
P
os
te
d
on

28
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
23
62
24
9.
v
2
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/L

R
A
.2
02
1.
30
67
30
8

Three-Filters-to-Normal: An Accurate and Ultrafast Surface

Normal Estimator

Rui Fan 1, Hengli Wang 1, Bohuan Xue 1, Huaiyang Huang 1, Yuan Wang, 1, Ming Liu 1,
Ioannis Pitas 1, and Yuan Wang 1

1Affiliation not available

November 8, 2023

Abstract

Over the past decade, significant efforts have been made to improve the trade-off between speed and accuracy of surface normal

estimators (SNEs). This paper introduces an accurate and ultrafast SNE for structured range data. The proposed approach

computes surface normals by simply performing three filtering operations, namely, two image gradient filters (in horizontal

and vertical directions, respectively) and a mean/median filter, on an inverse depth image or a disparity image. Despite the

simplicity of the method, no similar method already exists in the literature. In our experiments, we created three large-scale

synthetic datasets (easy, medium and hard) using 24 3-dimensional (3D) mesh models. Each mesh model is used to generate

1800–2500 pairs of 480x640 pixel depth images and the corresponding surface normal ground truth from different views. The

average angular errors with respect to the easy, medium and hard datasets are 1.6 degrees, 5.6 degrees and 15.3 degrees,

respectively. Our C++ and CUDA implementations achieve a processing speed of over 260 Hz and 21 kHz, respectively. Our

proposed SNE achieves a better overall performance than all other existing computer vision-based SNEs. Our datasets and

source code are publicly available at: sites.google.com/view/3f2n.

1



1

Three-Filters-to-Normal: An Accurate and Ultrafast
Surface Normal Estimator

Rui Fan, Member, IEEE, Hengli Wang, Graduate Student Member, IEEE,
Bohuan Xue, Graduate Student Member, IEEE, Huaiyang Huang, Graduate Student Member, IEEE,

Yuan Wang, Ming Liu, Senior Member, IEEE, Ioannis Pitas, Fellow, IEEE

Abstract—Over the past decade, significant efforts have been
made to improve the trade-off between speed and accuracy
of surface normal estimators (SNEs). This paper introduces
an accurate and ultrafast SNE for structured range data. The
proposed approach computes surface normals by simply per-
forming three filtering operations, namely, two image gradient
filters (in horizontal and vertical directions, respectively) and a
mean/median filter, on an inverse depth image or a disparity
image. Despite the simplicity of the method, no similar method
already exists in the literature. In our experiments, we created
three large-scale synthetic datasets (easy, medium and hard)
using 24 3-dimensional (3D) mesh models. Each mesh model
is used to generate 1800–2500 pairs of 480×640 pixel depth
images and the corresponding surface normal ground truth from
different views. The average angular errors with respect to
the easy, medium and hard datasets are 1.6◦, 5.6◦ and 15.3◦,
respectively. Our C++ and CUDA implementations achieve a
processing speed of over 260 Hz and 21 kHz, respectively. Our
proposed SNE achieves a better overall performance than all
other existing computer vision-based SNEs. Our datasets and
source code are publicly available at: sites.google.com/view/3f2n.

Index Terms—surface normal, structured range data, filters,
synthetic datasets.

I. INTRODUCTION

REAL-TIME 3-dimensional (3D) object recognition is
a very challenging computer vision task [3]. Surface

normal is an informative and important feature descriptor used
in 3D object recognition [4]. Over the past decade, there has
not been much research on surface normal estimation, as it
is merely considered as an auxiliary functionality for other
computer vision applications. However, such applications are
generally required to perform in an online fashion, and thus,
the estimation of surface normals must be carried out ex-
tremely fast [4].

The surface normals can be estimated from either a 3D point
cloud or a depth/disparity image (see Figure 1). The former,
such as a LiDAR point cloud, is generally unstructured. Esti-
mating surface normals from unstructured range data usually
requires the generation of an undirected graph, e.g.a k-nearest
neighbor graph or a Delaunay tessellation graph. However, the
generation of such graphs is very computationally intensive.

R. Fan is with the Jacobs School of Engineering and the UCSD Health,
the University of California, San Diego, La Jolla, CA 92093, United States
(e-mail: rui.fan@ieee.org).

H. Wang, B. Xue, H. Huang, Y. Wang and M. liu are with the Robotics
Institute, the Hong Kong University of Science and Technology, Hong Kong
(e-mail: {hwangdf, bxueaa, hhuangat, ywangeq, eelium}@connect.ust.hk).

I. Pitas is with the School of Informatics, Aristotle University of Thessa-
loniki, Thessaloniki, Greece (e-mail: pitas@aiia.csd.auth.gr).

Therefore, in recent years, many researcher have been focused
on surface normal estimation from structured range data, i.e.,
depth/disparity images.

The existing surface normal estimators (SNEs) can be
classified as either computer vision-based [3]–[6] or machine
learning-based [7]–[13]. The former typically computes the
surface normals by fitting planar or curved surfaces to locally
selected 3D point sets, using statistical analysis or optimiza-
tion techniques, e.g., singular value decomposition (SVD) or
principal component analysis (PCA) [4]. On the other hand,
the latter generally utilizes data-driven classification/regression
models, e.g., convolutional neural networks (CNNs) to infer
surface normal information from RGB or depth images [12].

In recent years, with rapid advances in machine/deep learn-
ing, many researchers have resorted to deep convolutional
neural networks (DCNNs) for surface normal estimation. For
example, Xu et al. [7] utilized a so-called prediction-and-
distillation network (PAD-Net) to simultaneously solve two
continuous regression tasks (monocular depth prediction and
surface normal inference) and two discrete classification tasks
(scene parsing and contour detection). Similarly, Li et al.
[13] designed a DCNN model to learn the mapping from
multi-scale image patches to surface normals and monocular
depth. Such inferences were then refined using conditional
random fields (CRF) [14]. Furthermore, Bansal et al. [10]
built a skip-network model based on a pre-trained Oxford
VGG-16 CNN [15] for 2.5D surface normal prediction and
3D object recognition in 2D images. Recently, Huang et
al. [16] formulated the problem of densely estimating local
3D canonical frames from a single RGB image as a joint
estimation of surface normals, canonical tangent directions and
projected tangent directions. Such problem was then addressed
by a DCNN.

The existing data-driven SNEs are generally trained using
supervised learning techniques. Hence, they require a large
amount of labeled training data to find the best CNN pa-
rameters [13]. Additionally, such CNNs were not specifically
designed for surface normal estimation, because SNEs were
only used as an auxiliary functionality for other computer
vision applications, e.g., scene parsing [7], 3D object detection
[9], depth perception [13], etc. Furthermore, many robotics and
computer vision applications, e.g., autonomous driving, require
very fast surface normal estimation (in milliseconds). Unfor-
tunately, the existing machine/deep learning-based SNEs are
not that fast. Moreover, the accuracy achieved by data-driven
SNEs is still far from satisfactory (the average proportion
of good pixels, detailed in Section IV, is usually lower than
80%) [10], [13]. Most importantly, it can be considered more

sites.google.com/view/3f2n


2

Fig. 1. Surface normal estimation from depth/disparity images: (a) and (b) show three examples of RGB and depth images of the Augmented ICL-NUIM
dataset [1], respectively; (d) and (e) show three examples of RGB and disparity images of the Tsukuba stereo dataset [2], respectively; (c) and (f) show the
surface normals estimated from (b) and (e), respectively, using the proposed SNE.

reasonable to estimate surface normals from point clouds or
disparity/depth images rather than from RGB images. Hence,
there is a strong motivation to develop a lightweight SNE for
structured range data with high accuracy and speed.

The main novel contributions of this work are as follows:
a) A novel, accurate and ultrafast SNE is proposed. We

implement our SNE in Matlab C, C++ and CUDA. The source
code will be publicly available at IEEE Xplore for research
purposes. Compared with other computer vision-based SNEs,
the proposed SNE greatly improves the trade-off between
speed and accuracy.

b) Three datasets (easy, medium and hard) are created
using 24 3D mesh models. Each mesh model is used to
generate 1800–2500 depth images from different views. The
corresponding surface normal ground truth is also provided, as
3D mesh object models (rather than the objects themselves)
are available for surface normal ground truth generation.

The rest of this paper continues in the following manner:
Section II reviews the state-of-the-art computer vision-based
SNEs; Section III introduces our proposed SNE; the experi-
mental results and the performance evaluation are provided in
Section IV; in Section V, we discuss the applications of our
SNE; finally, Section VI summarizes the paper and provides
recommendations for future work.

II. RELATED WORK

This section provides an overview of computer vision-based
SNEs.

1) PlaneSVD SNE [17]: The simplest way to estimate the
surface normal of an observed 3D point pi = [x, y, z]⊤ in the
camera coordinate system (CCS) is to fit a local plane:

nx x + ny y + nz z + b = 0 (1)

to the points in Q+i = [Q⊤
i , pi]⊤, where Qi = [qi1, . . . , qik]⊤

(qi j , pi) is a set of k neighboring points of pi . The surface
normal ni = [nx, ny, nz]⊤ can be estimated by solving:

min
bi

������ [Q+i 1k+1

]
bi

������
2
, (2)

where bi = [n⊤
i , b]⊤ and 1m is an m-entry vector of ones. (1)

can be solved by factorizing Q+i into UΣV⊤ using SVD. b̂i

(the optimum bi) is a column vector in V corresponding to
the smallest singular value in Σ [4].

2) PlanePCA SNE [18]: ni can also be estimated by
removing the empirical mean q̄i =

1
k+1 (pi + Σ

k
j=1qi j) from

Q+i and rearranging (2) as follows:

min
ni

������ [Q+i − Q̄+i
]
ni

������
2
, (3)

where Q̄+i = 1k+1q̄⊤
i . Minimizing (3) is equivalent to perform-

ing PCA on Q+i and selecting the principal component with
the smallest covariance [4].

3) VectorSVD SNE [4]: A straightforward alternative to
fitting (1) to Q+i is to minimize the sum of the inner dot
products between ri j = qi j − pi and ni , namely,

min
ni

������ [Qi − 1kp⊤
i

]
ni

������
2
. (4)

This minimization is done by SVD.
4) AreaWeighted SNE [4]: A triangle can be formed by

a given pair of ri j and ri j+1, as defined above. A general
expression of averaging-based SNEs is as follows [4]:

ni =
1
k

k∑
j=1

wj

ri j × ri j+1

∥ri j × ri j+1∥2
, (5)

where wj is a weight and rik+1 = ri1. In AreaWeighted
SNE, the surface normal of each triangle is weighted by the
magnitude of its area:

wj =
1
2
∥ri j × ri j+1∥2. (6)

5) AngleWeighted SNE [4]: The weight wj of each triangle
relates to the angle between ri j and ri j+1:

wj = cos−1

(
⟨ri j, ri j+1⟩

∥ri j ∥2∥ri j+1∥2

)
, (7)

where ⟨·⟩ is a dot product operator.



3

6) FALS SNE [5]: The relationship between the Cartesian
coordinate system and the spherical coordinate system (SCS)
is as follows [5]:

pi = rivi = ri


sin θi cos ϕi

sin ϕi
cos θi cos ϕi

 , (8)

where ri ≥ 0, θi ∈ (−π, π] and ϕi ∈ (− π
2 ,

π
2 ]. Since all points

in Q+i are in a small neighborhood [5], their ri are considered
to be identical in FALS SNE. (2) and (8) result in:

min
ñi

������V+i ñi − si
������

2
, (9)

where V+i = [vi, vi1, . . . , vik]⊤, ñi = ni/b2 and si =
[r−1
i , ri−1

1 , . . . , ri
−1
k
]⊤.

7) SRI SNE [5]: Similar to FALS SNE, SRI SNE first
transforms the range data from the Cartesian coordinate system
to the SCS. ni is then obtained by computing the partial
derivative of the local tangential surface s:

ni = ∇s(θi, ϕi) =
[
ez, ex, ey

]
Ri


1

1
ri cosϕi

∂ri/∂θi
1
ri
∂ri/∂ϕi

 , (10)

where Ri is an SO(3) matrix with respect to θi and ϕi . ez , ex
and ey are the unit vectors in the z, x and y coordinate axes,
respectively. ∇s(θi, ϕi) can be obtained by applying standard
image convolutional kernels.

8) LINE-MOD SNE [3]: Firstly, the optimal gradient ∇z =
[∂z/∂u, ∂z/∂v]⊤ of a depth map is computed. Then, a 3D
plane is formed by three points p0, p1 and p2:

p0 = t(p̃i)z,

p1 = t
(
p̃i + [1, 0]⊤

)
(z + ∂z

∂u
),

p2 = t
(
p̃i + [0, 1]⊤

)
(z + ∂z

∂v
),

(11)

where t(p̃i) is the vector along the line of sight that goes
through an image pixel p̃i = [ui, vi]⊤ and is computed using
camera intrinsic parameters. The surface normal ni can be
computed using:

ni =
(p1 − p0) × (p1 − p2)

∥(p1 − p0) × (p1 − p2)∥2
. (12)

III. 3F2N SNE

In this paper, we propose a novel, highly accurate and
ultrafast SNE, which is simple to understand and use. Our
SNE can compute surface normals from structured range data
using three filters, namely, a horizontal image gradient filter, a
vertical image gradient filter and a mean/median filter. Hence,
we call it three-filters-to-normal (3F2N) SNE.

A 3D point pi = [x, y, z]⊤ in the CCS can be transformed
to p̃i = [u, v]⊤ using [19]:

z

u
v

1

 = Kpi =


fx 0 uo
0 fy vo
0 0 1



x
y

z

 , (13)

where K is the camera intrinsic matrix, po = [uo, vo]⊤ is the
image principal point, and fx and fy are the camera focal

lengths (in pixels) in the x and y directions, respectively.
Combining (1) and (13) results in:

1
z
= −1

b

(
nx

u − uo

fx
+ ny

v − vo

fy
+ nz

)
. (14)

Differentiating (14) with respect to u and v leads to:

∂1/z
∂u
= − nx

b fx
,

∂1/z
∂v
= −

ny
b fy

, (15)

which can be approximated by respectively performing hori-
zontal and vertical image gradient filters, e.g., Sobel, Scharr
and Prewitt, on the inverse depth image (an image storing
the values of 1/z). Rearranging (15) results in the following
expressions of nx and ny:

nx = −b fx
∂1/z
∂u

, ny = −b fy
∂1/z
∂v

. (16)

Given an arbitrary qi j ∈ Qi , we can compute the correspond-
ing nz j by plugging (16) into (1):

nz j = b
fx∆xi j

∂1/z
∂u + fy∆yi j

∂1/z
∂v

∆zi j
, (17)

where ri j = qi j −pi = [∆xi j,∆yi j,∆zi j]⊤. In this paper, k = 8
and Qi is an 8-connected neighborhood. Since (16) and (17)
have a common factor of −b, they can be simplified as:

nx = fx
∂1/z
∂u

, ny = fy
∂1/z
∂v

,

n̂z = −Φ
{
∆xi jnx + ∆yi jny

∆zi j

}
, j = 1, . . . , k,

(18)

where Φ{·} is a mean or median operator used to estimate nz .
Please note: if the depth value of pi is identical to those of all
its neighboring points qi j ∈ Qi , we consider that the direction
of its corresponding surface normal is perpendicular to the
image plane and simply set ni to [0, 0,−1]⊤. The performances
of estimating ni using the mean filter and using the median
filter will be compared in Section IV.

Specifically, for a stereo camera, fx = fy = f , and the
relationship between the depth z and disparity d is as follows:

z =
f tc
d
, (19)

where tc is the stereo rig baseline. Therefore,

∂1/z
∂u
=
∂1/z
∂d

∂d
∂u
=

1
f tc

∂d
∂u
,

∂1/z
∂v
=
∂1/z
∂d

∂d
∂v
=

1
f tc

∂d
∂v

.

(20)

Plugging (19) and (20) into (18) results in:

nx = ∂d/∂u, ny = ∂d/∂v,

n̂z = −Φ
{
∆xi jnx + ∆yi jny

∆zi j

}
, j = 1, . . . , k .

(21)

Therefore, our SNE can also estimate surface normals from a
disparity image using the three filters.



4

(a) (b) (c)

Fig. 2. eA comparisons with respect to different image gradient filters and mean/median filter: (a) easy dataset; (b) medium dataset; (c) hard dataset. Please
note: (a), (b) and (c) use different scales.

(a) (b) (c)

Fig. 3. eA comparisons with respect to different filter sizes: (a) easy dataset; (b) medium dataset; (c) hard dataset. Please note: (a), (b) and (c) use different
scales.

TABLE I
THE RUNTIME (MS) OF THE CPU IMPLEMENTATIONS (USING A SINGLE

THREAD) WITH RESPECT TO DIFFERENT IMAGE GRADIENT FILTERS AND
MEAN/MEDIAN FILTERS.

Gradient filter Mean filter Median filter
BG 3.722 10.973
Sobel 3.824 11.167
Scharr 3.848 11.355
Prewitt 3.743 11.065

TABLE II
THE RUNTIME (MS) OF THE GPU IMPLEMENTATIONS WITH RESPECT TO

DIFFERENT IMAGE GRADIENT FILTERS AND MEAN/MEDIAN FILTERS.

Method Jetson TX2 GTX 1080 Ti RTX 2080 Ti
BG-Mean 0.823521 0.049504 0.046944
Sobel-Mean 0.855843 0.052288 0.051232
Scharr-Mean 0.860319 0.052320 0.051280
Prewitt-Mean 0.857762 0.052256 0.050816
BG-Median 1.206337 0.102368 0.065536
Sobel-Median 1.217023 0.104608 0.067840
Scharr-Median 1.239041 0.105376 0.071008
Prewitt-Median 1.240479 0.105152 0.069024

IV. EXPERIMENTS

A. Datasets and Evaluation

In our experiments, we used 24 3D mesh models from
Free3D1 to create three datasets (eight models in each dataset).

1free3d.com

According to different difficulty levels, we name our datasets
“easy”, “medium” and “hard”, respectively. Each 3D mesh
model is first fixed at a certain position. A virtual range
sensor with pre-set intrinsic parameters is then used to capture
depth images at 1800–2500 different view points. At each
view point, a 480 × 640 pixel depth image is generated
by rendering the 3D mesh model using OpenGL Shading
Language2 (GLSL). However, since the OpenGL rendering
process applies linear interpolation by default, rendering sur-
face normal images is infeasible. Hence, the surface normal of
each triangle, constructed by three mesh vertices, is considered
to be the ground truth surface normal of any 3D points
residing on this triangle. Our datasets are publicly available
at: sites.google.com/view/3f2n. In addition to our datasets, we
also utilize the DIODE dataset3 [20] to evaluate the SNE
performance.

Furthermore, we utilize two metrics: a) the average angular
error (AAE) eA and b) the proportion of good pixels (PGP)
eP [6]:

eA =
1
m

m∑
k=1

ψk, eP(φ) =
1
m

m∑
k=1

δ(ψk, φ) (22)

to quantify the SNE accuracy, where:

δ(ψk, φ) =
{

0 (ψk > φ)
1 (ψk ≤ φ) , (23)

2www.opengl.org/sdk/docs/tutorials/ClockworkCoders/glsl_overview.php
3diode-dataset.org

free3d.com
sites.google.com/view/3f2n
www.opengl.org/sdk/docs/tutorials/ClockworkCoders/glsl_overview.php
diode-dataset.org


5

Fig. 4. Examples of the experimental results: (1)–(5) columns on (a), (d) and (g) rows show the 3D mesh models, depth images, surface normal ground truth
and the experimental results obtained using BG-Mean and BG-Median SNEs, respectively; (1)–(5) columns on (b), (e) and (h) rows show the angular error
maps obtained by PlaneSVD, PlanePCA, VectorSVD, AreaWeighted and AngleWeighted SNEs, respectively; (1)–(5) columns on (c), (f) and (i) rows show
the angular error maps obtained by FALS, SRI, LINE-MOD, BG-Mean and BG-Median SNEs, respectively.

ψk = cos−1
(

⟨nk, n̂k⟩
∥nk ∥2∥n̂k ∥2

)
, (24)

m is the number of 3D points used for evaluation, φ is the
angular error tolerance, and nk and n̂k are the estimated
and ground truth surface normals, respectively. In addition to

accuracy, we also record the SNE processing time t (ms) and
introduce a new metric:

π = eAt (degrees/kHz) (25)

to quantify the trade-off between the speed and accuracy of a



6

(a) (b) (c)

Fig. 5. eA comparisons among different computer vision-based SNEs: (a) easy dataset; (b) medium dataset; (c) hard dataset. Please note: (a), (b) and (c) use
different scales.

Fig. 6. Examples of the DIODE dataset: (a) RGB images; (b) depth images; (c) surface normal ground truth; (d) BG-Mean SNE results; (e) BG-Median
SNE results; (f) BG-Mean SNE error maps; (g) BG-Median SNE error maps.

given SNE. A fast and precise SNE achieves a low π score.

B. Filter Settings and Implementation Details

As discussed in Section III, nx and ny can be estimated by
convolving an inverse depth image or a disparity map with
image convolutional kernels, e.g., Sobel, Scharr, Prewitt, etc.
Hence, in our experiments, we first compare the accuracy
of the surface normals estimated using the aforementioned
convolutional kernels. Then, the brute-force search method is
utilized to find the best parameters for a 3 × 3 kernel. Our
experiments illustrate that the basic gradient (BG) kernel, i.e.,
[−1, 0, 1], can achieve the best overall performance.

We implement the proposed SNE in Matlab C and C++ on
a CPU and in CUDA on a GPU. The source code are publicly
available at: sites.google.com/view/3f2n. Similar to the FALS,
SRI and LINE-MOD SNE implementations provided in the
opencv_contrib repository,4 we use advanced vector extensions
2 (AVX2) and streaming SIMD (single instruction, multiple
data) extensions (SSE) instruction sets to optimize our C++
implementation. Since our approach estimates surface normals
from an 8-connected neighborhood, we also use memory
alignment strategies to speed up our SNE. In the GPU imple-
mentation, we first create a texture object in the GPU texture
memory and then bind this object with the address of the
input depth/disparity image, which greatly reduces the memory
requests from the GPU global memory.

4github.com/opencv/opencv_contrib

TABLE III
THE COMPARISONS OF RUNTIME (MS) AND π SCORES AMONG DIFFERENT

COMPUTER VISION-BASED SNES.

Method t (ms) π (degrees/kHz)
Easy Medium Hard

PlaneSVD [18] 393.69 813.87 2389.73 6923.18
PlanePCA [17] 631.88 1306.29 3835.59 11111.92
VectorSVD [4] 563.21 1199.63 3529.11 10142.34
AreaWeighted [4] 1092.24 2407.74 6843.56 18600.68
AngleWeighted [4] 1032.88 1850.00 5855.62 13693.24
FALS [5] 4.11 9.26 25.20 71.17
SRI [5] 12.18 32.18 81.66 238.78
LINE-MOD [3] 6.43 41.93 63.84 202.08
BG-Mean 3.72 7.96 24.80 56.96
BG-Median 10.97 18.18 62.38 168.03

C. Performance Evaluation

We first compare the performances of the proposed SNE
with respect to different image gradient filters (BG, Sobel,
Scharr and Prewitt) and mean/median filter. eA scores with
respect to the easy, medium and hard datasets are illustrated
in Figure 2. The runtime of our implementations on an Intel
Core i7-8700K CPU (using a single thread) and three state-of-
the-art GPUs (Jetson TX2, GTX 1080 Ti and RTX 2080 Ti)
is also given in Table I and II, respectively. We can see that
BG outperforms Sobel, Scharr and Prewitt in terms of eA on
all datasets. Also, using the median filter can achieve better
surface normal accuracy than using the mean filter, because an
nz candidate in (17) can differ significantly from the ground

sites.google.com/view/3f2n
github.com/opencv/opencv_contrib


7

TABLE IV
eP COMPARISON AMONG DIFFERENT COMPUTER VISION-BASED SNES WITH RESPECT TO DIFFERENT φ ON EASY, MEDIUM AND HARD DATASETS.

Method
eP

Easy Medium Hard
φ=10◦ φ=20◦ φ=30◦ φ=10◦ φ=20◦ φ=30◦ φ=10◦ φ=20◦ φ=30◦

PlaneSVD [18] 0.9648 0.9792 0.9855 0.8621 0.9531 0.9718 0.6202 0.7394 0.7914
PlanePCA [17] 0.9648 0.9792 0.9855 0.8621 0.9531 0.9718 0.6202 0.7394 0.7914
VectorSVD [4] 0.9643 0.9777 0.9846 0.8601 0.9495 0.9683 0.6187 0.7346 0.7848
AreaWeighted [4] 0.9636 0.9753 0.9819 0.8634 0.9504 0.9665 0.6248 0.7448 0.7977
AngleWeighted [4] 0.9762 0.9862 0.9893 0.8814 0.9711 0.9809 0.6625 0.8075 0.8651
FALS [5] 0.9654 0.9794 0.9857 0.8621 0.9547 0.9731 0.6209 0.7433 0.7961
SRI [5] 0.9499 0.9713 0.9798 0.8431 0.9403 0.9633 0.5594 0.6932 0.7605
LINE-MOD [3] 0.8542 0.9085 0.9343 0.7277 0.8803 0.9282 0.3375 0.4757 0.5636
BG-Mean 0.9563 0.9767 0.9864 0.8349 0.9423 0.9674 0.6191 0.7671 0.8368
BG-Median 0.9723 0.9829 0.9889 0.8722 0.9600 0.9766 0.6631 0.7821 0.8289

truth value, introducing significant noise to the mean filter. The
eA scores achieved using BG-Median SNE are approximately
1.0◦, 0.8◦ and 0.1◦ (with respect to the easy, medium and
hard datasets, respectively) higher than those obtained using
BG-Mean SNE. Furthermore, Figure 3 illustrates the values
of eA with respect to different filter sizes, where readers can
see that eA decreases gradually with the increase of the filter
size. However, median filter is much more computationally
intensive and time-consuming than the mean filter, because it
needs to sort eight nz candidates and find the median value.
From Table I and II, we can observe that both BG-Mean
SNE and BG-Median SNE perform much faster than real-time
across different computing platforms. The processing speed
of BG-Mean SNE is over 1 kHz and 21 kHz on the Jetson
TX2 GPU and RTX 2080 Ti GPU, respectively. Furthermore,
BG-Mean SNE performs around 1.4 to 2.1 times faster than
the BG-Median SNE. Therefore, the latter achieves the best
surface normal accuracy, while the former achieves the best
processing speed.

Moreover, we compare our SNE with all other computer
vision-based SNEs, as mentioned in Section II. Some exam-
ples of the experimental results are shown in Figure 4, where
it can be seen that the bad estimates mainly reside on the
object edges. Additionally, Figure 5 shows comparisons of eA
on the easy, medium and hard datasets, where we can find
that BG-Median SNE achieves the best eA score on the easy
dataset, while AngleWeighted SNE achieves the best eA scores
on the medium and hard datasets. Meanwhile, the eA scores
achieved by BG-Median SNE and AngleWeighted SNE are
very similar. The runtime (C++ implementations using a single
thread) and π scores achieved by the aforementioned SNEs are
given in Table III, where we can observe that the averaging-
based SNEs are the most time-consuming ones, while BG-
Mean SNE achieves the fastest processing speed. Furthermore,
BG-Mean, FALS and BG-Median SNEs occupy the first three
places, respectively, in terms of π score. Moreover, Table
IV compares their PGP scores with respect to different φ
on the easy, medium and hard datasets, where we can see
that AngleWeighted SNE achieves the best eP scores, except
for φ = 10◦ (hard dataset). However, according to Table
III, AngleWeighted SNE is extremely time-consuming and
achieves a very bad π score. On the other hand, BG-Median
SNE and AngleWeighted SNE achieve similar eP scores, but

(a) (b)

Fig. 7. 3D scene reconstruction comparison: (a) conventional 3D scene
reconstruction; (b) 3D scene reconstruction aided by our proposed SNE.

the former performs about 100 times faster than the latter.
In addition to our created datasets, we also use the DIODE

dataset [20] to compare the performances of the above-
mentioned SNEs. Examples of our experimental results are
shown in Figure 6. The runtime and average angular errors
obtained by different SNEs are given in Table V, where it can
be seen that BG-Mean SNE is the fastest among all SNEs,
while BG-Median SNE achieves the lowest average angular
errors. Therefore, 3F2N SNE outperforms all other state-of-
the-art computer vision-based SNEs in terms of both accuracy
and speed. Researchers can use either BG-Mean SNE or BG-
Median SNE in their work, according to their demand for
speed or accuracy.

V. DISCUSSION

A SNE can be applied in a variety of computer vision and
robotics tasks. In this section, we first use the ICL-NUIM
RGB-D dataset [21] to show an example of 3D geometry re-
construction benefiting from 3F2N SNE. Then, we discuss the
possibilities of using 3F2N SNE to improve the performance
of the state-of-the-art CNNs.

In our experiments, we first utilize an off-the-shelf regis-
tration algorithm provided by the point cloud library5 (PCL)
to match the 3D point cloud generated from each depth
image with a global 3D geometry model. The sensor poses
and motion trajectory can then be obtained. Meanwhile, we
integrate the surface normal information into the point cloud
registration process and acquire another collection of sensor
poses and motion trajectory. Then, we utilize ElasticFusion
[22], a real-time dense visual simultaneous localization and

5http://pointclouds.org/



8

Fig. 8. Examples of the Synthia-SF dataset: (a) RGB images; (b) disparity
images; (c) 3F2N SNE results.

TABLE V
THE RUNTIME (MS) AND eA COMPARISONS AMONG DIFFERENT

COMPUTER VISION-BASED SNES ON THE DIODE DATASET.

Method Runtime (ms) eA (degrees)
indoor outdoor

PlaneSVD [18] 883.458 10.8879 16.5789
PlanePCA [17] 1501.707 10.8879 16.5789
VectorSVD [4] 1327.847 10.8684 16.5143
AreaWeighted [4] 2522.729 10.8871 16.5597
AngleWeighted [4] 2661.607 10.7591 16.5453
FALS [5] 10.706 11.0715 16.6705
SRI [5] 39.075 11.1543 16.9029
LINE-MOD [3] 17.026 12.8388 17.2719
BG-Mean 9.511 11.2018 16.9811
BG-Median 30.193 10.5887 16.2544

mapping (SLAM) system, to reconstruct the 3D scenery using
the input RGB-D data and two collections of sensor poses
and motion trajectories. Two reconstructed 3D scenes are
illustrated in Figure 7, where it is obvious that the proposed
SNE can improve the 3D geometry reconstruction accuracy.
According to the quantitative analysis of our experimental
results, the 3D reconstruction accuracy can be improved by
approximately 19%, when using the surface normal informa-
tion obtained by 3F2N SNE.

Furthermore, we perform 3F2N SNE on the disparity images
provided in the Synthia-SF dataset [23]. Examples of the
experimental results are shown in Figure 8. It can be seen
that the 3D points on each planar (or near planar) surface,
such as a road or building side, possess similar surface
normals. Therefore, we believe that our proposed SNE can
be utilized to extract informative features for CNNs in various
autonomous driving perception tasks, such as semantic image
segmentation and freespace detection, without affecting their
training/prediction speed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a precise and ultrafast SNE
named 3F2N for structured range data. Our proposed SNE
can compute surface normals from an inverse depth image
or a disparity image using three filters, namely, a horizontal

image gradient filter, a vertical image gradient filter and
a mean/median filter. To evaluate the performance of our
proposed SNE, we created three datasets (containing about
60k pairs of depth images and the corresponding surface
normal ground truth) using 24 3D mesh models. Our datasets
are publicly available at https://sites.google.com/view/3f2n for
research purposes. According to our experimental results, BG
outperforms other image gradient filters, e.g., Sobel, Scharr
and Prewitt, in terms of both precision and speed. BG-Median
SNE achieves the best surface normal precision (1.6◦, 5.6◦ and
15.3◦ on easy, medium and hard datasets, respectively), while
BG-Mean SNE is most effective for minimizing the trade-
off between speed and accuracy. Furthermore, our proposed
3F2N SNE achieves better overall performance than all other
computer vision-based SNEs. We believe that our SNE can be
easily applied in various computer vision and robotics tasks,
e.g., autonomous driving, etc.

As a future work, we plan to use the proposed method
to learn depth prediction from monocular images, as many
methods have already applied the constraints between depth
and normal in monocular depth prediction.

REFERENCES

[1] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

[2] S. Martull, M. Peris, and K. Fukui, “Realistic cg stereo image dataset
with ground truth disparity maps,” in ICPR workshop TrakMark2012,
vol. 111, no. 430, 2012, pp. 117–118.

[3] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection of
textureless objects,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 5, pp. 876–888, 2011.

[4] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of
surface normal estimation methods for range sensing applications,”
in 2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 3206–3211.

[5] H. Badino, D. Huber, Y. Park, and T. Kanade, “Fast and accurate
computation of surface normals from range images,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 3084–3091.

[6] F. Lu, X. Chen, I. Sato, and Y. Sato, “Symps: Brdf symmetry guided
photometric stereo for shape and light source estimation,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 40, no. 1, pp.
221–234, 2017.

[7] D. Xu, W. Ouyang, X. Wang, and N. Sebe, “Pad-net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation
and scene parsing,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 675–684.

[8] P. Wang, X. Shen, B. Russell, S. Cohen, B. Price, and A. L. Yuille,
“Surge: Surface regularized geometry estimation from a single image,”
in Advances in Neural Information Processing Systems, 2016, pp. 172–
180.

[9] T. Hashimoto and M. Saito, “Normal estimation for accurate 3d mesh
reconstruction with point cloud model incorporating spatial structure,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 54–63.

[10] A. Bansal, B. Russell, and A. Gupta, “Marr revisited: 2d-3d alignment
via surface normal prediction,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 5965–5974.

[11] S. Tozza, W. A. Smith, D. Zhu, R. Ramamoorthi, and E. R. Hancock,
“Linear differential constraints for photo-polarimetric height estimation,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 2279–2287.

[12] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia, “Geonet: Geometric neural
network for joint depth and surface normal estimation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 283–291.

https://sites.google.com/view/3f2n


9

[13] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He, “Depth
and surface normal estimation from monocular images using regression
on deep features and hierarchical crfs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1119–
1127.

[14] H. M. Wallach, “Conditional random fields: An introduction,” Technical
Reports (CIS), p. 22, 2004.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[16] J. Huang, Y. Zhou, T. Funkhouser, and L. J. Guibas, “Framenet: Learning
local canonical frames of 3d surfaces from a single rgb image,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 8638–8647.

[17] K. Jordan and P. Mordohai, “A quantitative evaluation of surface normal
estimation in point clouds,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2014, pp. 4220–4226.

[18] K. Klasing, D. Wollherr, and M. Buss, “Realtime segmentation of range
data using continuous nearest neighbors,” in 2009 IEEE International

Conference on Robotics and Automation. IEEE, 2009, pp. 2431–2436.
[19] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.

Cambridge university press, 2003.
[20] I. Vasiljevic, N. Kolkin, S. Zhang, R. Luo, H. Wang, F. Z.

Dai, A. F. Daniele, M. Mostajabi, S. Basart, M. R. Walter, and
G. Shakhnarovich, “DIODE: A Dense Indoor and Outdoor DEpth
Dataset,” CoRR, vol. abs/1908.00463, 2019. [Online]. Available:
http://arxiv.org/abs/1908.00463

[21] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
Intl. Conf. on Robotics and Automation, ICRA, Hong Kong, China, May
2014.

[22] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “Elasticfusion: Dense slam without a pose graph.” Robotics:
Science and Systems, 2015.

[23] D. Hernandez-Juarez, L. Schneider, A. Espinosa, D. Vazquez, A. M.
Lopez, U. Franke, M. Pollefeys, and J. C. Moure, “Slanted stixels:
Representing san franciscos steepest streets,” in British Machine Vision
Conference (BMVC), 2017, 2017.

http://arxiv.org/abs/1908.00463

	I Introduction
	II Related Work
	III 3F2N SNE
	IV Experiments
	IV-A Datasets and Evaluation
	IV-B Filter Settings and Implementation Details
	IV-C Performance Evaluation

	V Discussion
	VI Conclusion and Future Work
	References

