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Abstract

We provide a conceptual and theoretical analysis of nonsinusoidal antennas with emphasis on how electromagnetics and commu-

nication theories can be integrated to propose ideas for near-field (NF) communications systems utilizing future antennas. It is

shown through rigorous analysis that in nonsinusoidal antennas it is possible to derive and solve ordinary differential equations

giving specialized time-domain excitation signals that lead to exact cancellation of the near field at specific radiation spheres.

This opens the door to building NF communications systems with far-field-like communication receiver infrastructures utilized

if the receive antenna is placed at the special sphere where the NF component is made to vanish.
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Theory of Nonsinusoidal Small Antennas with Applications to
Near-Field Communication System Analysis and Design

Said Mikki*

Abstract—We provide a conceptual and theoretical analysis of nonsinusoidal antennas with emphasis
on how electromagnetics and communication theories can be integrated to propose ideas for near-field
(NF) communications systems utilizing future antennas. It is shown through rigours analysis that in
nonsinusoidal antennas it is possible to derive and solve ordinary differential equations giving specialized
time-domain excitation signals that lead to exact cancellation of the near field at specific radiation
spheres. This opens the door to building NF communications systems with far-field-like communication
receiver infrastructures utilized if the receive antenna is placed at the special sphere where the NF
component is made to vanish. We deploy exact current Green’s function analysis method and completely
avoid the use of any frequency-domain method. Complete expressions of the electromagnetic near- and
far- field contributions to all signals propagating from the source to the receiver are then derived and
their physical content discussed. The distortion effects and signal-to-noise rations due to the near-field
are also identified and derived theoretically. It is found that using this specialized pulse excitation
method in nonsinusoidal antennas, distortion caused by near-field components can be eliminated at
critical distances between the source and the receiver. Realization issues of this system are briefly
discussed together with some potential applications.

1. INTRODUCTION

We define a nonsinusoidal antenna (NSA) as a carrier-free structure emitting electromagnetic energy
by directly modulating the radiating current distribution over the antenna surface through specialized
current sources (drivers) connected the antenna input terminals. The single most important character
of these systems is that they are not conceptually and theoretically based on the powerful and
extremely popular analytical paradigm called frequency-domain analysis. Historically speaking, the
period following the end of Second World War was characterized by a remarkably persistent emphasis
on frequency-domain methods in spite of the fact that time-domain techniques were widely considered
in the first half of the twentieth century side in side with harmonic analysis techniques. Sinusoidal
antennas are radiating structures either excited by a single-tone signal or by (most likely in today’s
wireless applications) modulated signals with high-frequency sinusoidal carrier. When the relative
bandwith of the modulated signal is small (narrowband electromagnetic waves), the most dominant
situation encountered in applications to date, engineers often ignore the difference between a pure
sinusoidal signal and a modulated digital pulse. However, the two cases remain fundamentally different.
A pure sinusoidal antenna is inherently noncausal since the switching on time of the sinusoid is shifted to
the infinite past, raising potential problems when the antenna is utilized in digital communication links
with relatively large bandwith. On the other hand, a switched or pulsed carrier (modulated signal) is
essentially causal. Only when the baseband signal bandwidth B is very small compared with the carrier
frequency fc, i.e., when the condition

B � fc (1)

* The author can be reached at said.m.mikki@gmail.com.
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is satisfied, one may say that the two cases – the noncausal sinusoidal antenna and the causal pulsed
sinusoid – are quantitatively the same.

The situation has began to change in recent years with the rise of Ultra-Wideband (UWB) antennas,
where the emphasis shifted from modulated signals with relatively small fractional bandwidth to signals
with very wide spectral span [1]. However, that does not imply that the theory of nonsinusoidal antennas
is identical to UWB antennas. It seems that most research on UWB systems still utilizes Fourier
transform techniques, which is obvious from the fact that the very name of the system itself, ultra-
wide-band, implies frequency-domain concepts like bandwidth. Moreover, research strategies in UWB
antenna system analysis and design continue to think of the antenna as essentially a frequency-domain
device with “flattened” or extended operational spectral band where multiple single-frequency antenna
responses are stacked and concatenated next to each other in order to produce a total wide band
(preferably flat) frequency response extended over a very large bandwidth. NSAs appear to deviate from
this trend as their theories continue to intentionally and consistently avoid working in the frequency
domain altogether.

Fundamental criticism of the unquestioned use of Fourier transforms to infer conclusions in the
time domain from the frequency domain is not new, but was delivered in a sustained and powerful
form throughout the work of Harmuth, most notably [2], who wrote extensively on nonsinusoidal
electromagnetic systems (waveguides, radars, sensors, antennas). For example, analytical formulas for
nonsinusoidal travelling wave antennas were derived in [3]. A modified radar equation for nonsinusoidal
waves was formulated in [4]. A specialized type of electrically-small nonsinusoidal antennas, e.g., the
Large-Current Radiator (LCR), was proposed in [5], [6], [7] as a wideband carrier-free antenna alternative
to traditional sinusoidal resonant small antennas. LCRs were further developed in [8], [9], [10].

Since signals (waveforms capable of carrying new information) must be nonanalytic functions,
sinusoidal and periodic functions (standard examples of analytic functions) cannot carry information.
Therefore, a correct and rigorous unified treatment of electromagnetic communication systems as
information-processing systems requires solving Maxwell’s equations when the forcing term assumes
a basic nonanalytic shape like step functions. Solutions obtained early by Stratton using the Laplace
transform in the 1940s were shown to be not the only ones possible as alternative solutions using
different methods produced nonidentical answers [2]. This has lead to some controversy, especially
given the proposal by Harmuth to modify Maxwell’s equations by including magnetic current terms
that can be removed in the end by a limiting process [11], [12]. We note that for transient problems
where the excitation is applied at a finite time t = t0, the Laplace transform is often preferred to the
Fourier transform. But given the well known mathematical fact that the inverse Laplace transform is not
unique, as pointed out correctly in connection with the Harmuth proposal in [13], the use of frequency-
domain methods becomes limited in the very general case of arbitrary time-domain (nonanalytic) signal
transmission through electromagnetic infrastructure. Such criticism of the unrestricted deployment
of Fourier transform methods for solving electromagnetic wave propagation problems has lead to the
revival of the controversy about how best to define signal propagation speed (inadequacy of the group
velocity concept [14]). The climax, however, was the proposed correction of Maxwell’s equations given
in [11], [12] and further elaborated in [15].† Other writers have also voiced similar skepticism regarding
the unhinged use of frequency-domain methods to infer data and information about the time-domain
behaviour of electromagnetic waves, e.g., see the recent book [16] and the papers [17–20].

The recent interest in electromagnetic near fields has pushed researchers to investigate alternative
theoretical [21–23, 23, 24], experimental [21, 25, 26], and computational [21, 27–31] tools capable of
realizing and demonstrating new dimensions and devices in engineering electromagnetics, and hence
the motivation behind this work aiming at reexamining the usual views on antennas by exploiting
the subtle but often neglected relation between space and time in radiation problems. In this paper,
we follow Harmuth’s suggestion to work with nonsinusoidal antennas completely in the time domain,
avoiding as much as possible using frequency-domain concepts. However, at the same time we will
not adopt in the present work Harmuth’s latter proposal to modify Maxwell’s equations. Instead, we
continue to work with the standard set of Maxwell’s equations though expressed in space-time rather
than frequency-space. The main objectives of this work are the following. First, we would like to present

† In this paper, the controversial subject of Harmuth modification of Maxwell’s equation will not be taken up. All electromagnetic
derivations presented below will be based on the classical Maxwell’s equations.
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an illuminating example of how electromagnetic and communication theories can be merged together
in a single formalism, that of time-domain (nonsinusoidal) antennas where the purely communication
theoretic aspects of the problem, such as the design of the digital receiver, are developed with an eye
on the electromagnetic infrastructure of the wireless link. Second, we demonstrate this in a particular
case of Near-Field Communication (NFC) system where the receiving antenna is brought close to the
transmitting antenna near-field zone. We will show that it is possible to engineer the near-field structure
of the link by harnessing the full power of nonsinusoidal radiators as antennas with fully arbitrary time-
domain waveforms. This will lead to a specialized system where the near field can be forced by the
designer to completely vanish at a particular sphere (the causal sphere), the location where we intend
to place the receiving antenna. It turns out that the design of the digital receiver can be considerably
simplified and the distortion produced by near-field terms totally eliminated if we excite the Tx NSA
with a specialized decaying pulse that can be derived by solving an exact differential equation to be
derived below. If the digital link utilizes this special decaying pulse as the digital transmission main
pulse, then the resulting NFC system utilizing NSAs can be made distortion-free and only far-field
forms will be seen by the receiving antenna even at positions deep into the near-zone region of the Tx
NSA. This remarkable result turns out to be possible only when no sinusoidal carrier is used and hence
a unique feature of NSAs compared with traditional resonant antennas like Hertzian dipoles.

One of the main objectives of the present work is exploiting the NSA as a good illustrative example
demonstrating the power and importance of pursuing a unified approach to electromagnetics and
communications in the analysis and design of wireless networks. Although this paper is essentially
conceptual and intentionally developed at the very general level, it is interested in showing that
fundamental physical considerations established based on general sound mathematical principles, e.g.,
Green’s functions, can lead to considerable insight into how real-life communication systems work. By
focusing on a specific generic case, the near-field communication (NFC) link, we also provide a more
narrowed down version of our general conclusions regarding the importance to analyzing communication
systems in the context of an exact electromagnetic spacetime system theory [32], not traditional signal
processing. We stress here that no final realization or physical device implementation is given here.
The experimental and numerical investigation of nonsinusoidal antennas has already been reported
elsewhere; in fact, it has been under continuous investigation since the 1970s. Some literature survey of
he subject and further remarks and proposals about applications and realization are collected in Sec.
4. Readers interested in the device level aspect can consult some of the literature cited there. However,
since the present paper is interested in providing a general conceptual framework for several new ideas at
the intersection of electromagnetic and communication theories, we have opted for working with exactly
solvable nonsinusoidal antenna model, where Maxwell’s equations are solved for the electromagnetic
fields radiated by a small antenna. All results obtained below in Sec. 2 and 3 are exact. Departure
from the exact theory are provisionally discussed in Sec. 4 where the need for numerical optimization
and possibly the use of full-wave simulation is anticipated in conjunction of future work on the subject.

2. NONSINUSOIDAL ANTENNA-BASED NEAR-FIELD COMMUNICATION LINK
ANALYSIS AND DESIGN

2.1. Antenna Transmitting Mode Analysis

Consider an electric dipole antenna with length l oriented along the l̂ direction. There exists time-
dependent charges q(t) and −q(t) located at the two ends of the dipole, which is further assumed to
be short such that these charges do not depend on the position on each arm. In this way, an idealized
electric dipole can be realized as short thin-wire antenna (thin strip, thin cylinder, etc). The dipole
moment p(t) is defined by [33]

p(t) = q(t)l̂, (2)

and is related to the current i(t) through

dp(t)

dt
= i(t) = i(t)l̂. (3)
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Since the dipole is assumed to be small, the current distribution is also independent of position, and
the quantity i(t) measured in A represents an average over the small sectional area of the dipole. The
current will radiate electric and magnetic fields E(r, t) and H(r, t) throughout the exterior region Vex

of the antenna. These can be computed in terms of the vector and scalar potentials A(r, t) and ϕ(r, t)
by means of the following Lorentz-gauge formulas [34], [35]

E(r, t) = −∂A(r, t)

∂t
−∇ϕ(r, t), H(r, t) = (c/Z0)∇×A(r, t), (4)

where c = 1/
√
µ0ε0 is the vacuum speed of light and Z0 := µ0/ε0 is the vacuum wave impedance.‡

Calculations of the scalar and vector potentials can be considerably simplified if we use the
assumptions

l/r � 1,
∂

∂r
i(r, t) = 0. (5)

Here, r refers to a generic near- or far-field observation position. The relation l/r � 1 means that we
observe the field only at locations sufficiently far away from the small dipole such that the ratio l/r
can be considered very small. The physical smallness of the dipole allows us to bring r close to the
antenna while still satisfying this condition. The exterior region Vex is defined as the region surrounding
the NSA where (5) is satisfied. Moreover, we further assume that the current is uniform along the
antenna to mimic the situation with infinitesimal dipoles. This considerably simplifies the analysis
to follow although it can be relaxed in future work.§ The conditions (5) were designed to capture for
NSAs what is usually considered “electrically small antennas” (ESA) in the frequency-domain literature.
We observe that for nonsinusoidal antennas, it is not possible to directly apply the frequency-domain
concepts familiar in conventional antenna theory. In particular, the traditional definition of small
antennas as electrically small antennas satisfying d/λ� 1 cannot be invoked in our case since there is
no clear definition of wavelength in arbitrary time-varying (nonsinusoidal) antennas. For that reason,

we will deploy the condition (5) as our main definition of small antennas in this paper.‖ From the
conditions (5) it can be shown that [7], [34]

A(r, t) =
Z0i(t− r/c)

4πcr
l, (6)

where l = ll̂. Here, as in every other expression involving the current i or charge q, the retarded time tr

tr := t− r/c (7)

is inserted to account for causality. The scalar potential can also be computed and is readily found to
be

ϕ(r, t) =
Z0c

4π

(
1

r3

∫
dtri(tr) +

1

cr2
i(tr)

)
l · r. (8)

We reemphasize here that both (6) and (8) are approximation based on neglecting terms of order
O(l/r)2 and higher.¶ From these expressions for the electromagnetic potentials A and ϕ, the electric
and magnetic fields can be computed by means of (6) and (8) to yield

E(r, t) =
Z0l

4πc

{
1

r

di(tr)

dt
r̂ × r̂ × l̂ +

(
c

r2
i(tr) +

c2

r3

∫
dtri(tr)

)[
r̂ × r̂ × l̂ + 2

(
l̂ · r̂
)
r̂
]}

, (9)

H(r, t) =
l

4πc

(
1

r

di(tr)

dt
+

c

r2
i(tr)

)
l̂ × r̂. (10)

‡ As usual, µ0 and ε0 stand for the standard magnetic permeability and electric permitivity of free space, respectively.
§ In practice, very short wires or longer wires with end loadings can realize such uniform current required in our definition of small
NSA given by (5).
‖ Similarly, as we will see later, the definition of the near field will not use the concept of the center wavelength.
¶ In fact, terms of order O(l/r) already cancel out and do not contribute to A, see [7].
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The terms involving (1/r)dt/dt in (9) and (10) are the familiar far-field components of the electric
dipole radiation fields, which have been studied extensively in electrodynamics and antenna engineering
[33], [36]. On the other hand, the electric field also involves additional terms proportional to 1/r2

and 1/r3, which are responsible for the near-field part. For the magnetic field, however, only an
1/r2-term is involved. In traditional sinusoidal antenna theory, the near field zone is delimited by
measuring the electric distance (normalized distance with respect to the center frequency wavelength).
In nonsinusoidal antennas, this is not straightforward because we would like to avoid the use of any
specific center frequency in the antenna analysis and design. Therefore, in this paper, we define the near
field of the antenna as the part containing all terms involving radial dependence of the order 1/r2 and

higher.+ The terms containing r̂×r̂× l̂ in (9) are transverse field components, while those with (l̂ ·r̂)r̂ are
longitudinal fields. However, the magnetic field in (10) appears to contain only transverse components.∗

Furthermore, we note that the time dependence of the electromagnetic fields is very different in the
near- and far-field terms. For both the electric and magnetic fields, the far-field terms are proportional
to the first-order time derivative of the retarded current, a very well known result. On the other hand,
near-field components, i.e., all terms involving 1/r2 and 1/r3, have essentially different functional time
variations. This observation is crucial for near-field communications. In fact, it is clear that because
of this nonuniformity in the temporal contents of the near- and far-field terms, distortion is bound to
happen in near-field communication systems unless one tries to avoid receiving the near-field part. In
Sec. 3, we impose a specialized temporal dependence on the driving current i(t) in order to completely
cancel the near-field components of the electric field, which is expected to reduce the complexity of the
NFC receiver by eliminating distortion.]

2.2. Antenna Receiving Mode Analysis

In the receiver part of the system, we need to estimate the Rx signal based on the impinging field
generated above. For simplicity, in this work we assume only perfectly electric conducting (PEC)
antennas, which implies that only the impinging electric field is relevant for the determination of the Rx
signal (the magnetic field does not interact with PEC antennas.) The Rx antenna has a surface Srx and
is completely described by its spacetime antenna current Green’s function (ACGF) F̄rx (rp, r

′; t− t′),
with rp the Rx port location at which the Rx current signal J (rp, t) will be collected. It has been
recently shown that [32]

J (rp, t) =

∫
Srx

∫ t−|rp−r′|/c

−∞
ds′dt′ F̄rx

(
rp, r

′; t− t′
)
·Ein

(
r′, t′

)
. (11)

Here, Ein is the incident field, which will be taken as that computed by (9). The Antenna Current
Green’s Function (ACGF) F̄rx (r, r′; t− t′) was introduced in the frequency domain, then expanded
into the time domain for wireless communication applications in [32, 39–46]. It is a 2-dimensional
tensor (dyad) defined on the antenna surface Srx and provides an exact expression for the current
response valid for arbitrary spacetime illumination fields. The main advantage of using the ACGF
F̄rx (rp, r

′; t− t′) is that it provides a signal-processing-like rigorous electromagnetic response function
suitable for wireless communications research. Since electromagnetic fields are the main carriers of
information and energy but fields are spacetime functions, not signals, the ACGF provides a detailed
explication of the internal space-time coupling mechanism needed in order to unlock new potentials of
electromagnetic communication systems [46–48]. This Green’s function also needs to be obtained only
once (via special computation or measurement); afterward, it can be used repeatedly in the convolution-
type integral (11) to estimate the Rx signal without the need to recompute the grid or remesh via
full-wave methods like FEM, MoM, FDTD, etc.

+ This approach is often used in optical near field theories and nano-optics, e.g., see [37] and [38].
∗ It is sometimes claimed that the signature of near fields is the presence of such longitudinal components in the near zone. However,
in this paper, as above, we don’t distinguish transverse and longitudinal components in our near/far field classification. In particular,
two 1/r2 and 1/r3 components in (9) are transverse and these are taken here as essential ingredients in the composition of the near
field structure.
] The harmful impact of near-field terms causing distortion was already anticipated theoretically and experimentally in sensor
applications. For example, see [6].
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We next restrict our attention to the special but important case when the Rx antenna is a small
dipole oriented along the direction û and centered at rp. In that case, we can approximate the ACGF
by

Frx(rp, r; t− t′) ' Frx(rp, rp; t− t′), r ∈ Srx. (12)

This approximation should be understood in the sense of generalized function theory [49] since the
ACGF is not an ordinary function but a distribution [42], [46]. In a nutshell, (12) says that

∫
ds′

integrals containing the Rx ACGF Frx(rp, r; t− t′) can be approximated by evaluating the integrand at
r′ = rp, the location of the center of the small NSA. From (12) and (11), it follows that

J(rp, t) =

∫ t

t0

dt′ Frx(rp, rp; t− t′) ·Ein(r′, t′), (13)

where to enforce causality we assume the electric field is applied at the Rx antenna location rp exactly
at time t0. It is interesting to note that the causal component of the Rx ACGF, mainly the upper end
of the time integral in (11), vanishes under the small NSA condition (12). However, mathematically
speaking, (13) does not necessarily follow from (12) because the space and time integrals in (11) cannot
be exchanged due to the causality restriction, i.e., the dependence of the upper end of the time integral
on location on the antenna [32]. Still, one would intuitively expect true small NSAs to obey relations
like (13) since the Rx probe is very small compared with field dimensions. Consequently, we will define
small NSA as those antennas satisfying the two conditions (12) and (13). Again, and similar to the Tx
NSA definition encapsulated by (5), the smallness of the NSA devices are assessed with only spacetime
concepts, while frequency-domain quantities like wavelength are avoided.

For dipole Rx NSAs, the expression (13) can be significantly simplified. If the Rx small dipole
antenna is oriented along the unit vector α̂, then the RX ACGF can be expanded as [43]

Frx(rp, rp; t− t′) = α̂α̂F (rp; t− t′), (14)

where the scalar function F gives the electromagnetic responsitivity of the antenna in space and time.
The dyadic product α̂α̂ accounts for the polarization structure of the field-antenna interaction process,
with detailed calculus of use explicated in [46]. Substituting (14) into (13) gives the following expression
for the Rx signal in the NSA NFC system

J(rp, t) = α̂

∫ t

t0

dt′ F (rp; t− t′)Ein,t(rp, t
′), (15)

where
Ein,t(r

′, t′) := α̂ ·Ein(r′, t′) (16)

is the tangential component of the incident electric field. If we take the Fourier transform of (15) the
following simple relation is obtained

J(rp;ω) = α̂ F (rp;ω)Ein,t(rp;ω) (17)

where the frequency-domain functions are the Fourier transforms of the corresponding spacetime
functions. The relation (17) is the very well known expression of the current induced on a small
dipole in the frequency domain. It is derived here rigorously from the more general causal integral (11).

In order to compute the time-domain received signal, we re-express (15) in terms of the convolution
operation ∗

J(rp, t) = α̂ F (rp; t) ∗ Ein,t(rp, t). (18)

Using the radiated field expression (9) in (18), we arrive at

J(rp, t) = JFF(rp, t) + JNF(rp, t), (19)

where the far- and near-field contributions to the Rx current are denoted by JFF(rp, t) and JNF(rp, t),
respectively, and are given by

JFF(rp, t) := α̂
Z0l

4πc
α̂ ·
(
r̂ × r̂ × l̂

) 1

r
F (rp; t) ∗

di(tr)

dt
, (20)
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JNF(rp, t) := α̂
Z0l

4πc

{[
r̂ × r̂ × l̂ + 2

(
l̂ · r̂
)
r̂
]
· α̂
}
F (rp; t) ∗

(
c

r2
i(tr) +

c2

r3

∫
dtr i(tr)

)
. (21)

The relations (19), (20), and (21) provide a complete and exact mathematical representation of the time-
domain waveforms captured by a Rx NSA placed at position rp when the fields produced by the Tx
NSA are intercepted. It is clear that in NFC systems, and in contrast to traditional RF communications
done in the far field, the Rx current is composed of two parts, one solely due to the far field and is
proportional to 1/r, while the other is the NF contribution and is scaled by factors proportional to 1/r2

and 1/r3. These expressions will be further analyzed next in order to develop an efficient and simple
digital receiver architecture suitable for NFC links based on electromagnetic theory.

2.3. Digital Receiver Design

The most striking feature of the detailed Rx signal expressions derived above is that the FF contribution
is simply the convolution of the small dipole antenna impulse response F (rp, t) with the first-order time

derivative of the transmitted current i(t).†† This is well known and has been investigated extensively in
the antenna community. However, the NF expression (21) is very different from the far-field formula (21).
Indeed, we may notice that in (21) the time variation of the NF Rx signal JNF(t) does not correspond
to any simple function of the transmitted current i(t). Instead, JNF(t) possesses a complicated time-
domain form composed of sum of terms involving directly the transmitted current i(t) and its time
integral. Moreover, the former (direct term) is scaled by 1/r2 while the latter (integrated term) is
proportional to 1/r3. Now, in the far zone, one may just ignore the NF current since only the 1/r
survives in the infinite sphere, that is

lim
rp→∞

|JNF(rp, t)|
|JFF(rp, t)|

= 0 (22)

But in the intermediate NF zones of interest in modern NFC systems the situation is altogether different.
If the Rx antenna is very close to the Tx, as in nanoscale communications or some NF connectivity
applications that are becoming popular nowadays (e.g., device-to-device, peer-to-peer, machine-to-
machine, backhaul networks, etc), then the 1/r3 terms may dominate the contribution to the Rx signal.
In such case, the FF signal involving di/dt will be contaminated by another term involving

∫
dt i(t).

More problematic is that as the Rx gets a bit farther from the Tx, then the 1/r2-term contribution,
which brings i(t) directly into the total Rx current, may dominate the Rx signal as well. In general, the
three time domain currents i(t), di/dt, and

∫
dt i(t) might be present, which complicates considerably

the design of the optimum Rx. Note that even though it is possible in principle to design a circuit that
can extract i(t) from the total Rx signal (19), to do so one must effectively solve a differential equation
at the receiver. The main difficulty in this case is that the coefficients of the three terms i(t), di/dt,
and

∫
dt i(t) depend on the position of the Rx.

The common practice in wireless communications research has been to design the digital receiver
based on far-field scenarios since this provides the most general case and can be adapted later to
NFC links [50]. If this strategy is adopted, terms containing i(t) and

∫
dt i(t), which originate from

the impinging near-field components, are bound to produce observable distortion in the Rx signal.
Distortion, a deterministic effect, is another factor besides noise that degrades the performance of
digital communication links and contributes toward the increase of the probability of error in the digital
link [51]. Note that in recent 4G and 5G systems, the wide deployment of massive MIMO [52, 53]
technologies and increasingly denser networks have made the importance of near-field contributions
more significant than before [54]. In Sec. 3, we will remove the distortion caused by the NF current
term (21) using NSAs by finding a specialized current pulse to use in for digital data transmission.

Putting aside for a while the relative contribution of each of the three waveforms i(t), di/dt, and∫
dt i(t), we note further from (19), (20), (21) that each such time signal is filtered through the receiving

antenna impulse response F (rp, t). Such filtration will produce a distortion since it contributes to the
broadening of the Rx signal pulse [55], [56], [57]. More specifically, the generic form of the Rx signal

††But this current is evaluated at the retarded time tr.
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irx(t), which is defined by
irx(t) := α̂ · J(rp, t), (23)

turns out to be given by a general expression of the form

irx(t) =
a1

r
F (t) ∗ di(tr)

dt︸ ︷︷ ︸
Far-field signal

+
a2

r2
F (t) ∗ i(tr) +

a3

r3
F (t) ∗

∫
dtr i(tr)︸ ︷︷ ︸

Near-field induced distortion

+ n(t)︸︷︷︸
Noise

, (24)

where for simplicity the small antenna impulse response F (rp; t) was written as F (t), i.e., without rp
provided the location of the Rx port is clear from the context. All remaining factors in (19), (20), (21)
were collected into the coefficients a1, a2, a3 given by

a1 :=
Z0l

4πc
α̂ ·
(
r̂ × r̂ × l̂

)
, a2 :=

Z0l

4πc

{[
r̂ × r̂ × l̂ + 2

(
l̂ · r̂
)
r̂
]
· α̂
}
, a3 := ca2. (25)

A wide-sense stationary zero-mean thermal noise process n(t) was also inserted into (24) in order to
account for random fluctuations in the environment and the receiver noise [50,51].

Next, in order to remove the effect of the antenna filtration, an equalizer is introduced. Formally,
the equalizer is an LTI filter that has a response function inverse to that of the antenna F (t) [51]. Let
the impulse response of the equalizer be Feq(t). We then require that

F (t) ∗ Feq(t) = δ(t), (26)

where δ(t) is the Dirac delta function. The design of an equalizer circuit by means of the ideal condition
(26) is not always practically feasible, and for various reasons. First, if we examine the frequency-domain
version of (26), the following must be satisfied

Feq(ω) = F−1

{
1

F (ω)

}
, (27)

where F−1 is the inverse of the Fourier transform operator F , while F (ω) and Feq(ω) are the Fourier
transforms of F (t) and Feq(t), respectively. It can be inferred from (27) that when the forward gain F (ω)
is very small, the inverse filter gain may become very large, leading to instability. Other considerations
include the possibility that by striving to satisfy (26), the inverse filter may become noncausal. For
these reasons, in practice digital equalizers like Zero-Forcing (ZF) and MMSE equalizers are often used
to remove the channel effect [51, 52]. This, however, is most often applied to the distortion caused
by multipath channels [50, 53]. In our basic NFC system, multipath fading is ignored for simplicity.
Instead, distortion is here caused mainly by the electromagnetic response of the antenna device itself,
as captured by the impulse response F (t). Recently, the idea of using digital equalization techniques
like OFDM to solve this problem were proposed and demonstrated that the digital transmission data
rate supported by a SISO line-of-sight deploying half-wavelength dipole antennas could be increased by
up to three times the data rate supported by the matching bandwidth [55], [57], [58]. For our purposes
in this paper the exact details of the equalizer design are irrelevant to the main subject (and can always
be dealt with in a more specialized papers elsewhere), so we assume that an ideal equalizer has been
constructed and applied to the Rx signal irx(t) (24), leading to the equalized signal

ieq(t) =
a1

r

di(tr)

dt︸ ︷︷ ︸
Far-field signal

+
a2

r2
i(tr) +

a3

r3

∫
dtri(tr) + F eq(t) ∗ n(t)︸ ︷︷ ︸

Distortion (near-field contribution) + thermal noise

, (28)

where both filtered noise and the NF terms are collected together. Finally, by passing the equalized
signal through an integrator, the following signal is produced

ieq(t) =
a1

r
i(tr)︸ ︷︷ ︸

Desired signal

+
a2

r2

∫
dtr i(tr) +

a3

r3

∫
dtr

[∫
dtri(tr)

]
+

∫
dtr F eq(t) ∗ n(t)︸ ︷︷ ︸

Undesired signal: Distortion (NF contribution) + thermal noise

. (29)
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In other words and to express the same result using standard digital communications literature, the
total current sampled by the receiver is given by

ieq(t) = x(t) + d(t) + w(t), (30)

where

x(t) :=
a1

r
i(tr), d(t) :=

a2

r2

∫
dtri(tr) +

a3

r3

∫
dtr

[∫
dtri(tr)

]
, w(t) :=

∫
dtr F eq(t) ∗ n(t), (31)

are the desired signals, the NF-induced distortion signal, and filtered noise signals, respectively. Because
we work with physical spacetime fields only in this paper (causal and finite-energy signals), the
traditional signal energy

Ex :=

∫ ∞
−∞

dtx(t)2, (32)

can be used instead of power to estimate the “size” of a given deterministic waveform. Since the
distortion signal d(t) is also deterministic, its energy can very well be estimated by the identical formula

Ed :=

∫ ∞
−∞

dtd(t)2. (33)

On the other hand, the noise “size” can be estimated by

Ew := E
{
w(t)2

}
, (34)

where E is the expected value operator [51]. Based on these definitions, the Signal-Noise-Ratio (SNR)
can be computed via

SNR :=
Ex
En
, (35)

while the Signal-to-Noise-and-Interference (SNIR) is found by means of

SNIR :=
Ex

Ed + Ew
. (36)

Here, by ‘interference’ we refer to the distortion signal d(t) that interferes with the far-field (desired)
signal x(t). It is plain now that due to the presence of NF components in NFC systems and even modern
day massive MIMO environments, the energy Ed may become significant compared with Ew, leading to

SNIR ≤ SNR. (37)

In far-field communications or when NF effects are negligible, we have SNIR ≈ SNR.

3. ENGINEERING THE NEAR-FIELD STRUCTURE USING SPECIALIZED
TIME-DOMAIN EXCITATION

Our goal now is to show that NSAs provide a new engineering dimension not present in traditional
sinusoidal antennas, a novel potential opened up by the ability to fully control the structure of the
radiated near fields through careful manipulations of the time-waveform functions applied at the antenna
input terminals. Our starting point will be the observation arrived at in Sec. 2 where the NF signal
d(t) appearing in the total Rx signal (30) presents the main source of possible distortion in NFC links.
By inspecting the mathematical expression of d(t) given in (31), we notice that the functional time
variations of the excitaion current i(t) can make d(t) vanish. That is, we set

d(t) =
a2

r2

∫
dtri(tr) +

a3

r3

∫
dtr

[∫
dtri(tr)

]
= 0. (38)
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Differentiating twice, we arrive at the following first-order differential equation

a2

r2

di(tr)

dtr
+
a3

r3
i(tr) = 0, (39)

which can be rewritten in the standard form

di(t)

dt
+

a3

a2r
i(t) = 0. (40)

The relation (40) is the main differential equation that must be satisfied by the current exciting the
small NSA if the near-field signal d(t) is to vanish. It is clearly dependent on the distance from NSA
r at which the near field is required to nullify. Since we are intending to analyze a NFC system where
the Rx antenna is set at a fixed distance from the Tx, we may take r appearing in (40) as constant,
denoted by rc in what follows.

The solution of (40) can be readily found and is simply the exponential function

i(t) = i0e
−t/τ , (41)

where i0 and τ are real constants. The value of i0 is determined by the NSA source while the time
constant τ is fixed to

τ :=
−a2rs
a3

, (42)

which is a function of the Rx distance rc. From (25), we may determine

τ =
rs
c
. (43)

The relation (43) is interesting and suggests that a very special current can produce zero near-field at
the sphere r = rs, i.e., that case when the NSA is excited by an exponentially decaying signal with the
form (41). It is easy to see that no sinusoidal-like excitation satisfies the differential equation above and
hence the cancellation of the NF at the sphere r = rs is a unique feature enjoyed only by NSAs.

Let us explore some consequences of exciting the NSA with a current source having the form given
in (41). It is clear that by the construction (38), the total radiated field (9) when evaluated at r = rs
will yield

E(rs, t) =
Z0l

4πc

{
1

rs

di(tr)

dt
r̂ × r̂ × l̂

}
, (44)

which is composed of far field only. By inserting the special current (41) into (44), the following
expression is obtained

E(rs, t) =
−Z0l

4πr2
s

(
r̂ × r̂ × l̂

)
e−t/τ . (45)

In other words, even deep into the near-field zone, an NSA excited by a decaying current pulse with time
constant equal to the time needed to reach the sphere r = rs in the NF zone will produce zero near field
on that sphere. Note that this remarkable result is valid only at the sphere r = rs; in fact, immediately
before and after this sphere, a near-field component will quickly build up.

Consider next the magnetic field with its general expression given in (10). At the sphere r = rs,
the total magnetic field is

H(rs, t) =
l

4πc

(
1

rs

di(tr)

dt
+

c

r2
s

i(tr)

)
l̂ × r̂. (46)

If we substitute (41) into the last relation, it turns out that the magnetic field is identically zero, i.e.,
we have

H(rs, t) = 0. (47)

In other words, while only the near -field component of E(rs, t) is zero on the sphere r = rs, it turns
out that in that special case the total (i.e., NF + FF components) magnetic field vanishes on the same
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sphere. One immediate corollary to (47) is that the instantaneous Poynting vector S(r, t) is also zero
on the sphere r = rs, that is,

S(rs, t) := E(rs, t)×H(rs, t) = 0. (48)

Again we note that this remarkable zeroing out of the Poynting flow occurs only at a single sphere. Just
before and after r = rs, the Poynting flow is nonzero (although it changes sign when crossing the critical
sphere). This zeroing out of Poynting flow appears to have been first observed by Schantz in [1,59,60],
though from a different scope and perspective of the present work.

It is important to note that the Rx antenna can still capture EM energy even if the Poynting flow is
critically zero at the reception sphere r = rs. The reason is that the induced current on the Rx antenna
depends on the strength of the dynamic electric field (the magnetic field does not interact with PEC
objects.) It can be shown using the exact ACGF formula (11) that the power delivered to the load in
the Rx system is proportional to the correlation function of the incident electric field, not the Poynting
vector [61]. This is also clear from the physics of PEC antennas in the receive mode since currents are
introduced by direct force exerted by the electric field on the conduction band electrons via Lorentz
force law (the Poynting vector does not appear in this law) [33].

4. GENERAL REMARKS ON REALIZATION AND APPLICATIONS OF
NONSINUSOIDAL ANTENNAS

Mainstream antennas tend to rely on excitation methods where a transmission line is used to convey the
generator signal to the antenna [36]. However, NSAs can operate by directly connecting the generator
to the antenna terminals if special circuits (driver circuitry with active switches) are carefully designed
to orchestrate the energy exchange cycles taking place between the antenna and the generator (driver)
system. Not much research has been conducted on the experimental realization of nonsinusoidal antenna
since frequency-domain devices now dominate the literature. However, there are a few exceptions (to the
best of our knowledge.) Various circuit designs for the excitation of NSAs where given in [62–66]. More
recently, it was shown numerically and experimentally that the design of highly specialized time-domain
excitation circuits in ESAs can lead to antennas radiating data rates well above what is expected from the
narrow-band frequency-domain matching bandwidth of resonant antennas like ESAs [67], [68], [69], [70].
This appears to be essentially the insight or goal that motivated Harmuth and his collaborators originally
to take up the subject in the 1970s and 1980s since they were primarily interested in applications to
digital communication, radar, and sensor systems. That is, the more recent research in addition to the
ideas presented in this paper strongly suggest that the subject of nonsinusoidal antennas is interesting
and worth investigating.

Based on the overall theory presented in this paper, we propose building complete near-field digital
communication systems using NSAs as transmitters and receivers. In Fig. 1, we provide an overall
sketch of the architecture. As mentioned above, the NSA system consists of jointly designed driver
circuit and the radiator unit. The goal is to produce the specialized pulse current i(t) that will be able
to attain zero near-field at the distance R = cτ . In practice, the hardware design aspects (which are
not covered in this paper) requires synchronising the energy exchange cycles between the radiator and
the driver as per some of the published implementation literature cited above. From the fundamental
electromagnetic and communication viewpoint (the main subject of this paper), we have stressed the
importance of placing the small receive prove in such a position such that the total near field is zero,
leading to considerable simplification in the equalizer design in the receiver side since distortion caused
by near-field components will not be present and traditional, off-the-shelf equalizers based on only far-
field propagation assumption can still be used. The NFC system will send a series of basic pulses i(t),
i.e., the transmitted signal itx(t) is given by

itx(t) =
∑
n

i(t− nT ), (49)

where T = 1/R, where R is the data rate in symbol per second. In other words, each digital symbol
will be encoded by a specialized decaying pulse of idealized form (50) or the practical approximation
(52) but assuming T > τ . Intersymbol interference (ISI), which is bound to happen in distorting links,
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will be minimized when the Rx NSA is placed at the exact zero-NF sphere r = rs, leading to superior
performance. The detailed analysis of such systems with efficient modulation schemes such as QAM-
OFDM [51,53] requires estimating the spectral efficiency and is beyond the scope of this paper but will
be addressed in the future.

Driver
Circuit

i(t)

R = cτ
vo(t)

Digital Reciever
(equalizer, etc)

Nonsinusoidal Antenna system

Transmitter Receiver

Zero NF sphere

Radiator

Figure 1: A general near-field communication system utilizing a nonsinusoidal antenna (NSA)
transmitter. The NSA itself is composed of a driver circuit and a radiator. In contrast to mainstream
sinusoidal antennas, the driver circuit, which produces the specialized nonsinusoidal signal i(t), must
be designed jointly with the radiator itself. The Receiver is composed of a receive probe connected to
digital reeciever that includes an equalizer and other signal processing blocks.

The decaying current excitation in (41), however, is not fully physically realizable because of the
need to consider what happens before switching on the current source. Since the antenna must be
charged to the level where the current will start at the maximum value i0 at t = 0, one must explicitly
include in the analysis radiation caused by the rising edge of the excitation current i(t), t < 0. Since
this part of the rising current does not satisfy the main differential equation (40), residual near-field
radiation is expected to be present at the NFC sphere r = rs. However, once the current begins to decay
according to (41), the EM field settles back to the predictions made in (44) and (47). For example, let
us assume that the effective excitation is

i(t) =

{
i0e
−t/τ , t ≥ 0,

0, otherwise.
(50)

In this case, after inserting such current into the radiation formulas (9) and (10), a Dirac delta component
will be generated, producing very high values near the considerably lower levels of the radiation produced
by the falling edge of the excitation pulse. To avoid this problem, we can introduce especially engineered
pulses with tailored rising edges designed to minimize specific effects (This method is commonly used
in UWB antenna engineering [1].) As a very basic and simple choice, consider the case when we derive
the NSA such that the charge follows the form

q(t) =
1

exp(t/τ) + exp(−t/σ)
, (51)

where it is assumed that σ � τ . For t > 0, the decaying exponential exp(−t/σ) can be neglected in
comparison to the growing exp(t/τ), so the denominator is essentially dominated by the latter, making
(51) approximately equal to exp(−t/τ). On the other hand, for t < 0, the condition σ � τ and the fact
that the role of growing and decaying exponentials are reserved makes the increasing function exp(−t/σ)
dominant in the denominator, creating then a rising edge since q(t) becomes approximately equal to



Mikki 13

(a) Charge pulse (b) Current pulse

Figure 2: The charge and current pulses based on the approximating finite-rise time source functions
(51) and (52).

exp(t/σ). Next, the corresponding current is computed as

i(t) =
dq(t)

dt
=
−(1/τ) exp(t/τ) + (1/σ) exp(−t/σ)

[exp(t/τ) + exp(−t/σ)]2
. (52)

Without the need for any new analysis, we note that since q(t) as given by (51) behaves like a decaying
exponential for t > 0 and a growing exponential when t < 0, then so will be its derivative, with the only
(unimportant) difference being a sign change suffered by the amplitudes of the respective exponentials.
Finally, since both (51) and (52) are smooth (infinitely differentiable), we conclude that the current
excitation (52) provides a practical smooth driving source with good approximation of the fundamental
solution (decaying current) obtained in (41), e.g., see Figs. 2(a) and 2(b).

Unfortunately, if the modified expressions (51) and (52) are used instead of the exact solution (50),
no entire-time exact cancellation of the near field can be attained at a fixed radius. Instead, a new
location for zero near field can be found but it works only for fixed time instants. In fact, it is easy to
see that the receiver in this case must be located at a time-varying position given by the distance r′s,
where

r′s = τmc, τm =
exp(t/τ) + exp(−t/σ)

(1/τ) exp(t/τ) + (1/σ) exp(−t/σ)
(53)

which can be readily verified by noting that (53) forces the near-field radiation Enf(r, t) to be zero,
where the following expression (which can be obtained from (9))

Enf(r, t) =
Z0l

4πc

(
c

r2
i(tr) +

c2

r3
q(t)

)
[r̂ × r̂ × l̂ + 2(l̂ · r̂)r̂] (54)

is used to prove this theorem. The near-field pulse at the critical distance is shown in Fig. 3(a) where
the distance r in (54) is given by the exact expression (43) instead of the modified distance (53). It is
clear that the near field fails to fully cancel at all time instants as predicted above. In Fig. 3(b) we
show the time variations of the distance between the Tx and Rx in the proposed NF communication
system. As we can see, ideally one must change the location of the receiver with time to ensure the near
field is always zero, i.e., for all time instants. On the other hand, one may fix the Rx probe but in this
case cancellation of the near field is ensured at only one time instant. This is not very bad given that
in most modern digital communications only the sample of the received signal at a specific switching
time is taken by the digital receiver. Therefore, it appears that a joint planning of the digital receiver
and the available electromagnetic parameters like position and timing of the receiving end is called for.
Consequently, optimization is needed when working with practical systems. In our case, the values of τ
and σ must be chosen very carefully, depending on where and how the receive antenna will be installed.
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(a) Near-field pulse at r = rs (normalized to Z0l/(4πc).) (b) Modified receiver time distance τm.

Figure 3: Analysis of the impact of using non-exact pulse excitation in the NF communication link. (a)

The broadside (l̂ · r̂ = 0) near field amplitude computed using the practical pulse excitation in Figs.
2(a) and 2(b) is computed by means of the exact field expression (54) with the ideal expression rs = cτ
inserted for the position r. Here, the amplitude is normalized with respect to the peak value Z0l/(4πc).
(b) The corrected time distance between the Tx and Rx in order to cancel the near field. If the Rx is
placed at a sphere with time-varying radius given by r′s = cτm, the near field is always zero.

Such optimization requires careful and intensive numerical approach that is outside the scope of the
present paper, which is mainly concerned with the fundamental ideas and their proof of concept.

Another promising application of small NSAs is in the field of nanoscale optical communications.
Since our engineered NSA excited by a decaying pulse can communicate well at short distances, they
can be deployed in situations requiring very short-range transfer of information or power. Nanoscale
environments tend to have extremely lossy and hazardous surroundings, forcing many attempts to send
signals using light effectively short ranged, not to mention the weakness of the transmitted signal due
to the smallness of the scattering cross section of nanoscale radiating systems [38, 71, 72]. However,
the realization of the specialized decaying pulse as a possible information carrier is quite feasible in
the nanoscale since quantum emitters, operating through the phenomenon of spontaneous emission of
photons, can be modeled very well by decaying pulses of the form derived above. However, controlling
when the decay occurs and the time constant τ remains challenging though considerable progress has
been made in recent years [38].

Finally, we add that the theory presented in this paper can be expanded to include larger antennas
by aggregating the effects of individual infinitesimal dipoles using the Infinitesimal Dipole Model (IDM)
technique, which is an electromagnetic machine learning capable of learning from NF or FF data the
best small dipole model capable of representing radiation everywhere in the exterior domain [73–81].
The details of this expansion will be the subject of future work.

5. CONCLUSION

A general theoretical framework for a class of radiators called nonsinusoidal antennas was developed
with emphasis on the special case when the antenna can be considered small. It was found that
an ordinary differential equation can be derived which when solved yields the exact form of a time-
dependent but inherently nonsinusoidal excitation current such that the radiated near-field is exactly
zero on a particular sphere near the antenna. In this way, NF communication systems can be designed
and build with no NF-induced distortion effect. The concept has been developed carefully mainly at the
conceptual and theoretical level, with the various stages in the digital receiver design developed using
exact Green’s function technique. Some issues pertinent to future realization and application of the
proposed system where also briefly discussed. It is the hope of the author that this paper will bring to
the attention of the antenna community the enormous potentials available to physicists and engineers
in the time domain. Time-domain or nonsinusoidal antennas present a large field of research that has
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not not be well explored so far but is expected to gain more importance as we move into the future
with applications like 6G and nanoscale communication and information processing.
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