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Abstract

Geometric information of scenes available with four dimensional (4-D) light fields (LFs) pave the way for post-capture refocusing.
Light filed refocusing methods proposed

so far have been limited to a single planar or a volumetric

region of a scene. In this paper, we demonstrate simultaneous refocusing of multiple volumetric regions in LFs. To this end, we

employ a 4-D sparse finite-extent impulse response (FIR) filter consisting of multiple hyperfan-shaped passbands. We design

the 4-D sparse FIR filter as an optimal filter in the least-squares sense. Experimental results confirm that the proposed filter

provides 64% average reduction in computational complexity with negligible degradation in the fidelity of multi-volumetric

refocused LFs compared to a 4-D nonsparse FIR filter.
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Abstract—Geometric information of scenes available with four-
dimensional (4-D) light fields (LFs) pave the way for post-
capture refocusing. Light filed refocusing methods proposed
so far have been limited to a single planar or a volumetric
region of a scene. In this paper, we demonstrate simultaneous
refocusing of multiple volumetric regions in LFs. To this end, we
employ a 4-D sparse finite-extent impulse response (FIR) filter
consisting of multiple hyperfan-shaped passbands. We design the
4-D sparse FIR filter as an optimal filter in the least-squares
sense. Experimental results confirm that the proposed filter
provides 64% average reduction in computational complexity
with negligible degradation in the fidelity of multi-volumetric
refocused LFs compared to a 4-D nonsparse FIR filter.

Index Terms—Light fields, volumetric refocusing, multi-
dimensional FIR filters, sparse filters, low complexity.

I. INTRODUCTION

A four-dimensional (4-D) light field (LF) captures both
textural and geometrical information of a scene whereas a
two-dimensional (2-D) image captures only the textural infor-
mation [1], [2]. We can exploit the geometrical information
available with LFs to accomplish novel tasks which are not
possible with 2-D images, e.g., depth estimation [3]–[6] and
occlusion suppression [7]–[12].

Post-capture refocusing is another novel task that can be
achieved with LFs. Ng et al. [13] first demonstrated this feature
employing a hand-held LF camera. They achieved refocusing
by shifting and averaging the sub-aperture images (SAIs)
of a LF. Furthermore, Ng [14] developed a computation-
ally efficient algorithm using multi-dimensional fast Fourier
transform algorithms. In [15], Fiss et al. employed depth-
adaptive splatting to archive refocusing of LFs. All of these
approaches achieved refocusing for a narrow-depth range.
In [16], Dansereau et al. demonstrate post-capture refocusing
over a wide-depth range, which they denote as volumetric re-
focusing. They employed a 4-D linear filter having a hyperfan-
shaped passband to achieve volumetric refocusing. Dansereau
et al. [17] and Premaratne et al. [18] employed similar 4-D
linear hyperfan filters for LF denoising. In [19], Premaratne et
al. proposed a 4-D sparse finite-extent impulse response (FIR)
filter having a hyperfan-shaped passband, designed using the
windowing technique and hard thresholding, for volumetric
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(a)
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(b)
Fig. 1: Refocusing of the ”Bush” LF; (a) refocused for a
single volumetric region [19]; (b) refocused for two volumetric
regions using the proposed 4-D sparse FIR filter.

refocusing. This sparse filter provides significant reduction in
computational complexity with negligible degradation in the
fidelity of refocused LFs compared to that proposed in [16].
However, all of these prior works are limited to LF refocusing
over a single planar or a single volumetric region.

In this paper, we demonstrate simultaneous refocusing of
multiple volumetric regions in LFs albeit at lower compu-
tational complexity. To this end, we employ a 4-D sparse
FIR filter having multiple hyperfan-shaped passbands. Fig. 1
shows refocusing of a single volumetric region obtained with
the 4-D sparse FIR filter proposed in [19] and simultaneous
refocusing of two volumetric regions using the proposed 4-
D sparse FIR filter. It is evident that multi-volumetric refo-
cusing can emphasize multiple objects or regions occupying
different depth-ranges in an LF simultaneously. This feature
may open new avenues in LF photography. In addition, our
method can achieve refocusing of a single volumetric or
a planar region as well because these are special cases of
multi-volumetric refocusing. We design the 4-D sparse FIR
filter by employing a two-step sparse filter design method
proposed in [20], which considers the design of filters having
quadrantally-symmetric impulse responses. Our 4-D sparse
FIR filter has a centro-symmetric impulse response, and we
adapt the two-step method in [20] appropriately to design
our filter. Our 4-D sparse FIR filter is optimal in the least-
squares sense. Experimental results obtained with the LFs in
the EPFL data set [21] confirm that the proposed 4-D sparse
FIR filter provides 64% average reduction in computational
complexity with negligible degradation in the fidelity of two-
volumetric-region refocused LFs compared to an equivalent 4-
D non-sparse FIR filter. Furthermore, our sparse filter provides
13% reduction in computational complexity compared to that
proposed in [19] with similar fidelity for refocusing of a single
volumetric region.
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Fig. 2: Two plane parameterization of a Lambertian point
source located at a constant depth z0.

II. REVIEW OF THE SPECTRUM OF A LIGHT FIELD

The spectrum of a LF is briefly reviewed in this section.
To this end, we first consider standard two-plane paramater-
ization, with the globally defined image-plane coordinates,
of a Lambertian point source as shown in Fig. 2. Note
that (nx, ny) ∈ Z2 and (nu, nv) ∈ Z2 denote the 2-D
discrete-domain camera-plane and image-plane coordinates,
respectively, and D is the constant distance between the
camera and image planes. The 4-D LF lp(n), where n =
(nx, ny, nu, nv) ∈ Z4, corresponding to the Lambertian point
source located at (x0, y0, z0) ∈ R2 × R+ and having an
intensity l0 can be modeled as [22], [23]

lp(n) =

l0 when Pxu ≡ mnx∆x + nu∆u − (m + 1)x0 = 0

Pyv ≡ mny∆y + nv∆v − (m + 1)y0 = 0

0 elsewhere,

where m = D
z0
− 1 and ∆i, i = x, y, u, v is the sampling

interval along the dimension i. Note that the LF consists of
a plane having a constant value l0 given by the intersection
two hyperplanes Pxu and Pyv . In this case, the region of
support (ROS) Rp of the spectrum Lp(ω), where ω =
(ωx, ωy, ωu, ωv) ∈ R4, inside the principal Nyquist hypercube
N (, {ω ∈ R4 | − π ≤ ωi < π, i = x, y, u, v}) is given by
Rp = Hxu ∩Hyv [22], [23], where

Hxu =

{
ω ∈ R4 | ωx −

(
m∆x

∆u

)
ωu = 0

}
(1a)

Hyv =

{
ω ∈ R4 | ωy −

(
m∆y

∆v

)
ωv = 0

}
(1b)

The ROS Rp is a plane through the origin of ω inside N ,
of which the orientation depends only on the depth z0 of the
Lambertian point source. Note that we do not consider the
finite sizes of the camera and image planes in presenting the
spectral ROS for simplicity. However, even with these con-
straints, the spectral ROS predominantly occupies the region
defined by the ROS Rp [24], [25].

In order to obtain the ROSRo of the spectrum of a LF corre-
sponding to a Lambertian object, we can consider the Lamber-
tian object as collection of Lambertian point sources located in
a volumetric region with a depth range z0 ∈ [dmin, dmax]. In
this case, Ro is given by Ro =

⋃
z0

Rp =
⋃
z0

(Hxu∩Hyv) [10],

[22], and corresponds to a hyperfan inside N [16], as shown in

π

-π

ωu

ωx

π

-π

ωv

ωy−π π −π π

Fig. 3: The hyperfan-shaped spectral ROS Ro corresponding
to a Lambertian object; (a) in the ωxωu subspace (b) in the
ωyωv subspace.

Fig. 3. In the case of multiple objects located in M volumetric
regions, the spectral ROS RM

o can be obtained as

RM
o =

M⋃
i=1

Ri
o =

M⋃
i=1

⋃
zi
0

(
Hi

xu ∩Hi
yv

)
. (2)

The spectral ROS RM
o thus contains M hyperfans inside N .

Therefore, we can refocus M volumetric regions in a LF
simultaneously by employing a 4-D filter having M hyperfan-
shaped passbands inside N .

III. PROPOSED 4-D SPARSE FIR FILTER

The proposed 4-D sparse FIR filter H(z), (zx, zy, zu, zv) ∈
C4, is designed as a cascade of two 2-D filters Hxu(zx, zu),
(zx, zu) ∈ C2 and Hyv(zy, zv), (zy, zv) ∈ C2, as shown in
Fig. 4. This structure is motivated by the partial separability of
the spectral ROS of a Lambertian point source and leads to an
extremely low computational complexity of O(NxNu+NyNv)
to process a sample, compared to that of a nonseparable
4-D filter, which is O(NxNyNuNv) [19], where (Nx, Nu)
(∈ Z2

+) and (Ny, Nv) (∈ Z2
+) are the orders of Hxu(zx, zu)

and Hyv(zy, zv), respectively. We select the passbands of
Hxu(zx, zu) and Hyv(zy, zv) to enclose M hyperfan regions
Bxu =

⋃M
i=1

⋃
zi
0
Hi

xu and Byv =
⋃M

i=1

⋃
zi
0
Hi

yv , respectively.
Note that the passband of B of the 4-D FIR filter H(z) given
by Bxu∩Byv completely encompasses the spectral ROS given
by (2). Fig. 5 shows the passband of Hxu(zx, zu) for M = 2.
Our 4-D FIR filter H(z) sharpens (i.e., focuses) the depth
ranges in a LF, which corresponds to these M hyperfans and
blurs other depth ranges, which correspond to the stopband.

Fig. 5 shows the parameters that specify the ith hyperfan
of the passband of Hxu(zx, zu). Here, αi, θi and Bi deter-
mine the orientation, angular-width and the length of the ith
hyperfan, respectively, and Ti determines the width of the
guard band employed to achieve an improved accuracy near
the origin of ω [26]. The passband and the specifications of the
ith hyperfan is the same for Hyv(zy, zv) in the ωyωv subspace.
Therefore, the design of Hxu(zx, zu) and Hyv(zy, zv) reduces
to a single 2-D FIR filter design. We next present the design
of Hxu(zx, zu) in detail.

A. Weighted Least-Square Design of Hxu(zx, zu)

We adapt the 2-D sparse FIR filter design method proposed
in [20] to design Hxu(zx, zu). To this end, we express the
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Hxu(zx, zu) Hyv(zy, zv)lin(n)
lxu(n)

lyv(n)

Fig. 4: The structure of the proposed 4-D sparse FIR filter.

π

-π

ωu

ωx
α1

α2

T

B

−π π

θ

Fig. 5: The passband of Hxu(zx, zu) for M = 2.

frequency response of Hxu(zx, zu) as Hxu

(
ejωx , ejωu

)
=∑Nx

2

nx=
−Nx

2

∑Nu
2

nu=
−Nu

2

hxu(nx, nu)e−j(nxωx+nuωu), where
hxu(nx, nu) is the impulse response of size (Nx+1)×(Nu+1)
(order = Nx × Nu). We design Hxu(zx, zu) as a zero-phase
filter [27, ch.3]. In this case, the impulse response of the filter
is centro-symmetric, i.e., hxu(nx, nu) = hxu(−nx,−nu).
Therefore, we can simplify Hxu(ejωx , ejωu) considering the
centro-symmetric property as Hxu

(
ejωx , ejωu

)
= hxu(0, 0)+∑Nx

2
nx=12hxu(nx,0)cos(nxωx)+

∑Nx
2

nx=
−Nx

2

∑Ny
2

nu=12hxu(nx,nu)

cos(nxωx + nuωu), which we represent in the vector-form as

Hxu

(
ejωx , ejωu

)
= c(ωx, ωu)Thxu. (3)

Here, hxu =
[
hxu(0, 0), 2hxu(1, 0), · · · , 2hxu

(
Nx

2 , 1
)
,

2hxu
(−Nx

2 ,1
)
,· · ·, 2h

(
Nx

2 ,
Nu

2

)]T
, and c(ωx, ωu)=[1, cos(ωx),

· · ·, cos
(
Nx

2 ωx

)
, cos

(−Nx

2 ωx+ωu

)
,· · ·, cos

(
Nx

2 ωx+Nx

2 ωu

)]T
.

Lu and Hinamoto proposed two-step weighted least-square
approach in [20] to design 2-D sparse FIR filter having
quadrantally-symmetric impulse responses. With (3), we can
use this approach to design Hxu(zx, zu) despite its centro-
symmetric impulse response. In the first step, we obtain an in-
termediate sparse impulse response in the least-squares sense.
We express the objective function J(hxu) to be minimized as

J(hxu) =

[ ∫∫
F
W (ωx, ωu)

[
HI

xu

(
ejωx , ejωu

)
−Hxu

(
ejωx , ejωu

) ]2
dωx dωu

] 1
2

+ µ||hxu||1, (4)

where HI
xu

(
ejωx , ejωu

)
is the ideal frequency response of

Hxu(zx, zu) having 1 in the passband and 0 in the stopband,
Hxu

(
ejωx , ejωu

)
is given in (3), W (ωx, ωu) is a weighting

function that we use to control the stopband attenuation, µ is
a small positive number (typically between 0.01 and 1), and F
is the region corresponding to the passband and stopband, i.e.
without the transition band [20]. Because, Hxu

(
ejωx , ejωu

)
is

centro-symmetric, we consider only the region [−π, π]× [0, π]

in the 2-D frequency domain (ωx, ωu) to define F . By consid-
ering finite set of frequency grid points in F and introducing
upper bounds for the first and second terms in the right hand
side of (4), we can convert the optimization probelem as
an `1-`2 minimization problem, which can be converted as
a second-order cone programming problem [20]. Due to the
limited space, we do not present the detailed steps, and the
reader is referred to [20]. The solution hi

xu of the second-
order cone programming problem is an approximately sparse
impulse response [20], and we employ hard thresholding in
order to obtain a sparse impulse response hi,s

xu, i.e.,

hi,s
xu(i) =

{
hi
xu(i), if |hi

xu, (i)| ≥ εth
0, otherwise,

(5)

where εth (∈ [10−4, 10−2], typically) is the threshold value.
In the second step, we again optimize hi,s

xu in the least-
squares sense in order to further improve the accuracy. We
express this optimization problem as

min
hi,s

xu

[ ∫∫
F
W (ωx, ωu)

[
c(ωx, ωu)Thi,s

xu−

HI
xu

(
ejωx , ejωu

) ]2
dωx dωu

] 1
2

subject to: hi,s
xu(i) = 0 for i ∈ I∞, (6)

where I∞ is the set containing indices i for which hi,s
xu(i) = 0.

This optimization probelem is a quadratic program. We obtain
the sparse impulse response hs

xu as hs
xu = γ hq,s

xu , where hq,s
xu

is the solution of (6), and γ (∈ [1, 1.5], typically) is a constant
used to compensate the intensity reduction of a refocused LF
due to the small number of SAIs.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
for LFs in the EPFL dataset [21] for M = 2 in the next
subsection and for M = 3 in supplementary results1. Further-
more, we compare the performance of the the proposed filter
compared to a 4-D nonsparse FIR filter in multi-volumetric
refocusing. Next, we compare the performance and computa-
tional complexity of the proposed filter with those of [16] and
[19].

A. Performance of the Proposed 4-D Sparse FIR Filter in
Multi-Volumetric Refocusing

We process five LFs, ”Parc du Luxembourg”, ”Bush”,
”Books”, ”Sphynx”, and ”University”, using the proposed 4-
D sparse FIR filter and a 4-D nonsparse FIR filter. Here, we
select only the middle 11× 11 SAIs for each LF and discard
SAIs affected by vignetting. For the ”Parc du Luxembourg”
LF, we design Hxu(zx, zu) and Hyv(zy, zv) with α1 = 50◦

and α2 = 120◦, θ1, θ2 = 10◦, B1, B2 = 0.9π rad/sample,
T1, T2 = 0.08π rad/sample, µ = 0.1, εth = 0.004, γ = 1.4,
and W (ωx, ωu) = 1 for the passband and W (ωx, ωu) = 2 for
the stopband. We present the specifications of Hxu(zx, zu)
or Hyv(zy, zv) employed for the other four LFs in the sup-
plementary results1. We select the order of Hxu(zx, zu) and

1The supplementary results are available at https://bit.ly/2KP3F1k.
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(a) (b)
Fig. 6: Magnitude response of Hxu(z) (a) with sparse coeffi-
cients; (b) with nonsparse coefficients.

Hyv(zy, zv) as 10×40 for all the five cases. Note that the order
of the resulting 4-D sparse FIR filter H(z) is 10×10×40×40.
We employ the CVX [28], [29] optimization toolbox to obtain
the sparse impulse responses. The sparse impulse responses
of Hxu(zx, zu) and Hyv(zy, zv) designed for the ”Parc du
Luxembourg” LF have 153 nonzero coefficients whereas a
equivalent 2-D nonsparse FIR filter, designed with εth = 0
in (5), has 451 nonzero coefficients. Consequently, the pro-
posed sparse filter 4-D sparse FIR filter provides approxi-
mately 66% reduction in computational complexity compared
to an equivalent 4-D nonsparse FIR filter. Fig. 6 shows
the magnitude responses of Hxu(zx, zu) for the sparse and
nonsparse cases, and the normalized root mean square error
between the two frequency responses 4.41%. Considering all
the five cases, the proposed 4-D sparse FIR filter provides 64%
average reduction of computational complexity with a average
normalized root mean square error of 4.42% compared to a
nonsparse counterpart. This indicates the frequency response
of the sparse filter is approximately equal to that of the
nonsparse filter despite having considerably less coefficients.

Fig. 7 shows the central SAI obtained with the 4-D sparse
and nonsparse FIR filters for the Parc du Luxembourg” LF.
The structure similarity (SSIM) index between the central
SAIs of the two refocused LFs is 0.9900. We present the
refocused central SAIs and the SSIM indices for the other
four LFs in the supplementary results1. The average SSIM
index between the two refocused LFs is 0.9886. These results
verify that the proposed 4-D sparse FIR filter provides neg-
ligible degradation in fidelity in multi-volumetric refocusing
compared to a nonsparse counterpart.

B. Comparison of the Proposed 4-D Sparse FIR Filter with
Single-Volumetric-Region Refocusing Filters

Refocusing of a single volumetric region is a special case of
the proposed multi-volumetric refocusing. In this subsection,
we compare the performance of the proposed filter with those
proposed in [16] and [19]. To this end, we consider refocusing
of LFs employed in [19]. We design the proposed 4-D sparse
FIR filter with α1 = 50◦, θ1 = 10◦, B1 = 0.9π rad/sample,
and T1 = 0.08π rad/sample, µ = 0.1, εth = 0.005, γ = 1.4,
and W (ωx, ωu) = 1 for the passband and W (ωx, ωu) = 2
for the stopband. We also design the 4-D sparse FIR filters
proposed in [19] with the same specifications for α1, θ1, B1

and T1 whereas the hard-thresholding parameter is selected
as 0.03 (hth in [19, eq. (5)]). We design the equivalent 4-D
nonsparse FIR filters [16] with the same parameters except

1

(a)

1

(b)
Fig. 7: ”Parc du Luxembourg” LF refocused for two volumet-
ric regions; (a) using the proposed 4-D sparse FIR filter; (b)
using a 4-D nonsparse FIR filter.

TABLE I: The average SSIM indices obtained for refocusing
of a single volumetric region with different 4-D FIR filters
and the number of nonzero coefficients.

FIR Filter SSIM index Nonzero coefficients

4-D nonsparse [16] 1.0000 902

4-D sparse [19] 0.9985 238

Proposed 4-D sparse 0.9979 206

the hard-thresholding parameter, which is zero. We process
the ”Books”, ”Flower”, ”Mirabelle Prune Tree”, ”Sophie &
Vincent 1” and ”Gravel Garden” LF with the proposed filter,
the filter proposed in [19], and their equivalent nonsparse
filters [16]. We present the average SSIM indices and the
number of nonzero coefficients of the filters in Table I.
The central SAIs of the refocused LFs are presented in the
supplementary results1. According to Table I, it is evident that
the proposed 4-D sparse FIR filter provides similar average
SSIM index compared to the 4-D sparse FIR filter proposed
in [19] while providing 13% reduction in computational
complexity. The proposed 4-D sparse FIR filter achieves a
lower computational complexity compared to that proposed
in [19] because the former is an optimal filter whereas the
latter is a sub-optimal filter. Furthermore, the proposed sparse
filter provides 77% reduction in computational complexity with
negligible degradation in the average SSIM index compared
to an equivalent nonsparse filter [16].

V. CONCLUSION

We demonstrate simultaneous multi-volumetric refocusing
of LFs by employing a 4-D sparse FIR filter consisting of
multiple hyperfan-shaped passbands. We employ a two-step
optimization method to design the optimal 4-D sparse FIR
filters in the least-squares sense. Experimental results confirm
that the proposed filter provides 64% average reduction in
computational complexity with negligible degradation in the
fidelity of two-volumetric-region refocused LFs compared to
an equivalent 4-D non-sparse FIR filter. Furthermore, in single-
volumetric-region refocusing, the proposed filter provides 13%
reduction in computational complexity compared to a pre-
viously proposed 4-D sparse FIR filters with a negligible
degradation in the fidelity.



5

REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. Annu. Conf.
Comput. Graph. (SIGGRAPH), 1996, pp. 31–42.

[2] G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and
Y. Liu, “Light field image processing: An overview,” IEEE J. Sel. Topics
Signal Process., vol. 11, no. 7, pp. 926–954, Oct. 2017.

[3] S. Wanner and B. Goldluecke, “Variational light field analysis for
disparity estimation and super-resolution,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 3, pp. 606–619, Mar. 2013.

[4] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth from
combining defocus and correspondence using light-field cameras,” in
Proc. of IEEE Int. Conf. on Comput. Vision, 2013, pp. 673–680.

[5] T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware depth
estimation using light-field cameras,” in Proc. of IEEE Int. Conf. on
Comput. Vision, 2015, pp. 3487–3495.

[6] J. Chen, J. Hou, Y. Ni, and L.-P. Chau, “Accurate light field depth esti-
mation with superpixel regularization over partially occluded regions,”
IEEE Trans. Image Process., vol. 27, no. 10, pp. 4889–4900, Oct. 2018.

[7] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameter-
ized light fields,” in Proc. Annu. Conf. Comput. Graph. (SIGGRAPH),
2000, pp. 297–306.

[8] V. Vaish, G. Garg, E.-V. Talvala, E. Antunez, B. Wilburn, M. Horowitz,
and M. Levoy, “Synthetic aperture focusing using a shear-warp factor-
ization of the viewing transform,” in Proc. IEEE Conf. Comput. Vision
and Pattern Recogn., 2005, pp. 129–129.

[9] V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang,
“Reconstructing occluded surfaces using synthetic apertures: Stereo,
focus and robust measures,” in Proc. IEEE Conf. Comput. Vision and
Pattern Recogn., vol. 2, 2006, pp. 2331–2338.

[10] D. Dansereau and L. T. Bruton, “A 4-D dual-fan filter bank for depth
filtering in light fields,” IEEE Trans. Signal Process., vol. 55, no. 2, pp.
542–549, Feb. 2007.

[11] C. U. S. Edussooriya, D. G. Dansereau, L. T. Bruton, and P. Agathoklis,
“Five-dimensional depth-velocity filtering for enhancing moving objects
in light field videos,” IEEE Trans. Signal Process., vol. 63, no. 8, pp.
2151–2163, Apr. 2015.

[12] N. Liyanage, C. Wijenayake, C. Edussooriya, A. Madanayake, P. Agath-
oklis, L. T. Bruton, and E. Ambikairajah, “Multi-depth filtering and
occlusion suppression in 4-D light fields: Algorithms and architectures,”
Signal Process., vol. 167, pp. 1–13, Feb. 2020.

[13] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” Stanford
Univ., Stanford, CA, Tech. Rep. CTSR 2005-02, 2005.

[14] R. Ng, “Fourier slice photography,” in Proc. Annu. Conf. Comput.
Graph. (SIGGRAPH), 2005, pp. 735–744.

[15] J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using
depth-adaptive splatting,” in Proc. Int. Conf. Comput. Photogr., 2014,
pp. 1–9.

[16] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Linear volumetric
focus for light field cameras,” ACM Trans. Graph., vol. 34, no. 2, pp.
15:1–15:20, Feb. 2015.

[17] D. G. Dansereau, D. L. Bongiorno, O. Pizarro, and S. B. Williams,
“Light field image denoising using a linear 4D frequency-hyperfan all-
in-focus filter,” in Proc. SPIE Comput. Imag. XI, vol. 8657, 2013, pp.
86 570P–1–86 570P–14.

[18] S. U. Premaratne, N. Liyanage, C. U. S. Edussooriya, and C. Wi-
jenayake, “Real-time light field denoising using a novel linear 4-D
hyperfan filter,” IEEE Trans. Circuits Syst. I, 2020, early Access Article.

[19] S. U. Premaratne, C. U. S. Edussooriya, C. Wijenayake, L. T. Bruton,
and P. Agathoklis, “A 4-D sparse FIR hyperfan filter for volumetric
refocusing of light fields by hard thresholding,” in Proc. IEEE Int. Conf.
Digital Signal Process., 2018, pp. 1–5.

[20] W.-S. Lu and T. Hinamoto, “Two-dimensional digital filters with sparse
coefficients,” Multidim. Syst. Signal Process., vol. 22, no. 1-3, pp. 173–
189, Mar. 2011.

[21] M. Rerabek and T. Ebrahimi, “New light field image dataset,” in Proc.
8th Int. Conf. Quality Multimedia Experience, 2016, pp. 1–2. [Online].
Available: http://mmspg.epfl.ch/EPFL-light-field-image-dataset

[22] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,”
in Proc. Annu. Conf. Comput. Graph. (SIGGRAPH), 2000, pp. 307–318.

[23] D. Dansereau and L. Bruton, “A 4D frequency-planar IIR filter and its
application to light field processing,” in Proc. IEEE Int. Symp. Circuits
Syst., vol. 4, 2003, pp. IV–476–IV–479.

[24] M. N. Do, D. Marchand-Maillet, and M. Vetterli, “On the bandwidth of
the plenoptic function,” IEEE Trans. Image Process., vol. 21, no. 2, pp.
708–717, Feb. 2012.

[25] C. Gilliam, P.-L. Dragotti, and M. Brookes, “On the spectrum of the
plenoptic function,” IEEE Trans. Image Process., vol. 23, no. 2, pp.
502–516, Feb. 2014.

[26] S.-C. Pei and S.-B. Jaw, “Two-dimensional general fan-type FIR digital
filter design,” Signal Process., vol. 37, no. 2, pp. 265–274, May 1994.

[27] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[28] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. London: Springer-Verlag, 2008, pp. 95–110, http:
//stanford.edu/∼boyd/graph dcp.html.

[29] ——, “CVX: Matlab software for disciplined convex programming,
version 2.1,” http://cvxr.com/cvx, Mar. 2014.


