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Abstract

In this paper, we revisit the asymptotic reverse-waterfilling characterization of the nonanticipative rate distortion

function (NRDF) derived for a time-invariant multidimensional Gauss-Markov processes with mean-squared error (MSE) dis-

tortion in [1]. We show that for certain classes of time-invariant multidimensional Gauss-Markov processes, the specific char-

acterization behaves as a reverse-waterfilling algorithm obtained in matrix form ensuring that the numerical approach of [1,

Algorithm 1] is optimal. In addition, we give an equivalent characterization that utilizes the eigenvalues of the involved matri-

ces reminiscent of the well-known reverse-waterfilling algorithm in information theory. For the latter, we also propose a novel

numerical approach to solve the algorithm optimally. The efficacy of our proposed iterative scheme compared to similar existing

schemes is demonstrated via experiments. Finally, we use our new results to derive an analytical solution of the asymptotic

NRDF for a correlated time-invariant two-dimensional Gauss-Markov process.

1



1

Asymptotic Reverse Waterfilling Algorithm of
NRDF for Certain Classes of Vector Gauss-Markov

Processes
Photios A. Stavrou and Mikael Skoglund

Abstract—In this paper, we revisit the asymptotic reverse-
waterfilling characterization of the nonanticipative rate distortion
function (NRDF) derived for a time-invariant multidimensional
Gauss-Markov processes with mean-squared error (MSE) dis-
tortion in [1]. We show that for certain classes of time-invariant
multidimensional Gauss-Markov processes, the specific charac-
terization behaves as a reverse-waterfilling algorithm obtained
in matrix form ensuring that the numerical approach of [1,
Algorithm 1] is optimal. In addition, we give an equivalent
characterization that utilizes the eigenvalues of the involved matri-
ces reminiscent of the well-known reverse-waterfilling algorithm
in information theory. For the latter, we also propose a novel
numerical approach to solve the algorithm optimally. The efficacy
of our proposed iterative scheme compared to similar existing
schemes is demonstrated via experiments. Finally, we use our
new results to derive an analytical solution of the asymptotic
NRDF for a correlated time-invariant two-dimensional Gauss-
Markov process.

Index Terms—Nonanticipative rate distortion function, vector-
valued Gauss-Markov processes, orthogonal matrices, commute
by pairs, simultaneous diagonalization, reverse-waterfilling.

I. INTRODUCTION

Tatikonda et al. in [2] studied the fundamental limitations of
a multidimensional closed-loop control system when a com-
munication link intervenes between a stochastic linear fully
observable time-invariant plant driven by a Gaussian noise
process and a controller whereas the performance criterion
is the classical linear quadratic cost. First, the authors of
[2] gave sufficient conditions for their problem to ensure the
control-theoretic separation principle between the feedback
controller and the state estimation when the channel is either
noiseless digital or noisy (and memoryless). Then, provided
these conditions hold, they showed that the optimal cost of
control can be cast by two terms, a full-knowledge cost due to
the fully observable state and a communication cost that can be
computed by a state estimation problem. To compute the com-
munication cost, they introduced a Gaussian sequential rate
distortion function (SRDF) defined by minimizing a variant
of directed information [3] subject to a pointwise mean squared
error (MSE) distortion function, a definition that is attributed
to Gorbunov and Pinsker in [4]. This information measure
when solved, it ensures a lower bound on the communication
cost irrespectively of whether the channel is noiseless or noisy.

P. A. Stavrou and M. Skoglund received funding by the KAW Foundation
and the Swedish Foundation for Strategic Research.

P. A. Stavrou and M. Skoglund are with the Department of Information
Science and Engineering, KTH Royal Institute of Technology, Sweden, email:
{fstavrou,skoglund}@kth.se.

For time-invariant scalar-valued Gauss-Markov processes,
the authors of [2] found an explicit expression of a lower
bound on the optimal communication cost by computing in
closed form the expression of the asymptotic Gaussian SRDF
(with an unbounded distortion budget for unstable processes).
The same expression (with a bounded distortion budget) was
already derived for stationary Gauss-Markov processes in [5,
Eq. (1.43)] (see also the more recent work in [6, Theorem
3]). For vector-valued Gauss-Markov processes, [2] showed
that the lower bound on the optimal communication cost
can be obtained subject to a reverse-waterfilling algorithm.
Unfortunately, as shown in [7], [8] the reverse-waterfilling
algorithm proposed in [2] gives a suboptimal solution to
the SRDF. Fortunately, a way to compute optimally the
lower bound on the communication cost for vector-valued
Gauss-Markov processes was recently proposed by Tanaka
et al. in [9]. Specifically, the authors in [9] proved that the
SRDF for multidimensional Gauss-Markov processes with
MSE distortion is semidefinite representable and thus readily
computable. Although this numerical approach is an im-
portant step, it lacks the insight of the parametric reverse-
waterfilling solution that may lead to analytical solutions
for this problem beyond scalar-valued processes. Moreover,
semidefinite programming (SDP) is a computationally expen-
sive choice to be implemented in modern delay-constrained
and computationally-limited devices and it does not adapt well
to high dimensional systems. Therefore, understanding the
correct reverse-waterfilling characterization that completely
solves the multidimensional case in [2] is still an important
open task to be accomplished.

Toward this end, Stavrou et al. in [10] characterized
the SRDF under the name nonanticipative rate distortion
function (NRDF), for a time-varying scalar-valued Gauss-
Markov process subject to a total (or average in time) MSE
distortion function and characterized it via the solution of
a dynamic reverse-waterfilling problem similar to the well-
known reverse-waterfilling of classical RDF [11, Theorem
10.3.3]. The authors of [12] characterized the NRDF for
time-varying vector-valued Gauss-Markov process subject to
total and pointwise MSE distortion function via the solution
of a dynamic reverse-waterfilling problem and they gave an
iterative approach that solves the problem optimally only when
all dimensions of the multi-input multi-output (MIMO) system
are active. This result was restricted to time-invariant processes
in [1].
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A. Contributions

In this paper, we use the asymptotic reverse-waterfilling
characterization of [1, Theorem 3] to obtain the following new
results.
(1) We show that for certain classes of time-invariant vector-

valued Gauss-Markov processes, [1, Theorem 3] simpli-
fies to a reverse-waterfilling algorithm obtained in matrix
form (see Theorem 2). Moreover, this reverse-waterfilling
algorithm has an equivalent form that amounts only to
the eigenvalues of the involved matrices (we refer to this
algorithm as the “eigenvalue form”) and is similar to
the classical reverse-waterfilling algorithm in information
theory (see Corollary 1);

(2) We construct an iterative scheme that computes optimally
the reverse-waterfilling algorithm obtained in eigenvalue
form (see Algorithm 1);

(3) We derive a closed form expression of the asymptotic
NRDF for a two-dimensional correlated Gauss-Markov
process subject to a MSE distortion (see §IV).

Discussion of the results. (1) The two equivalent forms of
the reverse-waterfilling algorithm, i.e., the matrix form and
the eigenvalue form, are obtained because in our analysis we
prove that for the specific classes of time-invariant Gauss-
Markov processes, all matrices commute by pairs hence they
are simultaneously diagonalizable by an orthogonal matrix
(an information lossless operation).1 (2) The iterative scheme
proposed herein is shown to execute much faster compared
to similar numerical approaches that solve the same problem,
e.g., [9], [1] and adapts extremely well to high dimensional
systems. (3) To the best of the authors knowledge, this is
the first non-trivial example of computing asymptotic NRDF
beyond scalar-valued Gauss-Markov processes.

The rest of the paper is structured as follows. In §II, we
give preliminaries and know results. In §III, we derive our new
results and in §IV we apply our results to compute analytically
an example. We draw conclusions and future directions in §V.

II. PRELIMINARIES AND KNOWN RESULTS

Notation: R denotes the set of real numbers, N0 the
set of nonnegative integers, and Nn0 , {0, . . . , n}, n ∈ N0.
Let X be a complete separable metric space, and BX be
the Borel σ-algebra on X . (Ω,F ,P) denotes a probability
space and X : (Ω,F) 7−→ (X ,BX ) a random variable,
PX(dx) ≡ P(dx) is the probability distribution induced by
X on (X ,BX ). The conditional distribution of another RVY
given X = x is denoted by PY |X(dy|X = x) ≡ P(dy|x).
Xn = (X0, . . . , Xn) denotes a sequence of RVs with con-
vention X−1 = (X−∞, . . . , X−1). We denote Σ � 0 (resp.,
Σ � 0) the symmetric positive-definite matrix (respectively,
symmetric positive-semidefinite matrix). When we write Σ �
Σ′ (resp. Σ � Σ′) we mean that Σ−Σ′ � 0 (resp. Σ−Σ′ � 0).
The determinant, trace and eigenvalues of a square matrix
Σ ∈ Rp×p are denoted by by |Σ|, trace(Σ), and diag(µΣ,i),
respectively, where µΣ,i denotes the ith eigenvalue of matrix

1For details on the definition of commuting matrices, orthogonal matrices
and the theorem that connects commuting matrices and simultaneously
diagonalizable matrices see Appendix A.

Σ. Ip is the Rp−valued identity matrix. E{·} denotes the
expectation operator and || · || denotes the Euclidean norm.

In rate distortion theory one is interested to reproduce
sequences of symbols Xn = xn generated by a source, by
their reproduction symbols Y n = yn, subject to a fidelity.
The distribution of the source is fixed and given by

P(dxn) ,
∏n

t=0
P(dxt|xt−1), (1)

The convention is at t = 0,P(dx0|x−1) = P(dx0). Following
[4], the channel that is used to reproduce Xn = xn generated
by a source, by the reproduction symbols Y n = yn, is
described by the conditional distribution2

P(dyn||xn) ,
∏n

t=0
P(dyt|yt−1, xt) (2)

and it is subject to a design or is found by an optimiza-
tion problem. Here the convention is P(dy0|y−1, x0) =
P(dy0|x0). By (1) and (2), the joint distribution is
P(dxn, dyn) , P(dxn) ⊗ P(dyn||xn) while P(dyt|yt−1) is
induced by the joint distribution P(dxn, dyn).
The NRDF of the source distribution (1) is defined through
the mutual information between Xn and Y n, i.e., I(Xn;Y n),
subject to a distortion or fidelity of reproducing Xn = xn

by Y n = yn based on (2). Given (1) and (2), the mutual
information is defined by

I(Xn;Y n) =
∑n

t=0
E

{
log

(
dP(·|Y t−1, Xt)

dP(·|Y t−1)

)}
. (3)

Next, we introduce the finite-time horizon NRDF and its
per unit time limit, henceforth, called asymptotic NRDF of a
time-invariant vector-valued Gauss-Markov process subject to
a MSE distortion function. This definition was introduced in
[4] and further analyzed in [2].

Definition 1: (Asymptotic Gaussian NRDF with MSE dis-
tortion)
Let Xt be the time-invariant Rp-valued Gauss-Markov process

Xt+1 = AXt +Wt, t ∈ Nn0 , (4)

where A ∈ Rp×p is a deterministic matrix, X0 ∼ N (0; ΣX0
)

is the initial state with ΣX0 � 0, and Wt ∈ Rp ∼ N (0; ΣW ),
ΣW � 0, is a white Gaussian noise process independent of
X0. The finite-time horizon NRDF is defined by

Rna
0,n(D) , inf

P(dyn||xn)

1

n+ 1
I(Xn;Y n). (5)

s.t.
1

n+ 1

∑n

t=0
E‖Xt − Yt‖2 ≤ D (6)

assuming existence of the infimum exists and it is finite. The
per unit time limit, called asymptotic (5) is defined by

Rna(D) , lim
n→∞

Rna
0,n(D), (7)

provided both infimum and limit exist and they are finite.
An upper bound on Rna(D) is the following expression:

R̂na(D) , inf
P(dy∞||x∞)

lim
n→∞

1

n+ 1
I(Xn;Y n), (8)

s.t.
1

n+ 1

∑n

t=0
E‖Xt − Yt‖2 ≤ D

2The notation P(·||·) is adopted from [13].
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provided the infimum and the limit exist and finite, where
P(dy∞||x∞) denotes the sequence of conditional probability
distributions P(dyt|yt−1, xt), t ∈ N0. It should be mentioned
that for stationary or time-invariant Gauss-Markov process it
is shown in [4, Theorem 4] (see also [8, Theorem 1]) that
Rna(D) = R̂na(D).

It is well-known that the optimization problem of (7) is
convex with respect to the set of test channels P(dyn||xn)
that satisfy the average (over time) MSE distortion, for
D ∈ (0, Dmax) ⊆ (0,∞), and there exists an optimal
solution characterizing it under general source distributions
and distortion functions (see, e.g., [14]). By [12], the optimal
“test channel” corresponding to R0,n(D) is of the form

P∗(dyt|yt−1, xt) = P∗(dyt|yt−1, xt), t ∈ N0, (9)

that is non necessarily time-invariant, while the corresponding
joint process {(Xt, Yt) : t ∈ N0} is not necessarily stationary.
Further, by [15] the joint process {(Xt, Yt) : t ∈ N0} is
jointly Gaussian (this is also shown in [2]). Moreover, [12]
showed that for a multidimensional Gauss-Markov processes
with average (over time) total MSE distortion constraint,
the conditionally Gaussian optimal minimizer of a jointly
Gaussian process is of the form

P∗(dyt|yt−1, xt) = P∗(dyt|yt−1, xt), t ∈ N0. (10)

A similar result for per-letter MSE distortion is derived in [5,
Theorem 5].

The next result is derived in [16, Theorem 3].
Lemma 1: Suppose that any P∗(dyt|yt−1, xt) is time-

invariant and there output distribution P∗(dyt|yt−1) is also
time-invariant with a unique invariant distribution. Then, the
following holds.
(1) For D > 0, if Rna(D) <∞, then, it is given by

Rna(D) = inf
∆�0: trace(∆)≤D

1

2
log
|Λ|
|∆|

s.t. 0 ≺ ∆ � Λ

. (11)

(2) The asymptotic optimal reproduction distribution is real-
ized by

Yt = HXt + (I −H)AYt−1 + V ct , (12)

where

H , I −∆Λ−1 � 0, ΣV , ∆HT � 0, (13)
Λ = A∆AT + ΣW , ∆ � 0, Λ � 0. (14)

Next, we state the solution of (11) when solving the KKT
conditions [17]. This result is derived in [1, Theorem 3] and
it is a consequence of the derivation in [12, Appendix].

Theorem 1: (Reverse-waterfilling characterization)
The parametric solution subject to a reverse-waterfilling

algorithm that corresponds to (11) is the following.

Rna(D) =
1

2
log
|Λ|
|∆|

, (15)

such that

∆ =


∆∗1, if ∆ ≺ Λ,

∆∗2, if ∆ � Λ,

Λ, otherwise
(16)

where ∆∗1 � 0 is the solution of the algebraic Riccati equation(
−I

2

)
∆∗1 + ∆∗1

(
−I

2

)
−∆∗1B∆∗1 +

1

2θ
I = 0, (17)

B , ATΣ−1
W A, (18)

and ∆∗2 � 0 is the solution of the algebraic Riccati equation(
−I

2

)
∆∗2 + ∆∗2

(
−I

2

)
−∆∗2B∆∗2 + Υ−1 = 0, (19)

Υ , 2(θI + F2 −ATF2A), Υ = ΥT � 0, (20)

with θ > 0 and F2 = F T
2 � 0 such that

trace(∆) = D, F2(∆− Λ) = 0. (21)

Remark 1: (Comments on Theorem 1)
The characterization of Theorem 1 is derived based on the
algebraic Riccati equations (17), (19). (17) allocates the dis-
tortion when there is no reverse-waterfilling in dimension, i.e.,
when ∆ ≺ Λ. On the contrary, (19) takes care the distortion
allocation at each dimension when some dimensions or all are
inactive. This corresponds to ∆ � Λ. Unfortunately, finding
F2 in (19) is very challenging, in general. Therefore, in [1,
Algorithm 1], the authors proposed a numerical approach to
compute (17) optimally, i.e., ∆ ≺ Λ.

In this paper, we show that for certain classes of multivariate
Gauss-Markov processes, the characterization in Theorem 1 is
independent of (19) and consequently of the condition F2(∆−
Λ). Hence, for these classes of sources, the numerical approach
derived in [1, Algorithm 1] is optimal.

III. NEW RESULTS

In this section, we derive our main results.
First, we prove the following proposition.
Proposition 1: (Matrix structure of (A,ΣW ))

Suppose that in (4) the matrix structure of the pair (A, ΣW )
satisfies one of the following three cases:
(i) A = αIp (scalar matrix) and ΣW � 0;

(ii) A is symmetric and ΣW = σ2
wIp (scalar matrix), where

σ2
w > 0.

(iii) A = ΣW � 0;
Then, in (11) (A, ∆, ΣW ) commute by pairs which means
that Λ and ∆ commute.3

Proof: See Appendix B.
Proposition 1 essentially reveals structural conditions on

(4) such that all matrices of the optimization problem in
(11) commute by pairs. Using this result, we now prove the
following main result.

Theorem 2: (Asymptotic reverse-waterfilling algorithm:
matrix form)
Suppose that the conditions of Proposition 1 hold. Then, the
characterization of Theorem 1 can be simplified as the follows.

Rna(D) =
1

2
log
|Λ|
|∆|

, (22)

3The definition of commuting matrices and its generalization of commuting
matrices by pairs is given in Definition 2 in Appendix A.
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such that

∆ =

{
∆∗, if ∆ ≺ Λ,

Λ, otherwise
(23)

where ∆∗ � 0 is the solution of the algebraic Riccati equation(
−I

2

)
∆∗ + ∆∗

(
−I

2

)
−∆∗B∆∗ +

1

2θ
I = 0, (24)

with θ > 0 such that trace(∆) = D.
Proof: Under the conditions of Proposition 1, we can

reformulate Theorem 1 as follows:

Rna(D) =

p∑
i=1

Rna
i , R

na
i ,

1

2
log

(
µΛ,i

µ∆,i

)
. (25)

µ∆,i =


µ∆∗1 ,i

, if µ∆,i < µΛ,i,

µ∆∗2 ,i
if µ∆,i ≤ µΛ,i,

µΛ,i, otherwise
, ∀i, (26)

where µΛ,i = µA2,iµ∆,i+µΣW ,i, µ∆∗1 ,i
> 0 is computed from

the quadratic equation

µ∆∗1
2,iµB,i + µ∆∗1 ,i

− 1

2θ
= 0, ∀i, (27)

with µB,i ,
µA2,i

µΣW ,i
, and µ∆∗2 ,i

> 0 is computed from the
quadratic equation

µ∆∗2
2,iµB,i + µ∆∗2 ,i

+
1

2(θ + (1− µA2,i)µF2,i)
= 0, ∀i,

(28)

with θ > 0 and µF2,i ≥ 0 such that
p∑
i=1

µ∆,i = D, µF2,i(µ∆,i − µΛ,i) = 0, ∀i. (29)

The above equivalent characterization of Theorem 1 follows
because all matrices (A,∆,ΣW ,Λ, F2) commute by pairs
and they are simultaneously diagonalizable by an orthogonal
matrix.4 Clearly, from (25) and the third constraint of (26)
we can easily see that whenever µΛ,i ≤ µ∆,i, for any i,
Rna
i = 0. This also means that the second condition of (26)

is always satisfied once the other two conditions are imposed
in (26). Hence without any loss of optimality we can remove
the second condition of (26) and consequently (28). This also
means that the condition µF2,i(µ∆,i−µΛ,i) = 0, ∀i is always
satisfied and can be removed.
Hence the resulting asymptotic reverse-waterfilling character-
ization of (25)-(29) without (28) can also be written as an
equivalent asymptotic reverse-waterfilling characterization in
matrix form given by (22)-(24). This completes the derivation.

A way to solve optimally Theorem 2 is already proposed
in [1, Algorithm 1]. That numerical scheme is shown to
operate faster compared to the SDP algorithm proposed in
[9, Eq. (27)] because it only schedules the rate-distortion
allocation based on the already solved optimization problem
in (11) (obtained in the form of an algebraic Riccati equation)

4This follows from Theorem 3 in Appendix A.

whereas SDP solver uses interior point methods to solve the
optimization problem (11) which are computationally much
more expensive.

Although the characterization of Theorem 2 is attractive,
one may claim that it is not the same as the classical form of a
reverse-waterfilling algorithm, see, e.g., [11, Theorem 10.3.3].
For this reason, we reformulate the asymptotic reverse-
waterfilling algorithm of Theorem 2 into an equivalent form
that is similar to the classical form of a reverse-waterfilling
algorithm in information theory. We refer to this form of the
reverse-waterfilling algorithm as the eigenvalue form.

Corollary 1: (Asymptotic reverse waterfilling algorithm:
eigenvalue form)
Under the conditions of Proposition 1, the parametric solution
subject to an asymptotic reverse-waterfilling algorithm that
corresponds to (11) is the following.

Rna(D) =
1

2

p∑
i=1

log

(
µΛ,i

µ∆,i

)
, (30)

where µΛ,i = µA2,iµ∆,i + µΣW ,i, and µ∆,i is computed by
the reverse-waterfilling algorithm

µ∆,i =

{
µ∆∗,i, if µ∆,i < µΛ,i,

µΛ,i, otherwise
, ∀i, (31)

where µ∆∗,i > 0 is given by

µ∆∗,i =
1

2µB,i

(√
1 +

2µB,i
θ
− 1

)
, if µB,i 6= 0, ∀i,

µ∆∗,i =
1

2θ
, if µB,i = 0

(32)

where µB,i ,
µA2,i

µΣW ,i
and θ > 0 is chosen such that∑p

i=1 µ∆,i = D.
Proof: The proof is immediate from the derivation of

Theorem 2. Note that (32) is the positive solution of the
quadratic equation (27).

In Algorithm 1 we propose an iterative scheme to solve
optimally the reverse-waterfilling algorithm of Corollary 1.
This approach is similar to the dynamic reverse-waterfilling
algorithm proposed in [18, Algorithm 1] (see also [10, Algo-
rithm 1]) but instead of the time index we now have the spatial
(or dimension) index.

Comparison of existing algorithms that solve optimally
(11): In what follows, we demonstrate a simulation experi-
ment where we consider matrix structure for (A, ΣW ) within
the two classes of vector-valued time-invariant Gauss-Markov
processes introduced in Proposition 1 and a given distortion
level D. Then, we solve (11) using the eigenvalue form of
Algorithm 1, the equivalent matrix form that can be solved
using [1, Algorithm 1] and the SDP approach of [9, Equation
(27)]. We try three distinct experiments where for each we
change the number of dimensions of the system. Our aim
is twofold. First, to study if Algorithm 1 is faster than [1,
Algorithm 1] that in turn is known to be much faster than [9,
Equation (27)]. Second, to study its scalability by increasing
the dimensions of the system.

To illustrate this point, in Table I, we provide for the
first two examples the mean and the standard deviation of
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Algorithm 1 Reverse-waterfilling algorithm of Corollary 1

Initialize: number of spatial components p; distortion level
D; error tolerance ε; nominal minimum and maximum value
θmin = 0 and θmax = p

2D ; pick an initial variance for
µΛ,1; pick the matrix structure of (A, ΣW ) in (4) and their
corresponding eigenvalues {(µA,i, µΣW ,i) : i ∈ Np1} .
Set θ = p/2D; flag = 0.
while flag = 0 do

Compute µ∆,i ∀ i as follows:
for i = 1 : p do

Compute µ∆∗,i according to (32).
Compute µ∆,i according to (31).

end for
if
∑p
i=1 µ∆,i −D ≥ ε then

Set θmin = θ.
else

Set θmax = θ.
end if
if θmax − θmin ≥ ε then

Compute θ = (θmin+θmax)
2 .

else
flag← 1

end if
end while
Output: {µ∆,i : i ∈ Np1}, {µΛ,i : i ∈ Np1}, for a given
distortion level D.

the computational time needed for each of the three optimal
numerical methods to execute over a sample of 1000 instances.
All algorithms operate using an error tolerance ε = 10−9. For
the last example we could not extract conclusive results for
SDP because to execute over a sample of 1000 instances it
takes days. For the first experiment we assume 10 × 10

Solver (Numb. dimens. p = 10) Mean Stand. Deviation
SDP [9] (by default ε = 10−9) 0.701 0.0859
Algorithm 1 [1] (ε = 10−9) 0.031 0.0038
Algorithm 1 (ε = 10−9) 5.24×10−4 2.52×10−4

Solver (Numb. dimens. p = 50) Mean Stand. Deviation
SDP [9] (by default ε = 10−9) 138.017 5.86
Algorithm 1 [1] (ε = 10−9) 0.8317 0.0617
Algorithm 1 (ε = 10−9) 8.14×10−4 4.59×10−4

Solver (Numb. dimens. p = 150) Mean Stand. Deviation
SDP [9] (by default ε = 10−9) non-conclusive non-conclusive
Algorithm 1 [1] (ε = 10−9) 4.551 0.1736
Algorithm 1 (ε = 10−9) 0.002 5.19×10−4

TABLE I: Comparison of the computational time needed
between SDP in [9], [1, Agorithm 1] and Algorithm 1 for
1000 instances.

symmetric matrices. Our results demonstrate that Algorithm 1
is extremely fast operating around 1300 times faster than SDP
and is significantly faster than [1, Algorithm 1] (around 60
times). By increasing the number of dimensions in the opti-
mization problem (we assume 50×50 symmetric matrices), the
results are even more impressive. Algorithm 1 is still extremely
fast operating around 1000 times faster than [1, Algorithm 1]

and more than 140000 times faster than SDP. By assuming a
relatively high-dimensional system (i.e., 150× 150 symmetric
matrices) we observe that Algorithm 1 is significantly faster
than [1, Algorithm 1] (more than 2000 times).

Overall, the previous experiments show that Algorithm 1 is
an elegant and more preferable choice to be implemented in
modern delay-constrained and computationally-limited devices
like the architectures of networked control systems, compared
to SDP or [1, Algorithm 1]. It is very fast and adapts extremely
well in high dimensional systems (it is scalable).

Note that both Algorithm 1 and [1, Algorithm 1] can allow
for different levels of tolerance (and thus become faster or
slower accordingly). The choice of ε = 10−9 is made to
achieve the same accuracy with the SDP solver.

IV. EXAMPLE WITH ANALYTICAL SOLUTION

In this section, we give an example in which we derive an
analytical solution of Rna(D) for a correlated time-invariant
R2-valued Gauss-Markov process. This is feasible because we
choose (A, ΣW ) to be in the class of matrices that satisfy
the conditions of Proposition 1. We compare our analytical
solution to the optimal numerical solution of [9, Equation
(27)].

We consider a R2-valued time-invariant Gauss-Markov pro-
cess with parameters

(A, ΣW ) =

([
1 −0.5
−0.5 1

]
,

[
1 0
0 1

])
. (33)

Clearly, the matrix structure in (33) is in the class of matrices
that satisfy the conditions of Proposition 1. We will use
Theorem 1, to derive a closed form solution for Rna(D) for
this specific correlated time-invariant Gauss-Markov source.
We solve the full-rank case, i.e., when ∆ ≺ Λ that corresponds
to the algebraic Riccati equation (17), and, the rank-deficient
case, i.e., when ∆ � Λ that corresponds to the algebraic
Riccati equation (19). We will show that (19) is never used to
obtain the optimal solution something expected from Theorem
2. We note that the last case in (16) requires zero rate, hence
for this case the problem’s solution is trivial.
Full-rank Solution (∆ ≺ Λ): First, we use the spectral rep-
resentation or eigenvalue decomposition of the real symmetric
matrix ∆∗1 ≡ ∆ of (17) which means that for an orthogonal
matrix U ∈ Rp×p, then, U T∆U = diag(µ∆,i). This transforms
(17) to the following matrix equation:

diag(µ∆,i)U
TBU diag(µ∆,i) + diag(µ∆,i)−

1

2θ
I = 0. (34)

Observe that in (34), the equation is satisfied if and only if
U TBU is diagonal. Since,

B =

[
1.25 −1
−1 1.25

]
(35)

we can obtain an orthogonal matrix U of the form:

U =

[
−
√

2
2

√
2

2√
2

2

√
2

2 .

]
(36)

From (34), we observe that U is the orthogonal matrix that
simultaneously diagonalizes (A,ΣW ,∆) and also Λ (This is
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expected from Proposition 1). Clearly, (34) can be reformu-
lated in the equivalent eigenvalue form of (27) as expected
from the derivation of Theorem 2 (see Corollary 1) . In
this example, we put eigenvalues in a matrix form for better
illustration of our results.
By substituting (35), (36) in (34) we obtain:

∆ =

[
µ∆,1 0

0 µ∆,2

]
, (37)

where

µ∆,1 = −2

9
± 2

9

√
1 +

9

2θ
, (38a)

µ∆,2 = −2± 2

√
1 +

1

2θ
. (38b)

Note that one of the solutions of (38a), (38b) is rejected
because it is negative hence the resulting matrix ∆ is:

∆ =

 2
9

(√
1 + 9

2θ − 1
)

0

0 2
(√

1 + 1
2θ − 1

)
 . (39)

In order to find Λ we use (14). This means that we need
the eigenvalue decomposition of matrix A. This gives:

U TAU =

[
3
2 0
0 1

2

]
. (40)

Using (39) and (40) in (14) we obtain:

Λ =

[
( 3

2 )2µ∆,1 + 1 0
0 ( 1

2 )2µ∆,2 + 1

]
. (41)

Now, we use the left hand side (LHS) equation in (21) to
obtain an additional equation which is used to find θ. By
substituting (39) in (21) we obtain:

2

9

(√
1 +

9

2θ
− 1

)
+ 2

(√
1 +

1

2θ
− 1

)
= D. (42)

Equation (42) gives two positive solutions. Using Lagrange
duality theorem [19] we choose the one that results into greater
rates and discard the one that gives the lower rates. This chosen
θ is as follows:

θ =
1

D2

2 +D(−µ∆,1 + 2)− µ∆,1(−µ∆,1

2 + 2)
, (43)

where

µ∆,1 =

√
(D + 4)(9D + 4)− (D + 4)

8
, (44a)

µ∆,2 =
(9D + 4)−

√
(D + 4)(9D + 4)

8
. (44b)

Using (44) we can compute Λ in (41) which is given by:

µΛ,1 =
9

4

(√
(D + 4)(9D + 4)− (D + 4)

8

)
+ 1, (45a)

µΛ,2 =
1

4

(
(9D + 4)−

√
(D + 4)(9D + 4)

8

)
+ 1. (45b)

Next, we compute the individual rates and the total sum rate
over both dimensions.

Rna(D) =
1

2
log
|Λ|
|∆|

=
1

2

2∑
i=1

log

(
µΛ,i

µ∆,i

)
(46)

(a)
=

1

2

{
log

(
9

4
+

1

µ∆,1

)
+ log

(
1

4
+

1

µ∆,2

)}
(47)

(b)
=

1

2

{
log

(
9

4
+

8√
(D + 4)(9D + 4)− (D + 4)

)

+ log

(
1

4
+

8

(9D + 4)−
√

(D + 4)(9D + 4)

)}
, (48)

where (a) follows from (39), (41); (b) follows by substituting
(44), (45) in (47). Recall that (48) holds if and only if µ∆,i <
µΛ,i, i = 1, 2, which means that

µmax
∆,1 ≡ µΛ,1 =

9

4
µ∆,1 + 1, |µA,1| = 1.5 > 1, (49)

µmax
∆,2 ≡ µΛ,2 =

1

1− µA2,2
=

4

3
, |µA,2| = 0.5 < 1. (50)

Rank-Deficient Solution (∆ � Λ): Again, we need to
solve (19) such that the right hand side (RHS) equation of
(21) is satisfied. First, observe that the RHS equation of (21)
implies that ∆ − Λ � 0 and F2 = F T

2 � 0 commute because
they give zero matrix which is a symmetric matrix. Moreover,
from Proposition 1 we have that (Λ,∆, F2, A,ΣW ) commute
by pairs, hence they are simultaneously diagonalizable by an
orthogonal matrix U similar to (34). This implies the study of
the following two cases:
Case 1: µ∆−Λ,1 > 0 and µ∆−Λ,2 = 0 which in turn means
that µ∆,1 < µΛ,1 and µ∆,2 = µΛ,2. Since µ∆,2 = µΛ,2 then,
from the RHS equation of (21) we require µF2,2 > 0 whereas
µF2,1 = 0.
Case 2: µ∆−Λ,1 = 0 and µ∆−Λ,2 > 0 which in turn means
that µ∆,1 = µΛ,1 and µ∆,2 < µΛ,2. Since µ∆−Λ,1 = 0 we
require µF2,1 > 0 whereas µF2,2 = 0.

Case 1: Upon solving (20) we obtain:

Υ =

[
θ 0
0 θ + 3

4µF2,2

]
. (51)

Moreover, by solving (19) we obtain:

∆ =

 2
9

(√
1 + 9

2θ − 1
)

0

0 2

(√
1 + 1

2(θ+ 3
4µF2,2)

− 1

) .
(52)

Additionally, using (14) we obtain Λ as follows:

Λ =

[
9
4µ∆,1 + 1 0

0 4
3

]
. (53)

where µΛ,2 is obtained because µ∆,2 = µΛ,2 (from
(50)). We observe that in this case, the term µ∆,2 =

2

(√
1 + 1

2(θ+ 3
4µF2,2)

− 1

)
in (52) is not required. This is
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expected because of our main result in Theorem 2. Hence, the
LHS term of (21) gives:

2

9

(√
1 +

9

2θ
− 1

)
= D − 4

3
. (54)

The solution of (54) gives

θ =
1

9D2

2 − 10D + 48
9

. (55)

Substituting (55) and the fact that µ∆,2 = µΛ,2 in (52) we
obtain:

∆ =

 2
9

(√
1 + (9D−8)(9D−12)

4 − 1

)
0

0 4
3

 . (56)

Hence, for case 1 the sum rate is obtained as follows:

Rna(D) =
1

2
log
|Λ|
|∆|

=
1

2

2∑
i=1

log

(
µΛ,i

µ∆,i

)
,

(c)
=

1

2

log

(
9

4
+

1

µ∆,1

)
+ log

(
µΛ,2

µ∆,2

)
︸ ︷︷ ︸

=0


=

1

2
log

9

4
+

1

2
9

(√
1 + (9D−8)(9D−12)

4 − 1

)
 . (57)

where (c) follows from (53) and (56). Recall that (57) holds
if and only if µ∆,1 < µΛ,1.

Case 2: Upon solving (20) we obtain:

Υ =

[
θ − 5

4µF2,1 0
0 θ

]
. (58)

Moreover, by solving (19), we obtain:

∆ =

 2
9

(√
1 + 9

2(θ− 5
4µF2,1)

− 1

)
0

0 2
(√

1 + 1
2θ − 1

)
 .
(59)

However, for this case we can observe that µΛ,1 can never be
equal to µ∆,1 because the source is unstable (see, eq. (49)).
Moreover, even if one assumes that µΛ,1 = µ∆,1 this will mean
that µ∆,1 < 0 which is incorrect. Hence, Case 2 can never be
observed in this example.

In Fig. IV.1 we illustrate a comparison between the closed
form solution for this R2-valued Gauss-Markov process and
the optimal numerical solution obtained via SDP for D ∈
[0.5, 10].

Discussion. The analytical solution of Rna(D) is one small
step towards more general analytical solutions within the
classes of time-invariant multidimensional Gauss-Markov pro-
cesses considered in this note. From the steps involved to
compute Rna(D) for the specific vector source, it is clear that
the characterization of Theorem 1, (19) is not needed (matrix
F2 is never used). This is expected from our Theorem 2.

1 2 3 4 5 6 7 8 9 10
Distortion, [D]

0.5

1

1.5

2

2.5

R
at

e,
 [R

] (
bi

ts
)

SDP
Closed form solution
log|A|

Fig. IV.1: Comparison of SDP with the closed form expression
of Rna(D).

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we considered certain classes of time-invariant
multidimensional Gauss-Markov process which ensure that all
matrices in the optimization problem (11) commute by pairs
and thus they are simultaneously diagonalizable. As a result of
this feature, we showed that the asymptotic reverse-waterfilling
characterization of [1] can be simplified considerably and it is
equivalent to a reverse-waterfilling algorithm obtained only by
the eigenvalues of the involved matrices. For the latter algo-
rithm, we proposed an iterative approach to compute optimally
the optimization problem. We showed via experiments that the
specific algorithm is extremely fast and much more scalable
compared to the other existing algorithms in the literature that
solve the same problem. Finally, we used our new results to
obtain the closed form expression of NRDF for a correlated
time-invariant R2-valued Gauss-Markov source.

Our ongoing research will focus on deriving more general
analytical expressions than the one derived in this paper and
on studying similar algorithms for the more general case
of partially observable Gauss-Markov processes with MSE
distortion function. Possible extension of Proposition 1 to
time-varying systems is also under consideration.

APPENDIX A
USEFUL DEFINITIONS AND THEOREMS

In what follows, we state a few important definitions and a
theorem that we use throughout the paper.

Definition 2: (Commuting matrices) [20, p. 5] Two p × p
matrices A,B commute if AB = BA. More generally, the
collection of p × p matrices (A1, . . . , Ak) commute by pairs
if AiAj = AjAi, for j > i, i = 1, 2, . . . , k.

Definition 3: (Product of symmetric matrices) [20, Section
1.3 (6)] The production AB of two square symmetric matrices
A,B is itself symmetric if and only if A and B commute.

Definition 4: (Orthogonal matrix) [20, Section 8.4 (a)]
A square (say p × p) matrix U is said to be orthogonal if
U TU = UU T = Ip.

Theorem 3: (Commuting matrices are simultaneously di-
agonalizable) [20, Theorem 21.13.1] If a collection of p × p
matrices (A1, . . . , Ak) commute by pairs, then they can
be simultaneously diagonalized with an orthogonal matrix
U ∈ Rp×p, namely, there exists an orthogonal matrix U and
diagonal matrices, say D1, . . . , Dk such that for i = 1, . . . , k
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U TAiU = Di. If a collection of p× p matrices (A1, . . . , Ak)
are simultaneously diagonalizable, then, they commute by
pairs.

APPENDIX B
PROOF OF PROPOSITION 1

Recall that Λ and ∆ commute if Λ∆ = ∆Λ which further
means that

(A∆AT + ΣW )∆ = ∆(A∆AT + ΣW ), (60)

from (14).
First, we consider case (i). Then, the LHS in (60) can be
reformulated as follows:

(A∆AT + ΣW )∆

(a)
= V diag (µA,i)V

TU diag (µ∆,i)U
TV diag

(
µAT,i

)
V T

U diag (µ∆,i)U
T + S diag (µΣW ,i)S

TU diag (µ∆,i)U
T

(b)
= U diag

(
µA2,i

)
diag

(
µ∆2,i

)
U T

+ U diag (µΣW ,i) diag (µ∆,i)U
T

= U diag
((
µA2,iµ∆,i + µΣW ,i

)
µ∆,i

)
U T,

where (a) follows because (A,∆,ΣW ) are all real sym-
metric matrices and we can write their spectral represen-
tation (or eigenvalue decomposition), i.e., for A = AT =
V diag (µA,i)V

T, ΣW = S diag (µΣW ,i)S
T, and ∆ =

U diag (µ∆,i)U
T where (V, S, U) are the corresponding or-

thogonal matrices,5 respectively; (b) the first part follows
because A is a scalar matrix and commutes with every other
matrix of the same dimensions (in this case ∆) and therefore
we can choose V = U and the second part follows because U
is a design parameter (because ∆ is a design parameter) and
we can choose it such that U = S. The RHS in (60) follows
similarly giving the exact same result. This proves (i).
Next, we consider case (ii). Then, the LHS in (60) can be
reformulated as follows:

(A∆AT + ΣW )∆

= V diag (µA,i)V
TU diag (µ∆,i)U

TV diag
(
µAT,i

)
V T

U diag (µ∆,i)U
T + S diag (µΣW ,i)S

TU diag (µ∆,i)U
T

(c)
= V diag

(
µA2,i

)
diag

(
µ∆2,i

)
V T

+ U diag (µΣW ,i) diag (µ∆,i)U
T

(d)
= U diag

((
µA2,iµ∆,i + µΣW ,i

)
µ∆,i

)
U T,

where (c) follows using a similar argument to (b), i.e., the
first term because U is a design parameter and we can choose
it such that U = V and the second term because ΣW is a
scalar matrix and commutes with every other matrix of the
same dimensions (in this case ∆) and therefore we can choose
S = U ; (d) follows because U = V (by design). The RHS
follows similarly, thus completing the proof for (ii).

5The definition of an orthogonal matrix is given by Definition 4 in Appendix
A.

Consider case (iii). Then, the LHS in (60) can be reformulated
as follows:

(A∆AT + ΣW )∆

(e)
= V diag (µA,i)V

TU diag (µ∆,i)U
TV diag

(
µAT,i

)
V T

U diag (µ∆,i)U
T + V diag (µΣW ,i)V

TU diag (µ∆,i)U
T

(f)
= U diag

((
µA2,iµ∆,i + µΣW ,i

)
µ∆,i

)
U T,

where (e) follows because (A,ΣW ) have the same spectral
representation; (f) because we can choose the design param-
eter U such that U = V . The RHS term in (60) follows
similarly. This completes the proof for case (iii).
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