in Fig. 2, behave as they cross the boundary separating Dm and Dn.
One obvious way to do this is to introduce a bundle homomorphism [58] between the
two vector bundlesMm andMn over the interface submanifold ∂Dmn separating Dm
and Dn.17 The goal of this bundle homomorphism is to serve as a “boundary condition
operator” acting on the fiber bundle nonlocal domainsMm andMn instead of Dm and
Dn. We will not go here into constructing this operator in details, but provide some
additional remarks to illustrate the main idea. The traditional boundary condition
applied in the base space will be denoted by Dm � Dn and is usually spelled out in
the form

lim
r→∂Dmn

{Fm(r)− Fn(r)} = Γb1 [Fm(r),Fn(r)], (52)

lim
r→∂Dmn

{Rm(r)−Rn(r)} = Γb2 [Rm(r),Rn(r)], (53)

where ∂Dmn is the boundary between Dm and Dn. Here, Γb1 and Γb2 are “base space
boundary functions.” On the other hand, the fiber bundle elements, i.e., functions
defined on on the microdomains Vr, are mapped by

Xm � Xn : lim
r→∂Dmn

(Xm −Xn) = Γf [Xm, Xn], (54)

where Γf is a different fiber space boundary function. The full formulation is
more complex because the boundary condition operator must also be proved to be
compatible with the fiber bundle structures and so the entire global topology of Mm

and Mn will interact with the effective final electromagnetic boundary condition
resulting from this process. The main conclusion related to us here is that the
existence of extra or additional structures in the fiber bundle space of electromagnetic
nonlocality makes the need for additional boundary conditions or information coming
from the microscopic topological structure very natural. The fiber bundle formalism of
nonlocal metamaterials does capture the physics of nonlocal domains joined together
through interfaces. The full formulation of the proposed fiber bundle boundary
condition homomorphism is beyond the scope of this paper but it is hopped that
this initial insight can at least clarify the subject and stimulate further research in the
fundamental theory of nonlocal metamaterials.

6.2. Engineering Applications

Topological photonics. One of the main applications of the proposed vector bundle
formalism is that it opens the door for a new way to investigate the topological
structure of materials. It has already been noticed that nonlocal EM response is
essential in topological photonics, e.g., see [27, 33]. Indeed, since in topological
photonics the wavefunction of bosons, usually the Bloch state, is examined over the
entirety of momentum space (usually the Brillouin zone), then it is the dependence
of the EM response on k what is at stake, which naturally brings in nonlocal issues.
Since now using our theory we can associate with every nonlocal material a concrete
fiber bundle reflecting all the rich information about the topological microdomains
and the global shape of the material plus the impact of the boundaries separating

17This mathematical object is similar to the nonlocal response map L introduced by (43).
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various material domains, it is natural to examine whether a topological classification
of the corresponding fiber bundles may lead to a new way to characterize the topology
of materials other than the Chern invariants used extensively in literature. The
advantage of our theory in this case is that the complicated topological and geometrical
aspects of the boundaries and inhomogeneity in nonlocal media can be encoded very
efficiently in the local structure of the material fiber bundle. Using standard techniques
in differential topology [55], it should be possible to propagate this local information
to the global domain (the entirety of the system), for example by computing fiber
the bundle topological invariants like its homology groups [59]. Our approach is
then a “duall” to the standard approach since we work on an enlarged configuration
space (spacetime or space-frequency), while the mainstream approach operates in the
momentum space of the wavefunction.

Digital communications. Nonlocal metamaterials offer a very wide range of
potential applications in wireless communications and optical fibers. The basic idea is
to introduce specially engineered nonlocal domains either as part of the communication
channel (e.g., optical fibers, plasmonic circuits, microwave transmission lines) [52],
or as a control structure integrated with existing antennas [39]. Spatial dispersion
was also used as a method to engineer wave propagation characteristics in material
domains, e.g., see [60] for applications to high-efficiency modulation of free-space
EM waves. A general linear partial equation explicating how spatial and temporal
dispersion can be jointly exploited to produce zero distortion (e.g., constant negative
group velocity) was derived and solved in [61]. The main idea originated from the fact
that distortion in communication systems emerge from nonconstant group velocity
vg := ∇kω. Since vg is a strong function of the dependence of the material response
tensor K(k, ω) on both k and ω, dispersion management equations can be derived
for several applications. For example, it was proved in [61] that in simple isotropic
spatially dispersive media with high-symmetry, one may obtain exact solutions where
the group velocity is constant at an entire frequency band.

Electromagnetic Metamaterials. It was proposed as early as in the 1960s that EM
nonlocality can be exploited to produce materials with very unusual properties. For
example, in [4], negative refraction materials were noted as one possible application of
spatial dispersion where the path toward attaining this goes through controlling the
direction of the group velocity vector. Since in nonlocal media power does not flow
along the Poynting vector [2], new (higher-order) effects were shown to be capable
of generating arbitrary group velocity profiles by carefully controlling the spatial and
temporal dispersion profiles. Overall, the ability of spatial dispersion to induce higher-
order corrections to power flow is a unique added advantage enjoyed by nonlocal
metamaterials exhibiting spatial dispersion in addition to normal dispersion. This
extra spatial degrees of freedom provided by space was researched, reviewed and
highlighted many publications, including for example [15,23,25,36,39,45,49,62–66].

Near-Field Engineering and Energy. Another interesting application of
nonlocality in electromagnetic media is near-field engineering, a subject that has not
yet received the attention it deserves but has seen some activity lately especially
with connection to the spatio-temporal structure of the electromagnetic near field
energy, e.g., see [42, 67–85]. It was observed in [62] that a source radiating in
homogeneous, unbounded isotropic spatial dispersive medium may exhibit several
unusual and interesting phenomena due to the emergence of extra poles in the
radiation Green’s function of such domains. Both longitudinal and transverse waves
are possible (dispersion relations), and the dispersion engineering equations relevant
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to finding suitable modes capable of engineering desired radiation field patterns are
relatively easy to set and solve. For example, by carefully controlling the modes
of the radiated waves, it is possible to shape the near field profile, including total
confinement of the field around the antenna even when losses is very small, opening
the door for applications like energy harvesting, storage, and retrieval in such media.
This subject, however, has been explored only for simple materials so far and mainly
at the theoretical level [39].

7. Conclusion

We have provided a general theoretical and conceptual investigation of nonlocal
metamaterials aiming at achieving several goals. First, the subject was reviewed
from a new perspective with the intention of introducing it to a wide audience,
including engineers, applied physicists, and mathematicians. The various essential
ideas behind EM nonlocality were viewed in new light using an abstract field-response
model in three dimensions. Next, the fine-grained topological micro-structure of
nonlocal metamaterials was explicated in details. We introduced EM nonlocality
microdomains and showed that they present an important structural topological
feature of the physics of nonlocal media. After that, it was proved using differential
topology that a natural fiber bundle structure serving as a source space can be
constructed. The source fiber bundle was shown to have all the required properties
of standard fiber bundles while faithfully reflecting the physics of EM nonlocality
microdomains. Eventually, and using the technique of partition of unity, it was proved
that the source fiber bundle can be used to construct and compute the material
response function over arbitrary microdomains. The new fiber bundle formulation
suggests that EM nonlocality can be formulated in an alternative way compared
with other existing methods that borrow heavily from the electromagnetics of local
media. Most importantly, EM nonlocality forces us to consider an entire infinite-
dimensional Banach space attached to each point in the conventional 3-dimensional
space on which the material is defined. This extra or additional structure provides
a natural explanation of why traditional boundary conditions often fail to account
for the physics of nonlocal metamaterials. Moreover, the fiber bundle theory opens
the door for several new applications, including the ability to understand the deep
connection between topology and electromagnetics in engineered media. Overall, the
author proposes that future research in metamaterials will gradually require more
extensive collaboration between engineers and mathematicians to explore the full
consequences of this organic topology/electromagnetics relation.

Appendix: A Guide to the Mathematical Background

We provide an informal overview regarding how to read the mathematical portions
of this paper and where to find detailed references that might be needed in order to
expand some of the technical proof sketches provided in the main text. We emphasize
that in this paper only the elementary definitions of 1) differential manifolds, 2)
Banach and Sobolev spaces, 3) vector bundles, and 4) partition of unity are needed
to understand the mathematical development.

Differential manifolds. A differential manifold is a collection of fundamental
“topological atoms” each composed of an open set Ui and a chart φi(x), which serves
as a coordinate system, basically an invertible smooth map to the Euclidean space
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Rn. That is, locally, every manifold looks like a Euclidean space with dimension
n. The collection of open sets Ui, i ∈ I, where I is an index set, covers this n-
dimensional manifold. Since some of these open sets are allowed to overlap, the key
idea of the differential manifold is that on the overlap region Ui ∩ Uj , there exist
a smooth reversible coordinate transformation function connecting the coordinates of
the same point when expressed in the two (different) languages of the topological atoms
Ui and Uj . The key concept of topology is how to propagate information from the
local to the global. In this sense, differential manifolds present elementary strucutre
allowing us to model this process using the efficient technology of the differential
calculus. Only the basic definition of smooth manifolds is required in this paper,
which can be found in virtually any book on differential or Reimannian geometry,
e.g., see [5, 55,57–59,86–88].

Banach and Soblev spaces. In a nutshell, a Banach space is a vector space
equipped with a norm satisfying the familiar properties (being positive, being zero
only for the null vector, scale linearity, and the triangle inequality.) Most importantly,
Banach spaces are also required to be topologically complete in the sense that every
Cauchy sequence converges to an element in the space itself. In this way, no “holes” are
left in the space and one may deploy them to perform analysis like solving differential
equations. A Hilbert space is a Banach space equipped with an inner product. An
important thing to note about Banach and Hilbert spaces is that when they are
used to model function spaces (as in this paper), they lead to infinite dimensional
vector spaces [86]. Sobolev spaces are Hilbert spaces consisting of (Lebesgue) square
integrable functions that posses “generalized derivative,” a concept in itself technical
but straightforward, e.g., see [57] for a very readable account. In Sec. 4, we introduced
Sobolev space over the open domain D instead of simply Banach space. However,
that was done mainly to simplify the technical development and in anticipation of
future work. Indeed, in this paper, the fiber bundle M is referred to just as Banach
bundle, not Sobolev bundle for the reason that all our essential results and insights
apply to the more general concept of Banach space than Soblev space. The latter
however, is easier to implement and we only invoked here the key definition of the
space itself. In particular, none of the other technical properties of Sobolev spaces
are needed in the paper. However, since in the future the material bundle spaceM is
expected to be used to construct solution of Maxwell’s equations in new form, Sobolev
spaces are projected to play the most important role since they have proved very
efficient in analysis. For the basic definition of Sobolev spaces and their applications
to partial differential equations in mathematical physics and finite-element method in
engineering, we recommend [57]. The subject of Banach manifolds is less commonly
treated in literature than finite-dimensional manifolds, but good concise treatments
of the topic include [5, 59,87].

Vector bundles. Fiber bundles, of which vector bundles are special case, are
now standard topics in both mathematics (topology, geometry, differential equations),
theoretical physics (quantum field theory, cosmology, quantum gravity), and applied
physics (condensed-matter physics, many-body problems). For the major importance
of vector and fiber bundles within the overall structure of modern fundamental physics,
see [86, 88, 89]. In quantum field theory, gauge field theories use vector bundles as
essential ingredients in the standard model of particle physics [86]. In condensed-
matter physics, the increasing role played by quantum field theory in applications
to condensed-matter physics has made knowledge of fiber bundles useful and more
widespread, e.g., see the Berry phase and the associated gauge connection [31, 33].
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The key idea of a vector bundle is to attach an entire vector space to every point on
a base manifold. To be more specific, consider a differential manifold D. Each such
vector space will be called the fiber at that point. The tangent space of the manifold
is the most obvious example of such vector bundles. However, more complicated
structures than finite-dimensional tangent spaces can also be encoded by the vector
bundle concept. In this paper, we have shown that EM nonlocality can be modeled
naturally by considering the Banach space of all fields on the microdomains based at
a point in the material configuration space. Fiber bundles then can be seen as highly
efficient and economic ways to encapsulate large amount of topological and geometrical
data and they lend themselves easily to complex calculations. Very readable technical
descriptions of vector bundles can be found in [56,58,59,86].

Partition of unity techniques. These are somehow technical tools used by
topologists to propgate information from the local to the global and are quite handy
and easy to apply. The main theorems allow moving from one topological atom to
another by “gluing” them together using smooth standard domain-division functions.
The technique was stated and used only toward the end of Sec. 5 to write the expansion
(48) and can be skipped in first reading of the paper. Partition of unity is usually
taught in all topology and some geometry textbooks, e.g., see [5, 56,58,59].
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