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Abstract

The Poisson multi-Bernoulli mixture (PMBM) filter is extended for distributed implementation using a wireless sensor network.

At the core of the proposed networking approach, the PMBM posterior is decomposed into two parts corresponding to the

undetected and detected targets, respectively. Fusion is motivated to be performed with regard to the latter only which is

represented by MBM based on a distributed flooding algorithm for internode communication, which iteratively shares the

MBMs between neighbor sensors. Then, a suboptimal “best-fit-ofmixture” principle is followed at each local sensor to find

a MBM that best fits the mixture of MBMs aggregated from distinct sensors, leading to an arithmetic average (AA) of

these MBMs. We prove the exact closure of the MBM-AA fusion and discuss its sub-optimality and limitations. Simulation

demonstrates the effectiveness and limitations of our approach.
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Best Fit of Mixture For Distributed Poisson
Multi-Bernoulli Mixture Filtering

Tiancheng Li and Kai Da

Abstract—The Poisson multi-Bernoulli mixture (PMBM) filter
is extended for distributed implementation using a wireless sensor
network. At the core of the proposed networking approach, the
PMBM posterior is decomposed into two parts corresponding
to the undetected and detected targets, respectively. Fusion is
motivated to be performed with regard to the latter only which
is represented by MBM based on a distributed flooding algo-
rithm for internode communication, which iteratively shares the
MBMs between neighbor sensors. Then, a suboptimal “best-fit-of-
mixture” principle is followed at each local sensor to find a MBM
that best fits the mixture of MBMs aggregated from distinct
sensors, leading to an arithmetic average (AA) of these MBMs.
We prove the exact closure of the MBM-AA fusion and discuss
its sub-optimality and limitations. Simulation demonstrates the
effectiveness and limitations of our approach.

Index Terms—Target tracking, multisensor fusion, arithmetic
average, Poisson multi-Bernoulli mixture, distributed flooding.

I. INTRODUCTION

D ISTRIBUTED multitarget detection and tracking (D-
MTDT) using a wireless sensor network in clutter and

noises arises in a variety of application domains such as air
traffic control, surveillance, oceanography, remote sensing and
biomedical research, to name a few [1]–[3]. Random finite
set (RFS) has identified a natural and promising tool for
modeling MTDT in the Markov-Bayes optimal paradigm [4]–
[6]. However, a key challenge arises from the complicated
cross-correlation between netted sensors, which is typically
unknown and refuses the Bayes optimal fusion. Fortunate-
ly, it was found that both linear/arithmetic average (AA)
and geometric/log-linear average (GA) fusion approaches are
qualified to solve this problem [7]–[9]. Average fusion is
efficient in computation and tolerant to sensor fault/failure and
therefore satisfies a key requirement of the realistic distributed
sensor network which typically comprises low-cost, battery-
powered sensor nodes with limited capacities for computing,
communicating and sensing.

Recently, various RFS filters have been extended for ef-
ficient, distributed multi-sensor implementation based on AA
fusion, including PHD filters based on Gaussian mixture (GM)
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implementation [10], [11] or particle implementation [12]–
[14], cardinalized PHD filters for standard models [15], [16]
or for jump Markov system [17], Bernoulli filter [18], multi-
Bernoulli (MB) filter [9] and labelled RFS filters [19]. Prior
to these, GA-fusion-based RFS filters have been a research
focus of the community which are more commonly known
as generalized covariance intersection [20]–[26] and geomet-
ric/exponential mixture density [27], [28], to name a few. Both
AA and GA fusion rules have demonstrated great potential for
multi-target information fusion.

Different from the (C)PHD and MB filters, the Poisson
multi-Bernoulli mixture (PMBM) filter [29]–[31] has a closed-
form filtering recursion (namely closure) based on standard
state space models with Poisson birth and has demonstrat-
ed better performance [32], [33] when the target detection
probability is low. That is, the PMBM is a multi-target
conjugate prior. Another relevant conjugate prior in the RFS
family is the generalized labelled MB [6], [34], [35]. The
PMBM consists of the combination of a Poisson point process
(PPP) and a multi-Bernoulli mixture (MBM), where the PPP
represents all undetected targets which enables the filter more
sensitive to target birth while the MBM considers different
track-measurement-association hypotheses gaining a higher
accuracy than a single MB. The success of the PMBM filter
gives rise to three variants: 1) If the birth model is MB or
MBM instead of PPP, the PMBM filter reduces to a MBM filter
[31], [36]. 2) If only one global data association hypothesis is
maintained in the MBM, the PMBM filter reduces to a PMB
filter [32], [37]. 3) By extending to the continuous time multi-
target system, the PMBM filter is extended to a continuous-
discrete PMBM filter [38].

Recently, the GA fusion has been exploited for PMB fusion
in [39], [40], which fuses the PPP and MB separately and
approximately by assuming all targets well spaced. PMBM
fusion can be addressed similarly with regard to the PPP
and MBM, respectively. However, the MBM-GA fusion does
not admit exact closure and so far it is even unclear how to
approximate it.

In this work, we investigate the distributed flooding algorith-
m [41] for internode MBM communication which iteratively
exchanges the MBMs between neighbor sensors, resulting
in a mixture of MBMs at each sensor. Then, following the
“best-fit-of-mixture” fusion principle, a MBM is found that
fits the mixture of MBMs with minimum KLD and 2-norm
distance, which is exactly given by the AA of these MBMs.
We prove this exact closure for MBM-AA fusion. Moreover,
for better communication and computation efficiency, only a
single or a few MBs in the MBM of each individual sensor
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are disseminated to the other sensors, while the PPP that is
typically of minor intensity and does not admit closure for
averaging fusion remains unchanged at individual sensors.

This paper is organized as follows. Preliminaries regarding
the standard model we consider, MB, and MBM are given in
Section II. Optimal multi-sensor fusion, sub-optimality of the
AA fusion and the idea of best-fit-of-mixture are analyzed and
illustrated in Section III. The exact closure of the MBM-AA
fusion and its implementation via MBM-flooding are given
in Section IV. Simulation results are given in Section V. We
conclude in Section VI.

II. PRELIMINARIES

A. Standard Models

The realization of an RFS of the multitarget states is a set
X =

{
x1,x2, . . . ,xn

}
, where n = |X| is the random number

of targets, and xi ∈ Rd is the state vector of the i-th target.
The random nature of the multitarget set X is captured by
its probability density, denoted by f(X). For any realization
X =

{
x1,x2, . . . ,xn

}
with a given cardinality |X| = n,

f(X) = n!ρ(n)fn(x1, . . . ,xn), (1)

where, the cardinality distribution is ρ(n) , Pr{|X| = n}.
Considering a sensor network composed of sensors s =

1, 2, . . . , S, we denote by Ss the set of neighbor sensors of
sensor s. We assume that the fields of view of all sensors are
identical, in which there are a random, time-varying number
of targets. Each sensor operates a PMBM filter [29]–[31] for
detecting and tracking these targets. We note that these sensors
are typically correlated in the information they have about the
targets and in their prior knowledge, in an unknown manner.

Targets arrive at each time according to a non-homogeneous
PPP, independent of target survivals. Setting the the cardinality
of new-born target RFS as a Poisson distribution with rate λ
(namely ρ(n) = e−λλn/n!) in (1) yields a multidimensional
Poisson distribution [4, p.366],

f(Xp) = eλλn
n∏

i=1

p(xi). (2)

Hereafter, p(x) is a probability density function (PDF) of
single target.

Each target evolves and is measured by each sensor inde-
pendent of the other targets. The surviving process of each
target is Bernoulli. That is, at time k− 1, the target with state
xk−1 will either die with probability 1 − psk or persists at
time k with survival probability psk and attains a new state xk

according to a Markov jump PDF fk|k−1(xk|xk−1).
Given a target with state xk, sensor s either detects it with

probability pds,k and generates a measurement zs,k ∈ Zs,k with
likelihood gs,k(zs,k|xk) or fails to detect it with probability
1−pds,k, where Zs,k denotes the set of measurements received
at time k by sensor s. The clutter at sensor s follows a
Poisson RFS as in (2) with Poisson rate κs, independent of
real measurements of targets.

B. Bernoulli RFSs and Their Union: MB

A Bernoulli RFS can either be empty (with probability 1−r)
or have one element (with probability r), distributed over the
state space according to PDF p(x). That is, the probability
distribution of the Bernoulli RFS Xb is

f(Xb) =


1− r, if X = ∅ ,
rp(x), if X = {x} ,
0, otherwise .

(3)

To represent the posterior of a random number of (no
more than M ) targets, M Bernoulli RFSs Xb with respective
target existence probabilities r(i) and state PDFs p(i)(·), i =
1, 2, . . . ,M , can be used. Their linear union is a MB RFS

Xmb =

M∪
ℓ=1

Xb
ℓ , (4)

which is completely characterized by M parameter pairs{
r(i), p(i)(·)

}M

i=1
. The corresponding MB distribution can be

expressed, for any given cardinality |Xmb| = n, as follows

f(Xmb) =
∑

Xb
1⊔···⊔Xb

n=Xmb

n∏
i=1

fi(X
b) . (5)

where ⊔ stands for disjoint union.

C. Weighted Union of MBs: MBM [37]

The MB can efficiently approximate the posterior multitar-
get density [42]. This approximation can be improved in accu-
racy by using a linear combination of multiple MBs, namely
a MBM, where different MBs correspond to different global
hypotheses of measurements-to-target association history. That
is, the MBM RFS is a normalized and weighted sum of multi-
target densities of MBs, which can be parameterized by a
mixture of MB RFSs{

wj ,
{
r
(i)
j , p

(i)
j (·)

}
i∈Ij

}
j∈J

,

where Ij is the index set of the BCs in MB j, J is the index set
of the MBs in the MBM (each term corresponding to a global
hypothesis), and wj ≥ 0 is a coefficient/probability assigned
to MB/hypothesis j ∈ J, subject to∑

j∈J
wj = 1. (6)

For any MBM realization Xmbm =
{
x1, . . . ,xn

}
, the

multi-target distribution is, c.f. (5)

f(Xmbm) ∝
∑
j∈J

wj

∑
Xb

1⊔···⊔Xb
n=Xmb

n∏
i=1

fj,i(X
b) (7)

where ∝ stands for proportionality.
Note that global hypotheses are made up of single hypothe-

ses/BCs each of which corresponding to a potential target [29].
Instead of posing a weight for each global hypothesis, one may
weight single hypothesis/BC i in global hypothesis j by wj,i;

see e.g., [31], [36]. Then, wj ∝
n∏

i=1

wj,i.
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III. OPTIMAL AND SUB-OPTIMAL FUSION

A. Optimal Fusion and Conservative Fusion

Consider two correlated posteriors f(X|Z1,1:k),
f(X|Z2,1:k) at time k. Their joint posterior is given
conceptually as follows [8], [43]:

f(X|Z1,1:k,Z2,1:k) = f(X|Z1,1:k ∪ Z2,1:k) , (8)

∝ f(X|Z1,1:k)f(X|Z2,1:k)

f(X|Z1,1:k ∩ Z2,1:k)
, (9)

where the denominator in (9) is used to divide out the common
information between the two fusion sources.

Netted sensors which observe the same targets often use the
same prior information and model assumptions. Unfortunately,
despite favorite, simple cases with a-priori information [44]–
[47], it is practically intractable to measure the common infor-
mation. Then, it becomes important to seek conservative fusion
that avoids underestimating the actual squared estimate errors
[8], [48]–[50]. That is, for a posterior fs(x) consisting of
estimate mean x̂s ,

∫
xfs(x)dx and error covariance matrix

Ps ,
∫
(x−x̂s)(x−x̂s)

Tfs(x)dx regarding the real state x, it
is conservative if and only if Ps is no less than the actual mean
square error of the estimate, i.e., Ps − E[(x− x̂s)(x− x̂s)

T]
is positive semi-definite.

B. Sub-optimality of AA Fusion

As a proven conservative fusion rule [8], the AA fusion of
probability distributions fs(X), s = 1, 2, · · · , S is given by

fAA(X) , 1

S

S∑
s=1

fs(X) . (10)

Essentially, the AA is a Fréchet mean corresponding to the
2-norm distance based Fréchet function 1 [9],

fAA(X) = argmin
g

1

S

S∑
s=1

||fs − g||2 , (11)

where ||f ||2 =
∫
(f(X))

2
δX is a set integral [4, Ch.11.3.3].

Relatively, the AA fusion also minimizes the average of the
KLDs of the fused result with relative to fusing probability
distributions fs(X), s = 1, 2, · · · , S, [52]

fAA(X) = argmin
g

1

S

S∑
s=1

DKL
(
fs||g

)
, (12)

where the KLD of the probability distribution g(X) relative
to f(X) is given as DKL(f ||g) =

∫
f(X) log f(X)

g(X) δX.
Mathematically, factor 1/S can be dropped from both (11)

and (12) without affecting the equation. Then, it becomes
more evident that, the probability distribution that best fits
the mixture of probability distributions {fs}Ss=1 in the sense
of minimizing both the 2-norm distance and KLD is the AA
of all terms in the mixture. Considering that the mixture
of these posteriors {fs}Ss=1 contains the complete posterior

1Fréchet function corresponding to a Fréchet mean like AA may not
be unique. For example, the Cauchy-Schwarz divergence reduces a 2-norm
distance for PPP [51] and therefore the sum of it serves as another Fréchet
function for the AA in the case of PPP RFS; see also [13].

True mulit-sensor 

posterior

(unknown)

Mixture of multi-sensor 

posteriors

(unknown cross-correlated)

Minimize 

different divergences:

2-norm, CSD,

KLD,

Renyi,

...

Averaging

Fig. 1. Approach the true multi-sensor posterior by fitting the mixture of
multiple sensor posteriors using various optimization distances.

information yielded by all sensors, it is a reasonable substitute
of the multi-sensor true posterior. The mixture, however,
contains common information of the sensors (as assumed from
the beginning) and is no more than an approximate of the
true posterior unless the common information are divided
out properly. This essentially differs from the fit of the true
posterior in e.g., [37], [53]. Therefore, the optimization as in
both (11) and (12) is suboptimal.

The principle of best-fit-of-mixture can be illustrated as in
Fig. 1. In fact, what has been done with AA-PHD fusion [10]–
[14], AA-CPHD fusion [15]–[17], BC-AA fusion [18], MB-
AA fusion [9] and RFS-GA fusion [20]–[28] all essentially
follow the best-fit-of-mixture principle, aiming to best fit the
mixture of unknown-correlated PHDs, CPHDs, BCs and MBs
from different sensors, respectively. The key challenge of the
fit, however, is from non-closure, for example, the AA of
PPPs/MBs is no longer a PPP/MB.

IV. DISTRIBUTED FLOODING-BASED MBM-AA FUSION

A. PMBM Conjugate Prior

Based on standard state space model assumptions with
Poisson target birth, the PMBM conjugate prior at sensor s
is given by [29], [37]

fs(X
pmbm) =

∑
Xp⊔Xmbm=Xpmbm

fs(X
p)fs(X

mbm). (13)

As shown, the PMBM consists of a PPP component and a MB-
M component, which represent the undetected targets (which
are hypothesised to exist but have never been detected) and
the detected targets, respectively [29]. Details for predicting
and updating both PPP and MBM are provided in [29], [31],
which are omitted here.

Continuously-missed detections that contribute to the PPP
are various at different sensors due to the independent, random
nature of the detecting event. Furthermore, the PPP usually has
a minor intensity and does not admit closure for averaging.
Therefore, there is little need but significant difficulty to fuse
the PPPs. Following this line of thinking, we do not perform
fusion over the PPPs obtained at different sensors. Only the
MBMs are communicated and fused over the sensor network.
This also saves communication and fusion calculation.

The proposed multi-sensor PMBM filter can be illustrated
in Fig. 2. As to be addressed next, both flooding and AA
fusion of the MBMs need no approximation, maintaining an
exact MBM structure. Clearly, these approaches are straight-
forwardly applicable to the MBM filter [31], [36].
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PPP

predictor

MBM

predictor

PPP

updator

MBM

updator

PPP

predictor

MBM

predictor

MBM

AA-

Fusion

PPP

predictor

MBM

predictor

PPP

updator

MBM

updator

PPP

predictor

MBM

predictor

PMBM 1

PMBM S

Time

Fig. 2. Algorithm flow of proposed distributed PMBM filter.

B. AA of MBMs

The following Lemma lies at the core of our proposed fusion
approach.

Lemma 1. Given S MBM with multi-target probability dis-
tribution as follows, s = 1, 2, . . . , S

fs(X
mbm) ∝

∑
j∈Js

ws,j

∑
Xb

1⊔···⊔Xb
n=Xmb

n∏
i=1

fs,j,i(X
b) , (14)

their AA given by

fAA(X
mbm) =

1

S

S∑
s=1

fs(X
mbm) , (15)

remains a MBM.

Proof. The proof is straightforwardly given by substituting
(14) in (15), which yields a MBM as shown in (16)

fAA(X) ∝ 1

S

S∑
s=1

∑
j∈Js

ws,j

∑
Xb

1⊔···⊔Xb
n=Xmb

n∏
i=1

fs,j,i(X
b) ,

=
∑

j∈J1:S

w̃j

∑
Xb

1⊔···⊔Xb
n=Xmb

n∏
i=1

fs̃(j),j,i(X
b)

︸ ︷︷ ︸
=f(Xmb), c.f. (5)

, (16)

where
w̃j =

ws,j

S
, (17)

J1:S =
S∪

s=1

Js , (18)

s̃(j) = {s|j ∈ Js} . (19)

Lemma 1 indicates that the MBM-AA fusion admits exact
closure. Key operations for such a fusion are mixing and re-
weighting the MBMs as shown in (17) and (18). Indeed, the
(weighted) mixtures of multiple Bernoulli RFSs, MB RFSs
and MBM RFSs are a MB RFS, MBM RFS and MBM RFS,
resepctively, as illustrated in Fig. 3. In addition to MBM that
maintains closure for mixture union operation, some other
popular mixture distributions such as the Dirac delta mixture
(commonly known as particle posterior) and GM also admit
exact closure for AA fusion.

Bernoulli RFS 1

Bernoulli RFS n1

MB 1

Bernoulli RFS 1

Bernoulli RFS nm

MB j

MBM 1

MBM S

MBM

Bernoulli RFS 1

Bernoulli RFS n1

MB 1

Bernoulli RFS 1

Bernoulli RFS nm

MB j

Fig. 3. The mixtures of multiple Bernoulli RFSs, MB RFSs and MBM RFSs
are a MB RFS, a MBM RFS and a MBM RFS, resepctively.

We now address how the MBMs can be disseminated in a
distributed manner that maintains exact closure. We consider
the distributed flooding scheme [41] which is naturally con-
sistent with the mixture union operation as shown in (18) and
guarantees exact and efficient convergence.

C. MBM Mixing by Flooding

In distributed flooding [41], each local sensor serves equiva-
lently like a fusion center which mixes the relevant information
from the other sensors via iterative neighborhood communi-
cation. Re-weighting/scaling is carried out at the end of all
communication iterations in each filtering step. For clarity, we
explain the MBM-flooding algorithm here with respect to the
global hypotheses corresponding to MBM distributions. That
is, the flooding algorithm updates the set of global hypotheses
of sensor s at iteration t = 0, 1, · · · as follows

Js(t+ 1) = Js(t) ∪ Umbm
s (t) , (20)

where Js(t) and Umbm
s (t) denote the existing and newly

received global hypothesis sets of node s at iteration t =
0, 1, · · · , respectively, Js(0) denotes the initial global hypoth-
esis set at node s and Umbm

s (0) ,
∪

i∈Ss
Jmbm
i .

In flooding iteration t = 1, 2, · · · , each local PMBM filter
unionizes the new global hypotheses that its neighbors have
received at the preceding iteration, i.e.,

Umbm
s (t) =

∪
i∈Ss

{
Ji(t) \ Ji(t− 1)

}
, (21)

where A \B is the set difference of A and B.
Let S [t]

s denote the set of sensors that are at most t hops
away from sensor s, including sensor s itself. Once flooding
is completed at iteration T , sensor i receives the hypotheses
of all sensors T hops away i.e.,

Js(T ) =
∪

i∈S[T ]
s

Ji , JS[T ]
s

. (22)

Convergence of the flooding scheme has been addressed in
[41]. When t is larger than the diameter Dm of the network,
all sensors will have exactly the same information, i.e., ∀s =
1, 2, · · · , S, Js(t ≥ Dm) = J1:S .
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D. Exact MBM-AA Fusion

Given a mixture of MBMs corresponding to JS[T ]
s

as in (22)
of each sensor s, all the (original) posterior information about
the detected targets generated by sensors S [t]

s are available to
sensor s now. Then, following the “best-fit-of-mixture” fusion
principle, we need to find a MBM that best fits this mixture
of MBMs so that each sensor maintains a PMBM conjugate
prior while using the posterior information from sensors S [t]

s ,
for which we have the following key result.

Lemma 2. Given a mixture of MBMs with probability distri-
butions, fi(Xmbm), i ∈ S [t]

s , the MBM that fits them the best,
in the sense of minimizing both the sum of 2-norm distances
to these MBM distributions and the sum of KLDs with relative
to these MBM distributions, is their AA. That is,

fAA(X
mbm) = argmin

g

∑
i∈S[t]

s

||fi − g||2 , (23)

fAA(X
mbm) = argmin

g

∑
i∈S[t]

s

DKL

(
fi||g

)
, (24)

s.t. g ∝
∑
j∈J

wj

∑
Xb

1⊔···⊔Xb
n=Xmb

n∏
i=1

fj,i(X
b) , (25)

Proof. The results (23) and (24) are the special MBM case of
(11) and (12), respectively. The constraint (25) is automatically
satisfied as proved in Lemma 1.

To perform the AA fusion, these hypotheses in JS[T ]
s

need
to be normalized. That is, ∀j ∈ JS[T ]

s

w̄s,j =
ws,j∑

j∈J
S[T ]
s

ws,j
. (26)

This leads to at sensor s a mixture of re-weighted hypothe-
ses/MBs collected from sensors S [t]

s ,{
w̄s,j ,

{
r
(i)
s̃(j),j , p

(i)
s̃(j),j(·)

}
i∈Ij

}
j∈J

S[T ]
s

,

where s̃(j) is the same as defined in (19).
Obviously, if T ≥ Dm the resulting MBM distribution is

given in (16) otherwise the result is only an approximate. It is
important to note that, these hypotheses are not independent
but highly cross-correlated in a complicated manner. MBs
from the same PMBM filter are more correlated with each
other than than those from different PMBM filters. However,
AA fusion has the advantage to deal with any degree of cross-
correlation for maintaining conservativeness [8], [9].

E. Localization Accuracy

While mixing the hypotheses from multiple sensors can
compensate locally missed detections and significantly “bi-
ased” tracks (in the sense that there is a large offset from
the target position) due to model mismatching or unknown
system input, it does not improve the localization accuracy of
any particular BC corresponding to a potential target. Instead,
the mixture gains conservativeness and robustness at the price
of a larger distribution variance. Just like a trade-off is needed

between localization error of the correctly detected targets and
missed/false detection in the context of performance evaluation
of multi-target trackers [6], [54]–[56], the fusion needs to trade
off complete information for accurate estimation.

In realistic implementation, it is our observation that “par-
tial consensus” (i.e., fusing only the key components of the
posteriors that are more likely corresponding to targets [9]–
[12], [14], [18]) turns out to be very useful albeit simply in
reducing both the number of components and the variance
of the mixture. More importantly, component merging and
pruning and importance sampling have been demonstrated
useful for improving the AA result to gain higher maximum
a-posterior estimate accuracy [9]–[12], [14], [18]; see also [7].
To do so in the proposed MBM fusion, further fusion needs
to be performed between BCs contained in hypotheses of
distinct sensors. It is, however, intractable to associate the BCs
corresponding to the same target from different hypotheses of
distinct sensors and to accordingly merge them to get better
localization accuracy. This requires “hypotheses merging” and
is the key to improve the localization accuracy. We leave this
to our future work.

F. Communication and Computation Consideration

To save communication, one may only communicate a few
MBs of higher hypotheses weights ws,j , j ∈ Js in the MBM
at each sensor s. This, referred to as partial consensus, has
also been proved very necessary for PHD-AA fusion [11],
[12], [14] and MB-AA fusion [9] and provides an effective
strategy to combat the variance increase side-effect of the
AA fusion [7]. For this purpose, there are two alternative
types of thresholds. Specify a (maximum) number Ng ≥ 1
or (minimum) probability threshold 0 < wg < 1, and only the
Ng hypotheses with the largest target hypotheses probabilities
from each MBM or the hypotheses with probability greater
than wg are disseminated and fused.

For computational efficiency, MBM may be approximated
by a single MB distribution in a “best-fit-of-mixture” way [37],
or simply by selecting a MB in the MBM that has the highest
global hypothesis weight [39]. Then, the fusing of MB can
be resorted to in the sense of AA fusion [9] or GA fusion
[24]–[26], [39]. Obviously, MB is a special case of MBM
when there is only one global hypothesis, namely |J| = 1.
This avoids the non-closure problem of the MBM-GA fusion
but seems unnecessary for the AA fusion which, as we have
addressed, can fuse MBMs exactly and directly. So far, it
remains unclear how to find a MBM to best approximate the
GA of MBMs. In view of this, the AA fusion is advantageous
over the GA fusion.

V. SIMULATIONS

We considered a planar space [0, 400]× [0, 400] which was
monitored by a sensor network of diameter 4 consisting of
9 sensors as shown in Fig 4. The trajectories of totally five
targets were generated using the method given in [29, Sec.
VI] using the following target birth and dynamics models:
The states of new born targets at time k were a Poisson
intensity 0.01 and an inaccurate Gaussian density with mean
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Fig. 4. Simulation scenario consisting of 9 sensors and 5 targets with various
trajectories. The existence times k, starting positions (red triangles) and ending
positions (red circles) of each target are shown.

[200, 0, 200, 0]
T and covariance diag([200, 2, 200, 2])2. Each

target had a constant survival probability 0.95. Denote by
xk = [px,k, ṗx,k, py,k, ṗy,k]

T the target state consisting of po-
sition [px,k, py,k]

T and velocity [ṗx,k, ṗy,k]
T, which followed

a nearly constant velocity motion given as (with the sampling
interval ∆ = 1s) transition density fk|k−1(xk|xk−1) =
N (xk;Fxk,Q) with

F = I2 ⊗
[

1 ∆
0 1

]
, Q = 0.01× I2 ⊗

[
∆3/3 ∆2/2
∆2/2 ∆

]
where ⊗ is the Kronecker product.

Each sensor had the same time-constant target detection
probability 0.8 and position measurement model as follows

zs,k =

[
1 0 0 0
0 0 1 0

]
xk +

[
vk,1
vk,2

]
, (27)

with vk,1 and vk,2 as mutually independent zero-mean Gaus-
sian noise with the same standard deviation of 1m.

In addition, clutter intensity is Poisson with rate κs = 10
and uniformly distributed over the sensing field of each sensor
s = 1, 2, · · · , 9. The simulation was performed 100 runs with
conditionally independent measurement series for each run.

The PMBM filter implementation used a maximum number
of global hypotheses Nmax = 50. Pruning was required for
the maintenance of both PPP and MBM. Weight thresholds
10−2 and 10−3 were used for prune the low-weighted hypothe-
ses and Poisson components, respectively. In the latter, BCs
whose existence probability lower than 10−2 were removed.
Ellipsoidal gating based on Mahalanobis distance with gate
4 was used for measurement-track association. For estimate
extraction from the PMBM, the global hypothesis with highest
weight was identified firstly. According to this hypothesis,
each BC with existence probability larger than threshold 0.4
were used for extracting an target estimate by taking the mean
of the BC, namely estimator 1 addressed in [36].

The filter performance is evaluated by the root mean
square (RMS)-based generalized optimal subpattern assign-
ment (GOSPA) error [56], which turns out to be a sum of
localization errors for the properly detected targets and a car-
dinality error for missed and false targets, i.e., dRMS-GOSPA =

dLoc + dCard with localization error (Loc-Err) and cardinality
error respectively defined as

dLoc(|X̂|, |X|) = min
π∈Π|X̂|

|X|∑
i=1

d(c)(xi, x̂π(i))
p
, (28)

dCard(|X̂|, |X|) = cp

2
(|X̂| − |X|), (29)

if |X̂| ≥ |X| otherwise dLoc(|X̂|, |X|) = dLoc(|X|, |X̂|),
dCard(|X̂|, |X|) = dCard(|X|, |X̂|), where π is a permutation on
{1, . . . , n}, Πn is the set of all permutations, and d(c)(x,y) =
min (d(x,y), c) is a metric between x and y cut-off at c.

We refer to the cardinality error as misdetection error (MD-
Err) and false-alarm error (FA-Err), respectively, depending
whether the estimated number of targets is larger or smaller
than the truth. We used c = 20, p = 2 in our simulation.
Different numbers T of flooding iterations from T = 0
(without applying any information communication between
sensors, namely noncooperative mode) to T = 4 (the flooding
algorithm is convergent) were applied. Further on, the dissem-
inated number Ng of hypotheses of each local sensor was set
as 1, 2 and 5, respectively.

The RMS GOSPA error, Loc-Err, FA-Err and MD-Err of
the PMBM filter at sensor 1 in the noncooperative mode or
the fusion mode using parameters T = 1 and Ng = 1 or
5 are given in Fig. 5. The mean errors of all PMBM filters
at different sensors versus T are given in Fig. 6, for Ng =
1, 2 and 5, respectively. Furthermore, the mean communication
cost (i.e., the number of real values be broadcasted by all
sensors) and computing time required for each filtering step
are given in Fig. 7. The results show:

1) The proposed MBM-AA fusion indeed improves the
filters, significantly reducing the GOSPA error as com-
pared with the non-cooperative filter. In particular, by
applying flooding only for one iteration (T = 1) and
only for disseminating a single hypothesis of each sensor
(Ng = 1) at each filtering step, the mean RMS GOSPA
error can be significantly reduced as much as about
60%. However, RMS-GOSPA/MD-error difference due
to using different Ng and T is non-obvious. This im-
plies that more hypotheses do not contribute much new
information. The RMS GOSPA reduction is mainly due
to the reduction of the MD error as clearly shown in
Fig. 5: they are almost equivalent and more significant
than FA error and localization error. This indicates that
misdetection forms a key challenge to the PMBM filter
when the target detection probability is low.

2) The localization error and FA error have been increased
by the proposed fusion as compared with the non-
cooperative mode. That is, the fusion does not make
the filter get better localization accuracy for confirmed
targets but may make the filter more prone to false
alarm. Even worse, more flooding iterations cause larger
FA and localization errors. The reasons could include:
1) fusion of a small number of (e.g., three) sensors
is sufficient to largely compress the misdetection of a
local sensor and more sensors do not help more; 2)
the proposed MBM-AA fusion do not help improving
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Fig. 5. RMS-GOSPA, Localization, FA, and MD errors of the PMBM filter
at sensor 1 versus filtering steps in noncooperative mode and fusion mode
using parameters T = 1 and Ng = 1 or 5, respectively.

the accuracy of any BCs including the significantly-
weighted one that is used for estimate extraction; see
our analysis in Section IV-E. Instead, it will reduce their
weights in the fused mixture.

3) Communication cost and computing time required for
fusion increase almost linearly with T and Ng .

Overall, the simulation in this particular scenario demon-
strates that it is sufficient to communicate only a single
highest-weighted hypothesis among neighbor sensors. The
gain is mainly from the reduced MD error, which is a
key component of the GOSPA error of the filter with low
target detection probability. It turns out to be unnecessary to
apply the flooding information sharing for multiple iterations
and multiple hypotheses, and for further than neighborhood.
These findings are based on MBM-AA fusion without M-
B/hypotheses merging and Bernoulli merging/pruning in the
fusion. Experimental studies in more complicated scenarios
and when proper MB/Bernoulli merging/pruning is applied
deserve to be investigated.

VI. CONCLUSION

In this paper, we demonstrate that the linear, arithmetic
average (AA) fusion essentially provides a theoretically best
fit to the mixture of the fusing distributions which retains the
complete information from these sources. The AA of multiple
multi-Bernoulli mixtures (MBMs) remains a MBM and so
it provides an exact, closed-form fusion solution for MBM
fusion. This closure has been advocated for distributed PMBM
filter design where the PMBM posterior is decomposed into
PPP and MBM and only a part of MBMs are involved
in the flooding communication and AA-fusion. Simulation
based on a linear system has been given for demonstrating
the performance of our approach including its strength and
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filters versus T for different parameters Ng = 1, 2 and 5, respectively.
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Fig. 7. Mean communication cost and computing time for each filtering step
versus T , for Ng = 1, 2 and 5, respectively.

limitations. The proposed exact MBM-AA fusion approach
benefits the filter significantly in combating misdetection but
not in improving localization accuracy for which further fusion
needs to be performed on the elemental Bernoulli components
contained in hypotheses of distinct sensors. This forms our
future research direction.
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[27] M. Üney, D. E. Clark, and S. J. Julier, “Distributed fusion of PHD filters
via exponential mixture densities,” IEEE J. Sel. Topics Signal Process.,
vol. 7, no. 3, pp. 521–531, Jun. 2013.
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