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Abstract

In the cross-silo federated learning setting, one kind of data partition according to features, which is so-called vertical federated

learning (i.e. feature-wise federated learning) (Yang et al. 2019), is to apply to multiple datasets that share the same sample ID

space but different feature spaces. Simultaneously, the image dataset can also be partitioned according to labels. To improve

the model performance of the isolated parties based on feature-wise (i.e. label-wise) results, the most effective method is to

federate the model results of the isolated parties together. However, it is a non-trivial task to allow the participating parties

to share the model results without violating the data privacy of the parties. In this paper, within the framework of principal

component analysis (PCA), we propose a Federated-PCA machine learning approach, in which the PCA method is used to

reduce the dimensionality of sample data for all parties and extract the principal component feature information to improve

the efficiency of subsequent training work. This process will not reveal the original data information of each party. The federal

system can help each side build a common profit strategy. Under this federal mechanism, the identity and status of each

party are the same. By comparing the federated results of the isolated parties and the result of the unseparated party through

multiple sets of comparative experiments, we find that the experimental results of these two settings are close, and the proposed

method can effectively improve the training model performance of most participating parties.
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Abstract. In the cross-silo federated learning setting, one kind of da-
ta partition according to features, which is so-called vertical federated
learning (i.e. feature-wise federated learning)[23], is to apply to multi-
ple datasets that share the same sample ID space but different feature
spaces. Simultaneously, the image dataset can also be partitioned accord-
ing to labels. To improve the model performance of the isolated parties
based on feature-wise (i.e. label-wise) results, the most effective method
is to federate the model results of the isolated parties together. Howev-
er, it is a non-trivial task to allow the participating parties to share the
model results without violating the data privacy of the parties. In this
paper, within the framework of principal component analysis (PCA), we
propose a Federated-PCA machine learning approach, in which the PCA
method is used to reduce the dimensionality of sample data for all par-
ties and extract the principal component feature information to improve
the efficiency of subsequent training work. This process will not reveal
the original data information of each party. The federal system can help
each side build a common profit strategy. Under this federal mechanism,
the identity and status of each party are the same. By comparing the
federated results of the isolated parties and the result of the unseparat-
ed party through multiple sets of comparative experiments, we find that
the experimental results of these two settings are close, and the proposed
method can effectively improve the training model performance of most
participating parties.

Keywords: Vertical federated learning, Feature-wise(i.e. Label-wise),
Federated-PCA

1 Introduction

Federated learning (FL) was first proposed by Google in 2016 [12], whose main
idea is to build machine-learning models based on datasets that are distribut-
ed across multiple devices while preventing data leakage and learning a shared
model by aggregating locally computed updates via a central coordinating serv-
er. There is growing interest in applying FL to other applications, including some
applications that may involve only a few reliable clients or multiple organiza-
tions working together to train models. In fact, FL is a machine learning setting,
where multiple entities (clients) collaborate in solving a machine learning prob-
lem, under the coordination of a central server or service provider. Each clients
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2 Y.M. Cheung and F. Yu

raw data is stored locally and not exchanged or transferred; instead, focused
updates intended for immediate aggregation are used to achieve the learning
objective [11].

In general, there are two FL settings, i.e. cross-device and cross-silo. In the
former setting, the data is assumed to be partitioned by samples, i.e. horizontal
FL [23]. By contrast, in the cross-silo, in addition to partitioning by samples,
partitioning by features is of practical relevance [11], which is also called as
vertical FL (VFL) [23] or feature-wise FL interchangeably. In particular, for the
image datasets, it can be also partitioned by labels. It applies to the cases that
two data sets share the same sample ID space but differ in feature space.

The cross-silo setting can be relevant where several companies or organiza-
tions share incentives to train a model based on all of their data but cannot share
their data directly. This could be due to constraints imposed by confidentiality
or due to legal constraints even within a single company when they cannot
centralize their data between different geographical regions. For example, let us
consider two different companies in the same city, one is a bank, and the other is
an e-commerce company. The sets of their users are likely to contain most of the
residents of the area, thus the intersection of their user space is large. However,
since the bank records the users revenue and expenditure behavior and credit
rating, and the e-commerce company retains the users browsing and purchasing
history, their feature spaces are very different. Supposing both parties need to
have a prediction model for product purchases based on user and product infor-
mation [23], this is a typical VFL. In addition, there are also different medical
centers that have large user intersection space and hold different types of person-
al medical image information of users, and shopping malls (online or offline) that
have large user intersection space but retain different shopping records for users
are worth considering. In this paper, we will focus on the cross-silo setting with
data partitioned by features (i.e. vertical-partitioned data), and under which we
attempt to explore the learning of principal component analysis (PCA) as PCA
is a fundamental and very useful machine learning model. The basic idea of PCA
is to reduce the dimensionality of a data set, in which there are a large number
of interrelated variables while retaining as much as possible of the variation p-
resented in the data set. This reduction is achieved by transforming the original
variables to a new set of variables, i.e. the principal components, which are un-
correlated and ordered so that the first few retain most of the data variations
[16].

This paper considers that all parties can use the model parameters of other
parties to improve the model performance without revealing their raw dataset.
Focusing on the vertical-partitioned data, we will propose an approach namely,
Federated-PCA, which can significantly improve the models of all parties and
the final results of all labels in the image dataset. Our main contributions are: (1)
Proposing a federated PCA learning method and perform feature-wise(i.e. label-
wise) feature extraction and data compression based on vertically partitioned
data, and then obtain the results of joint PCA of all parties, (2) Building two
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Federated-PCA on Vertical-Partitioned Data 3

model protocols: Central collaborative server and Fully decentralized (i.e. peer-
to-peer) model framework.

The rest of the paper is organized as follows. Section 2 makes an overview
of related work. Section 3 introduces the framework of the proposed Federated-
PCA machine learning. Section 4 shows the experimental results to demonstrate
the effectiveness of the proposed approach. Finally, we give a concluding remark
in Section 5.

2 Related Work

Most of the existing work is based on cross-device federated learning. In the
cross-device setting, the data is assumed to be partitioned by examples. Dif-
ferent from cross-device federated learning, in the cross-silo setting, the data is
assumed to be partitioned by samples and features. In particular, for the case of
cross-silo FL with data partitioned by features, it may or may not involve a cen-
tral server as a neutral party, and clients would exchange specific intermediate
results rather than model parameters to assist in calculating the other parties’
gradients [21]. In this setting, the application of techniques such as Secure Multi-
party Computation or Homomorphic Encryption has been presented to limit the
amount of information other participants can infer from observing the training
process. The downside of this approach is that the training algorithm is typically
dependent on the type of machine learning objective being pursued. Currently,
the existing algorithms include trees [5], linear and logistic regression [23, 10],
and neural networks [14].

Privacy-preserving is one of the most important problems in federated learn-
ing. At present, the solutions proposed in privacy-preserving learning are mainly
based on the following: Secure Multi-party Computation (SMC), Differential Pri-
vacy and Homomorphic Encryption. The privacy definition of federated learning
can be classified into two categories: global privacy and local privacy [13]. Global
privacy requires that the model updates generated at each round are private to
all untrusted third parties other than the central server, while local privacy fur-
ther requires that the updates are also private to the server. Privacy-preserving
machine learning algorithms have been proposed for vertically partitioned data,
including Cooperative Statistical Analysis [7], association rule mining [20], secure
linear regression [20, 18], classification [7] and gradient descent [21]. Recently, [10,
17] proposed a vertical federated learning scheme to train a privacy-preserving
logistic regression model. The authors studied the effect of entity resolution
on the learning performance and applied Taylor approximation to the loss and
gradient functions so that homomorphic encryption can be adopted for privacy-
preserving computations. The existing solutions in privacy-preserving learning
are mainly based on Secure Multi-party Computation (SMC), and Differential
Privacy and Homomorphic Encryption.

Current works that aim to improve the privacy of federated learning typi-
cally build upon previous classical cryptographic protocols such as SMC [4, 9]
and differential privacy [1, 3, 8, 15]. The protocol of SMC is introduced to pro-
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4 Y.M. Cheung and F. Yu

tect individual model updates[4]. The central server is not able to see any local
updates but can still observe the exact aggregated results at each round. SMC is
a lossless method and can retain the original accuracy with a very high privacy
guarantee. However, the resulting method incurs significant extra communica-
tion cost. Other works [8, 15] apply differential privacy to federated learning and
offer global differential privacy. These approaches have several hyperparameters,
which should be carefully chosen because of their impact on communication and
accuracy, although [19] has presented the adaptive gradient clipping strategies
to help alleviate this issue. Besides, differential privacy can be combined with
the model compression techniques to reduce communication and obtain privacy
benefits simultaneously [1].

In contrast with the existing work, we focus more on the principal compo-
nent extraction and privacy protection through Federated-PCA learning. Our
approach is to share intermediate parameters only without directly sharing the
original party’s original data. The detailed privacy-preserving PCA framework
will be presented in the next section.

3 The Proposed PCA on Privacy-Preserving
Vertical-Partitioned Data

3.1 Proposed Method:Federated-PCA

FL aims at achieving a common profit strategy for all parties by sharing param-
eters. To this end, one feasible idea is to average the parameters shared by all
parties. According to this idea, we first try to directly average the eigenvector
shared by all parties for processing. A plausible reason is that this method can
improve the overall performance of the model. Alternatively, after considering
the relationship between eigenvalue and eigenvector, another idea we propose is
that the party with the largest eigenvalue weight among all participants should
have more direct effect on the final federated results.

Based on our idea stated above, we can achieve the FL along with two ways.
The first way is to add a third-party trust coordination agent that can help all
parties complete the model training work more efficiently. This third-party coor-
dinator cannot access the data of each party, which is important for the privacy
protection of all parties. On the other way, when the number of participating
parties is small, as in the case of two-party or the third-party is not trusty, it is
feasible to consider using a fully decentralized PCA learning method to build a
co-build model provided that all parties involved are honest. Accordingly, let us
consider setting up two Federated-PCA model protocols: a central collaborative
server (i.e. Mode 1) and a fully decentralized (peer to peer) learning model (i.e.
Mode 2) for these two ways, respectively.

Mode 1 : All parties share parameters with the help of the central collaborative
server. In our setting, this third-party coordinator can be trusted, it can only
accept intermediate parameters sent by each party and cannot get the original
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Federated-PCA on Vertical-Partitioned Data 5

data of any party. After adjusting the new parameters, this federated-parameter
is returned to all parties. Then, each party calculates locally based on this result.
The framework of this model is shown in Figure 1. The step of this method is
as follows:

– Step 1: Local training: All parties involved perform PCA calculations lo-
cally, first obtain the covariance matrix S, and based on this S, find the
corresponding eigenvector λi and eigenvalue vi, i ∈ {1, · · · k} and select the
largest k eigenvector and eigenvalue values;

– Step 2: Model integration: The central server calculates the weight Wi

occupied by each party in the federated model by receiving the eigenvalue
(λi)k, i ∈ {1, · · · k} of each party, and then combines the received eigenvector
(vi)k, i ∈ {1, · · · k} values to derive a joint feature vector (Vk);

– Step 3: Parameters broadcasting: The central collaborative server broad-
casts the aggregated parameters (Vk) to the N parities;

– Step 4: Local model updating: Each party updates each eigenvector based
on the returned joint feature vector (Vk), and obtains the final extracted k
final data.

Fig. 1. The framework of Federated-PCA with Central Collaborative Server

The advantage of this model is that it is relatively efficient, and the disadvantage
is that it relies on the help of third-party agencies.

Mode 2 : All parties only share principal component parameters with each
other, and compute the results locally. The framework of this model is shown in
Figure 2. The step of this method is as follows:

– Step 1: Local training: All parties involved perform PCA calculations lo-
cally, first obtain the covariance matrix S, and based on this S, find the
corresponding eigenvector λi and eigenvalue vi, i ∈ {1, · · · k} and select the
largest k eigenvector and eigenvalue values;
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6 Y.M. Cheung and F. Yu

– Step 2: Parameters sharing: Intermediate results parameters (λi)k and (vi)k
of each participant are shared;

– Step 3: Local model updating: Each party obtains the extracted k final
data based on calculating the weight Wi which occupied by all parties and
updates locally.

Fig. 2. The framework of Fully decentralized (peer-to-peer) PCA learning

This model circumvents the need for third-party agencies to help participants
further reduce some external risks, especially for two-party scenarios. However,
the principal components of all parties need to be calculated independently, and
the computing efficiency will be greatly affected.

3.2 Algorithm

We propose a standardized representation of Federated-PCA learning. Suppose
we have a data matrix S = [f1|f2| · · · |fn], which contains n data parties, each
party has p variables (i.e. features, labels) and q samples (i.e. users), fi ∈ Xp×n,
where we assume that the number of samples q is the same and features Xp for
each party are different. Each party has its own database X = {x1,x2, · · · ,xp} ∈
Rq×p, in particular, for image dataset, xi ∈ Rm×m×q,where m is the pixel size.
The final extracted principal component result is

Zk = vT
k X =

q∑
i

vkxij , j = 1, 2 · · · p

where the vector (vi)k = (v1,v2 · · ·vq)k, xj = (x1j ,x2j , · · ·xqj), k is the number
of largest principal component representation selected. S is the covariance ma-
trix, Sq,i = XXT, i = 1, 2 · · ·N, j = 1, 2 · · · q, whereN is the number of parties.
Let (λi)k = (λ1k, λ2k · · ·λqk) be the selected eigenvalues by each party, we have:

Wi =
λi∑n
i=1 λi
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Federated-PCA on Vertical-Partitioned Data 7

V = W1V1 + W2V2 + · · ·WnVn

where Wi is the weight relationship between the eigenvector of each party and
the shared feature vector, and V is the shared projection feature vector.

To achieve Mode 1 and Mode 2 stated in Section 3.1, the corresponding
algorithms are given in Algorithm 1 and 2, respectively.

Algorithm 1: Federated-PCA learning with central collaborative server

1 ⇒ Run on party i server
2 Input: Data {x1,x2, · · · ,xp} ∈ Rq×p belongs to party i
3 Output: Principal eigenvalues λi and eigenvectors Vi

4 Let X = [x1,x2, · · · ,xp], x = 0
5 while each feature value xi, i = {1, 2 · · · p} do
6 Sq,i ← fq,i,
7 [λq,i,vq,i,k]← PCA(Sq,i),
8 Each party send (λq,i,vq,i)k to the central collaborative server.

9 end
10 ⇒ Run on central collaborative server
11 Input: Quantity of parties p ∈ {1, 2 · · ·N}
12 Output: Value of each Wi, n ∈ {1, 2 · · ·N} and shared feature vector V
13 Receive λi, Vi from n parties
14 for i = 1 to n do
15 Wi ← λi,n,
16 V←Merge(Wi,n,vi,n)
17 Broadcast shared feature vector V to all parties.

18 end
19 ⇒ Run on central collaborative server
20 Update eigenvector Vi ← V
21 return final results.
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8 Y.M. Cheung and F. Yu

Algorithm 2: Fully decentralized Federated-PCA learning

1 ⇒ Run on party i server
2 Input: Data {x1,x2, · · · ,xp} ∈ Rq×p belongs to party i, quantity of

parties n ∈ {1, 2 · · ·N}
3 Output: Final PCA learning results locally
4 Let X = [x1,x2, · · · ,xp], x = 0
5 while each feature value xi, i = {1, 2 · · · p} do
6 Sq,i ← fq,i,
7 [λq,i,vq,i,k]← PCA(Sq,i),
8 Send (λq,i,vq,i)k to other parties.
9 for n = 1 to N do

10 Wi ← λi,n,
11 V←Merge(Wi,n,vi,n)

12 end
13 Update eigenvector vi,n ← V

14 end
15 return final results.

4 Experiments

This section will empirically evaluate our proposed method.

4.1 Datasets

In our experiments, first, we used structured datasets from different domains.
We split these datasets differently based on feature-wise. We used a total of
10 datasets for comparative experimental testing. The information on ten data
sets are given in Table 1 and then we used image dataset Fashion-MNIST [22]
on Table 2. We resplit this data set according to different labels, divided into
training and test sets, and performed comparison experiments on the unsplit
data set and the split data set.

4.2 Comparative Results

In our setting, each party will obtain a set of eigenvectors and eigenvalues, we
choose the top k PCA that basically cover 90% of the explained variance ratios
and the choice of the number of principal components is determined by the party
with the largest number of principal components demand. In particular, after
performing PCA in a label-wise way on the Fashion-MNIST dataset [22], the
explained variance ratio almost covers 70% when k = 1.

We conducted a series of comparative experiments to perform split experi-
ments on the data set in various forms. In total, we set up 4 comparative experi-
mental groups: undivided-party, isolated PCA party, federated-PCA, federated-
avg PCA. By comparing with the four situations on the different split-datasets,
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Table 1. Information on ten data sets

Dataset Parties Features Samples

Boston 2 [8, 7] 506
3 [5, 4, 4] 506
4 [4, 3, 3, 3] 506

GlaucomaM 2 [15, 47] 196
Ozone 2 [5, 5] 203
Diabetes 2 [4, 4] 768
Seeds 2 [4, 3] 210
Vehicle 3 [7, 7, 4] 846
College 3 [4, 6, 7] 777
Musk1 2 [28, 27] 476
Musk 3 [55, 55, 56] 476
Vowel 2 [4, 4] 990
Glass 2 [4, 3] 214

Table 2. Labels and example images in Fashion-MNIST dataset.
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we finally get the results of each group of experiments. A snapshot of the prin-
cipal component eigenvector and the final results on the 10 datasets is shown in
Figure 3, 4 and 5.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The visualization of the comparative principal component eigenvector on
datasets (a)Boston Housing (b)Diabetes (c)Seeds (d)Vehicles (e)Vowels (f)Fashion-
MNIST

The range of bias rates between the final results of unsplit data and isolated
PCA final results, federated-PCA final results are summarized in Table 3.

Besides, the final experimental improvement of the College dataset is not
very obvious. Therefore, we reanalyzed the data set and checked the correlation
coefficients between different features in all datasets. We found that the cor-
relation coefficients of the first few features were too large (close to 1), so we
screened these features, preprocessed this dataset, and found that the results
were significantly improved after the experiment again. The comparison results
are given in Figure 6.

According to the experimental results, the proposed approach has signifi-
cantly helped improve the performance of the final results of almost all datasets.
Compared with the higher bias rate of normal results, the bias rate range of
Federated-PCA results is basically within 10% which proves the validity and
value of this method. Similarly, the image dataset is also performed very well.
Figure 4 clearly shows that the final image after Federated-PCA is almost the
same as the final image after unsplit label image data. To further verify that the
final label-wise image result extracted more features, we performed a logistic re-
gression classification test. In contrast to the settings where each party uses the
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The final results of comparative experiment on datasets (a)Boston Housing
(b)Diabetes (c) GlaucomaM (d)Musk (e)Ozone (f)Seeds

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The final results of comparative experiment on Fashion-MNIST datasets (a)The
isolated PCA projected results on label: Trouser (b)The isolated PCA projected re-
sults on label: Dress (c)The federated-PCA projected results on label: Trouser(d)The
federated-PCA projected results on label: Dress (e)The unsplit data projected results
on label: Trouser (f)The unsplit data projected results on label: Dress
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Table 3. Information of final result data deviation range on the ten datasets

Dataset Isolated PCA result
bias rate range

Federated-PCA
result bias rate range

Boston Housing (0.193%,39.521%) (0.013%,1.919%)
GlaucomaM (0.288%,31.065%) (0.006%,4.362%)
Ozone (0.161%,79.352%) (0.092%,8.189%)
Diabetes (2.277%,66.445%) (0.490%,4.743%)
Seeds (1.623%,30.039%) (2.564%,6.348%)
Vehicle (0.115%,19.814%) (0.064%,1.293%)
College (0.598%,44.097%) (0.985%,13.570%)
Musk (0.061%,6.590%) (0.042%,3.081%)
Vowel (0.651%,36.862%) (0.932%,1.879%)
Glass (0.817%,5.172%) (0.179%,0.495%)

Table 4. The classification accuracy of logistic regression on Fashion-MNIST dataset

Accuracy-full test Accuracy-pca test

Original dataset 0.768 1
Isolated PCA result 0.336 0.4
Federated-PCA result 0.724 1
Unsplit data PCA result 0.724 1

(a)

(b) (c)

Fig. 6. Comparison results on College dataset (a) Correlation coefficient results be-
tween different features (b)Before result (c)After result
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standard PCA method independently, Table 4 shows the classification accuracy
rate is greatly improved to approximately 100% after using the federated-PCA
method, which will help each party further perform local training tasks.

4.3 Concluding Remarks

In this paper, based on vertical data, our proposed Federated PCA can improve
the models of almost all parties. After comparative experiments, it is clear that
the model results between the federated parties and the unsplit-party are close.
Therefore, this method can help some data stakeholders to solve problems such
as large amounts of data and shared privacy. In reality, there is a non-linear
relationship between various data, and the standard PCA method is difficult
to find a good representative direction, especially for the image data, most of
them show a non-linear relationship. In order to further serve more complex
and more dimensional image datasets, such as medical datasets, as mentioned
in [11], obtaining better models by extracting features of different categories is
very valuable for medical centers and hospitals. For example, a patient may go
to one medical clinic for a pathology test and go to another for radiology picture
archiving. Under this situation, the features of one sample are partitioned over
two clinics regulated by HIPAA [2]. In the future, we will perform Federated-
KPCA learning on different kinds of non-linear data. As the privacy protection of
patient data is one of our first considerations, so our work will continue to share
the model parameter between parties based on the privacy protection system.

During the experiment, the effect is not obvious for some structured dataset-
s, we consider that the correlation between different features should also be the
main reason for the poor final result. Later experiments will add correlation
analysis in the data set preprocessing stage. Besides, considering a large number
of missing data values for a certain feature in the data set, we consider whether
we can directly delete this column first according to the eigenvalue calculation
method proposed in [6]. The original eigenvalues are calculated from the remain-
ing sub-matrices. This method may help us estimate the eigenvalues of missing
features based on the values of other existing features.

Fig. 7. The framework of the threat Federated-PCA model
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The future is accompanied by many challenges, such as external adversaries
are targeting at the central collaborative server and parties, the framework of
the threat model is shown in Figure 7. Another future work is to improve the
verification mechanism of each party, such as establishing a screening mechanism.
As a result, we will make sure each party is a safe and effective participant.
Besides, we can adjust the model parameters based on the results provided by
each party to adjust the model parameters to further improve the performance
of the model.
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tion: Distributed machine learning for on-device intelligence. arXiv preprint arX-
iv:1610.02527 (2016)

13. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, meth-
ods, and future directions. arXiv preprint arXiv:1908.07873 (2019)

14. Liu, Y., Chen, T., Yang, Q.: Secure federated transfer learning. arXiv preprint
arXiv:1812.03337 (2018)

15. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963 (2017)

16. Mishra, S.P., Sarkar, U., Taraphder, S., Datta, S., Swain, D.P., Saikhom, R., Pan-
da, S., Laishram, M.: Multivariate statistical data analysis-principal component
analysis (pca). Int J Liv Res. 2017c 7(5), 60–78 (2017)

17. Nock, R., Hardy, S., Henecka, W., Ivey-Law, H., Patrini, G., Smith, G., Thorne, B.:
Entity resolution and federated learning get a federated resolution. arXiv preprint
arXiv:1803.04035 (2018)

18. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression mod-
elling via distributed computation. In: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 677–682
(2004)



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#
ECCV

#

16 Y.M. Cheung and F. Yu

19. Thakkar, O., Andrew, G., McMahan, H.B.: Differentially private learning with
adaptive clipping. arXiv preprint arXiv:1905.03871 (2019)

20. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically par-
titioned data. In: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 639–644 (2002)

21. Wan, L., Ng, W.K., Han, S., Lee, V.C.: Privacy-preservation for gradient descent
methods. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 775–783 (2007)

22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

23. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10(2), 1–19 (2019)


