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Abstract

This paper describes a deep latent variable model of speech power spectrograms and its application to semi-supervised speech

enhancement with a deep speech prior. By integrating two major deep generative models, a variational autoencoder (VAE) and

a normalizing flow (NF), in a mutually-beneficial manner, we formulate a flexible latent variable model called the NF-VAE that

can extract low-dimensional latent representations from high-dimensional observations, akin to the VAE, and does not need to

explicitly represent the distribution of the observations, akin to the NF. In this paper, we consider a variant of NF called the

generative flow (GF a.k.a. Glow) and formulate a latent variable model called the GF-VAE. We experimentally show that the

proposed GF-VAE is better than the standard VAE at capturing fine-structured harmonics of speech spectrograms, especially

in the high-frequency range. A similar finding is also obtained when the GF-VAE and the VAE are used to generate speech

spectrograms from latent variables randomly sampled from the standard Gaussian distribution. Lastly, when these models are

used as speech priors for statistical multichannel speech enhancement, the GF-VAE outperforms the VAE and the GF.
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A Flow-Based Deep Latent Variable Model for
Speech Spectrogram Modeling and Enhancement

Aditya Arie Nugraha, Member, IEEE, Kouhei Sekiguchi, Member, IEEE, and Kazuyoshi Yoshii, Member, IEEE

Abstract—This paper describes a deep latent variable model of
speech power spectrograms and its application to semi-supervised
speech enhancement with a deep speech prior. By integrating two
major deep generative models, a variational autoencoder (VAE)
and a normalizing flow (NF), in a mutually-beneficial manner,
we formulate a flexible latent variable model called the NF-VAE
that can extract low-dimensional latent representations from high-
dimensional observations, akin to the VAE, and does not need
to explicitly represent the distribution of the observations, akin
to the NF. In this paper, we consider a variant of NF called the
generative flow (GF a.k.a. Glow) and formulate a latent vari-
able model called the GF-VAE. We experimentally show that the
proposed GF-VAE is better than the standard VAE at captur-
ing fine-structured harmonics of speech spectrograms, especially
in the high-frequency range. A similar finding is also obtained
when the GF-VAE and the VAE are used to generate speech spec-
trograms from latent variables randomly sampled from the stan-
dard Gaussian distribution. Lastly, when these models are used
as speech priors for statistical multichannel speech enhancement,
the GF-VAE outperforms the VAE and the GF.

Index Terms—deep generative model, variational autoencoder,
normalizing flow, power spectrogram, speech enhancement

I. INTRODUCTION

PROBABILISTIC spectrogram models play an essential
role in modern audio signal processing [1], [2]. Recent

semi-supervised speech enhancement methods for noisy speech,
for example, use a deep generative model that produces a high-
dimensional speech power spectrogram from low-dimensional
latent variables as a prior distribution of clean speech [3]–[7].
Such a generative model can be trained in an unsupervised
manner from clean speech data in the variational autoencoder
(VAE) framework [8]. In speech enhancement, the compact la-
tent variables can be estimated efficiently by a Markov chain
Monte Carlo (MCMC) method [9], such as the Metropolis al-
gorithm [10] and the Metropolis-Hastings algorithm [11], as
shown in [3]–[7]. As recently proposed, besides the MCMC
methods, the latent variables can also be estimated by back-
propagation [12] to maximize the likelihood function as in [13]
or by utilizing the recognition model [14].
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A major limitation of the VAE framework lies in imprecise
(lossy) recognition and generation processes. Its generation pro-
cess outputs tend to lose some details [15]–[17]. This would
be problematic for speech spectrograms, in particular, because
the harmonic structures should be preserved well. Additionally,
the distribution of observations (spectrograms) has to be ex-
plicitly defined. It is not always easy to do so because in many
real cases, we do not know whether a certain distribution is
suitable for some observations and assuming an inappropriate
one might result in a detrimental effect.

By contrast, the normalizing flow (NF) [18], [19] provides
precise (lossless) recognition and generation processes due
to its sequence of bijective transformations. Additionally, the
distribution of the observations does not need to be explicitly
defined, so NF could be used to model sophisticated ones.
However, the dimensionality of the transformed variables is the
same as that of the observations due to the bijective property.
Therefore, the transformed variables might be high dimensional
and their updates, especially by an MCMC method, would
be computationally expensive. Moreover, updating using the
recognition model [14] cannot be done because of the bijective
property.

Considering the complementary properties of both VAE and
NF, in this paper, we propose their combination as NF-VAE in
which a VAE is used to discover low-dimensional latent vari-
ables from high-dimensional transformed variables obtained
by NF1. In other words, instead of directly modeling the ob-
servations that possibly follow a sophisticated distribution, the
VAE part of the NF-VAE models the transformed observations
(the high-dimensional transformed variables) obtained by the
GF part. It is worth noting that only a part of the NF-VAE pre-
serves the bijective property and thus, the NF-VAE as a whole
does not have precise recognition and generation processes.
However, since the distribution of the transformed variables
is chosen to be a simple one, we expect that the VAE part
can accurately model those transformed variable so that the
NF-VAE has better recognition and generation processes than
the standalone VAE. The VAE part of the NF-VAE can be
seen as a dimensionality reduction to mitigate the overfitting
problem experienced by the NF and its variants due to the
high-dimensional transformed variables. The low-dimensional
latent variables in the NF-VAE limit the model capacity, which
improves the generalization of the generation process. The use
of low-dimensional latent variables also allows us to do an ef-

1Literally, the NF’s transformed variables and the VAE’s latent variables
are latent because both are not observed. The NF’s transformed variables can
be exactly computed given the observations so that they have a deterministic
nature and thus, they are not latent variables in a statistical sense.
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ficient sampling. In summary, the proposed NF-VAE needs no
explicit definition of the distribution of the observations simi-
larly to the NF and allows low-dimensional latent variables as
in the VAE. Additionally, in this paper, we consider a variant
of NF called the generative flow (GF a.k.a. Glow) [20] and
propose its combination with a VAE named the GF-VAE.

We introduce the formulations of VAE, NF, and NF-VAE in
Section II. We then describe the applications of VAE, GF, and
GF-VAE as deep generative models of speech power spectro-
grams (hereafter referred to as deep speech models) in Section
III. We review a state-of-the-art semi-supervised multichannel
speech enhancement method [7], in which the deep speech
models are used to provide the speech prior probability, in Sec-
tion IV. Afterwards, in Section V, we present the evaluation
of the models on a clean speech reconstruction task, a random
speech generation task, and a speech enhancement task. We
show that the GF-VAE can produce better details of speech
harmonic structures, especially in the high-frequency range,
than the VAE. We also show that the GF-VAE outperforms the
GF and the VAE for the aforementioned speech enhancement
method. Finally, Section VI concludes this paper.

II. DEEP GENERATIVE MODELS

In this section, we briefly review the variational autoencoder
(VAE) [8] and the normalizing flow (NF) [18], [19], and then
propose the NF-VAE. Note that the VAE and the NF-VAE
are latent variable models, but the NF is not. We also briefly
discuss several key related works.

A. Variational Autoencoder

Let us assume that an observed variable vector x ∈ RF is
generated by a latent variable vector z ∈ RD with D < F .
Following the variational inference principle [21], the log-
likelihood of x is expressed as

ln p(x) = ln

∫
z

p(x, z) dz

= ln

∫
z

q(z|x)

q(z|x)
p(x, z) dz

≥ Ez∼q(z|x)

[
ln
p(x|z)p(z)

q(z|x)

]
= Ez∼q(z|x) [ln p(x|z)]− KL(q(z|x)‖p(z)), (1)

where E[·] is the expectation and KL[q‖p] is the Kullback-
Leibler divergence from p to q [22]. The latent variable vector
is typically assumed to follow a simple distribution, e.g., the
standard Gaussian distribution p(z) ∼ N (0, I) [8], where I
is the identity matrix, or the hyperspherical uniform distribu-
tion [23]. The variational posterior distribution q(z|x) is then
defined accordingly. Most importantly, the observed variable
distribution p(x|z) has to be defined appropriately.

Let θ and φ be two separate sets of deep neural network
(DNN) parameters. A VAE can be seen to be composed of an
encoder qφ(z|x) and a decoder pθ(x|z) depicted as

x
encoder−−−−−⇀↽−−−−−
decoder

z.

The encoder acts as a recognition model and the decoder acts
as a generative model. It is worth mentioning that in the VAE
framework, the recognition model is initially introduced to
allow the generative model to be trained.

B. Normalizing Flow

Let x ∈ RF and y ∈ RF be an observed variable vector and
a transformed variable vector, respectively. The flow between
x and y can be depicted as

x
g1←−−→ h1

g2←−−→ · · · gK−1←−−→ hK−1
gK←−−→ y,

where K is the number of flow steps and indexed by k, y =
g(x) = gK ◦ gK−1 ◦ · · · ◦ g1(x), hk = gk(hk−1), h0 , x,
hK , y, and x = g−1(y).

According to the change-of-variables principle [24], the log-
likelihood of the observed variables x can be expressed as

ln p(x) = ln p(y)

∣∣∣∣dy

dx

∣∣∣∣
= ln p(y) +

K∑
k=1

ln

∣∣∣∣ dhk
dhk−1

∣∣∣∣
= ln p(y) +

K∑
k=1

ln

∣∣∣∣dgk(hk−1)

dhk−1

∣∣∣∣ , (2)

where
∣∣∣ dgk(hk−1)

dhk−1

∣∣∣ is the Jacobian matrix determinant of gk
evaluated at hk−1. The distribution of transformed variables
is typically assumed to be a simple one, e.g., the standard
Gaussian distribution p(y)∼N (0, I).

There exists different designs of flow step gk [18]–[20],
[25], [26]. In this paper, we mainly follow the flow step design
of the generative flow (GF a.k.a. Glow) [20], where a flow
step consists of an activation normalization, a feature map
permutation by an invertible 1×1 convolution, and an affine
coupling layer, in which a DNN is used. We briefly describe
each of these components in Section III-B and refer to [20] for
further details. Let ψ be a set of parameters gathering those
of the aforementioned activation normalization, invertible 1×1
convolution, and DNN of all flow steps. The flow y = gψ(x)
corresponds to the recognition process and the reverse flow
x = g−1

ψ (y) corresponds to the generation process.

C. NF-VAE

Let us now considers an observed variable vector x ∈ RF ,
a transformed variable vector y ∈ RF , and a latent variable
vector z ∈ RD with D < F . Building upon the NF and the
VAE, we propose a new generative model named the NF-VAE
and depicted as

x
g1←−−→ h1

g2←−−→ · · · gK−1←−−→ hK−1
gK←−−→ y

encoder−−−−−⇀↽−−−−−
decoder

z.

As shown above, the NF-VAE consists of an NF part and a
VAE part, composed of an encoder and a decoder. The NF part
aims to transform the observed variable vector x following
some unknown, possibly sophisticated, distribution into the
transformed variable vector y with a known distribution, e.g., a
Gaussian distribution. The VAE part then aims to find the low-
dimensional latent variable vector z for the high-dimensional
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transformed variable vector y, which ultimately represents the
high-dimensional observed variable vector x. Beside preferable
from a computational cost point of view, a low-dimensional
representation with an appropriate size would capture essential
underlying characteristics, e.g., pitch and timbre in the context
of speech. The use of a low-dimensional representation can
also be seen as a way to limit the model capacity so that the
model has a good generalization capability. Because of this
dimensionality reduction, the NF-VAE does not have precise
recognition and generation processes, unlike the NF. However,
we expect that the VAE part can model y accurately because the
distribution of y is chosen so that it is a relatively simple one.
Given an accurate y, an accurate x could then be reconstructed.

Given the NF-VAE, a lower bound on the log-likelihood of
x is obtained by combining (1) and (2):

ln p(x) ≥ Ez∼q(z|y) [ln p(y|z)]− KL(q(z|y)‖p(z))

+

K∑
k=1

ln

∣∣∣∣dgk(hk−1)

dhk−1

∣∣∣∣ . (3)

We use the standard Gaussian distribution for the latent vari-
able prior p(z)∼N (0, I) and a Gaussian distribution for the
variational posterior q(z|y), as in the VAE. We also assume
that the transformed variable distribution p(y|z) is a Gaussian
distribution. Unlike the VAE, for the NF-VAE, we do not need
to define the observed variable distribution.

Let θ, φ, and ψ be the DNN parameters of the decoder, the
encoder, and the NF part, respectively, as previously considered
in Sections II-A and II-B. In general, the recognition process
of NF-VAE involves a flow process and then an encoding as
follows: ẑ ∼ qφ(z|gψ(x)). Conversely, the generation process
of NF-VAE involves a decoding ŷ ∼ pθ(y|z) and then a reverse
flow process x̂ = g−1

ψ (ŷ). Since we adopt the flow step of the
GF, we introduce a variant of NF-VAE named the GF-VAE in
Section III-C.

D. Related Work

Another notable model that combines a flow-based model
and a VAE is presented in [18]. It employs an NF between
the encoder and the decoder of the VAE. The latent variable
estimated by the encoder might follow a sophisticated distri-
bution, but the decoder input would follow a simple known
distribution. In a similar spirit but with a much more advanced
network design, the ResNet VAE in [26] uses an inverse au-
toregressive flow for estimating the latent variable posterior
distribution at different layers. These models thus address the
difficulty of choosing the posterior distribution of the latent
variables and ultimately, improve its estimation. Our NF-VAE
further addresses the difficulty of choosing the distribution of
the observations.

Concurrently to our work, the dimensionality reduction flows
(DRF) [27] has been introduced in the context of image gener-
ation. This DRF is fundamentally the same as our proposed
NF-VAE. To the best of our knowledge, our proposal is still the
first that considers the application of the model to speech gener-
ation and further, to a downstream task, i.e., a semi-supervised
multichannel speech enhancement.

In speech processing, the GF has been combined with the
WaveNet [28] to build the WaveGlow [29] and the FloWaveNet
[30] for speech synthesis. Time-domain speech signals are
generated from random samples (transformed variables) and
conditioned on the mel-spectrogram estimated from a text. Our
GF-VAE works in the time-frequency domain so that we could
plug it into various existing speech enhancement methods [1].
Most importantly, our GF-VAE has an ability of randomly
generating satisfying observations without any conditioning.

III. DEEP SPEECH MODELS

We now specify the DNN architectures and their training
cost functions. Let us introduce the time frame index t for
the observed vectors, the transformed vectors, and the latent
variable vectors with T denotes the number of time frames in a
training minibatch. Let speech power spectrum xt ∈ RF+ be the
observed variable vector whose dimension F corresponds to the
number of frequency bins. In this paper, we set F = 513 (see
Section V-A2 for the description of the spectrum extraction).

A. Variational Autoencoder

We assume that the latent variables follow the simple, stan-
dard Gaussian distribution p(zt)∼N (0, I). We also assume
qφ(zt|xt)∼N

(
µz
φ(xt), diag

(
σz
φ(xt)

2
))

, where diag
(
·
)

returns
a diagonal matrix from a vector.

For speech enhancement, the speech complex spectrum at
each time-frequency (TF) bin (t, f) is typically assumed to fol-
low a univariate complex-valued circularly-symmetric Gaussian
distribution [31, Thm. 3.7.14] x̃ft∼NC(0, νft). Maximizing
ln p(x̃ft) for this distribution is equivalent (up to a constant) to
maximizing ln p(|x̃ft|2) for |x̃ft|2∼Exp(λft) with λft = ν−1

ft .
Hence, to model the speech power spectrogram with a VAE,
the observed variables are typically assumed to follow an ex-
ponential distribution pθ(xt|zt)∼Exp (λθ(zt)) [3]–[7]. In this
case, the training cost function to be minimized, which is the
negative of (1), is expressed as

DVAE
θ,φ , −Ezt∼qφ(zt|xt) [ln pθ(xt|zt)] + KL(qφ(zt|xt)‖p(zt))

, Dpow
θ,φ +Dreg

φ , (4)

where

Dpow
θ,φ ,

1

T

F,T∑
f,t=1

(
{λθ(zt)}f {xt}f − ln {λθ(zt)}f

)

=
1

T

F,T∑
f,t=1

(
{λθ(zφ,t)}f {xt}f − ln {λθ(zφ,t)}f

)
, (5)

Dreg
φ ,

1

2T

D,T∑
d,t=1

({
µz
φ(xt)

}2

d
+
{
σz
φ(xt)

}2

d

− ln
{
σz
φ(xt)

}2

d
− 1
)
, (6)

zφ,t , µz
φ(xt) + εσz

φ(xt), (7)

with {·}i is the i-th element of a vector and zφ,t is a random
sample from qφ(zt|xt) obtained with the reparameterization
trick [8], whose ε ∼ N (0, I), as shown in (7). The training
optimizes parameters θ and φ simultaneously.
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(a) Encoder qφ(zt|xt)
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Fig. 1. Architectures of the encoder and the decoder for our VAE-2L model.
‘BN’ is the batch normalization [32], ‘FC’ is a fully-connected layer, ‘tanh’ is
the hyperbolic tangent function, and ‘soft+’ is the softplus function.

We consider two VAEs, i.e., VAE-2L and VAE-3L, as the
baseline models. As shown in Fig. 1, the VAE-2L has two in-
termediate layers in each encoder and decoder. The dimensions
are Denc

1 =Ddec
2 =512, Denc

2 =Ddec
1 =128, and D∈{8, 16, 32}.

By contrast, the VAE-3L has three intermediate layers in each
encoder and decoder so that we have henc

t3 and hdec
t3 after henc

t2

and hdec
t2 , respectively. The dimensions are Denc

1 =Ddec
3 =384,

Denc
2 =Ddec

2 =256, and Denc
3 =Ddec

1 =128. The total number of
parameters for both VAE-2L and VAE-3L is about 665k. For
random generation, we sample zt from N (0, I) to obtain the
scale of an exponential distribution λθ(zt) using the decoder.
Instead of sampling x̂t from the distribution Exp (λθ(zt)), for
practical purposes, we opt to take the expected value of that
distribution x̂t,λθ(zt)

−1.

B. Generative Flow

We use a multi-scale architecture [19] shown in Fig. 2, in
which parts of the transformed variables are extracted after
different flow steps. We apply a replicative padding at the
high-frequency side of xt to obtain x̄t∈RF̄ with F̄ =528. The
squeeze function splits the spectrogram along the frequency axis
into C0 =16 feature maps, whose height is F̃ =33, so that we
have Ht0∈RC0×F̃ . This Ht0 is then processed through the flow
with K=16. Each flow step k results in Htk∈RCk×F̃ . After
every two flow steps, we first partition Htk′ into Y′tk′ ∈R2×F̃

and H′tk′ ∈R(Ck−2)×F̃ , where k′ ∈ [1,K] ∧ k′ ∈ 2N, and then
extract Y′tk′ as a part of the padded and reshaped transformed
variables Yt ∈ RC0×F̃ . The following flow step after each
extraction processes H′tk′ . Therefore, different flow steps may
process different numbers of feature maps. The number of
feature maps processed at the flow step k is Ck = C0 −
2 ((k − 1)//2), where // denotes a floor division. We gather
and concatenate all of the transformed variable parts at the
end of the flow to form Yt = {Y′tk′ | ∀k′ ∈ [1,K]∧ k′ ∈ 2N}
and apply the unsqueeze function on it to construct ȳt∈RF̄ .
While the padding is kept during the training phase, in the test
phase, the padding is then removed from ȳt to finally obtain
the transformed variables yt.

Following the design in [20], one flow step gk consists of an
activation normalization layer, a feature map permutation layer
by an invertible 1×1 convolution, and an affine coupling layer.
This flow step design is depicted in Fig. 3(a). The parameters
of the k-th activation normalization layer are the scale sact

k ∈
RCk and the bias bact

k ∈ RCk . The parameters of the k-th

feature permutation layer is the weight of the convolution
kernel Wk∈RCk×Ck . Each affine coupling layer has a single
multilayer perceptron (MLP), parameterized by ρk, which is
used for every feature maps c∈ [1, 1

2Ck]. The MLP architecture
is illustrated in Fig. 3(b). We first split the affine coupling layer
input H̄tk∈RCk×F̃ into Ha

tk,H
b
tk∈R

1
2Ck×F̃ . Let {·}i• be the

i-th row of a matrix and {·}ij be the j-th element of that i-th
row. The MLP takes as input {Ha

tk}c• and returns, essentially,
the affine transform parameters {Saff

ρk,tk
}c• and {Baff

ρk,tk
}c• to

be applied to {Hb
tk}c• as

{Hb′
tk}c• = {Saff

ρk,tk
}c• � {Hb

tk}c• + {Baff
ρk,tk
}c•, (8)

where � denotes the Hadamard product. We then concatenate
Ha
tk and Hb′

tk to obtain the output of the k-th affine coupling
layer Htk, which is also the output of the k-th flow step.

As in the VAE, we assume that the transformed variables fol-
low the simple, standard Gaussian distribution p(yt)∼N (0, I).
The training cost function, which is the negative of (2), for op-
timizing the parameters ψ = {sact

k ,b
act
k ,Wk, ρk | ∀k∈ [1,K]}

is expressed as

DGLW
ψ , − ln p(yt)−

K∑
k=1

ln

∣∣∣∣dgψ,k(hk−1)

dhk−1

∣∣∣∣
, Drp0

ψ +

K∑
k=1

Dflw
ψ,k, (9)

where

Drp0
ψ ,

1

2T

F̄ ,T∑
f,t=1

(
ln 2π + {yt}2f

)

=
1

2T

F̄ ,T∑
f,t=1

(
ln 2π + {gψ(xt)}2f

)
, (10)

Dflw
ψ,k , −

Ck∑
c=1

ln
∣∣{sact

k }c
∣∣− 1

T

1
2Ck,F̃ ,T∑
c,f,t=1

ln
∣∣{Saff

ρk,tk
}cf
∣∣

− F̃ ln |Wk| . (11)

The parameters ψ are initialized as in [20]. The parameters
sact
k ,b

act
k are initialized based on the first minibatch so that each

feature map has zero mean and unit variance. The parameter
Wk is initialized with a random orthonormal matrix. The
parameter ρk is initialized so that the affine coupling layer
performs an identity function. We refer to [19], [20] for further
details, including the Jacobian matrix determinants for the
activation normalization, the invertible 1×1 convolution, and
the affine coupling layer, that compose Dflw

ψ,k in (11). The total
number of parameters in our GF model is about 30k. For
random generation, we sample yt from N (0, I) and perform
the reverse flow to obtain x̂t = g−1

ψ (yt).

C. GF-VAE

For the GF-VAE, as for the VAE above, we assume that
p(zt)∼N (0, I) and qφ(zt|yt)∼N

(
µz
φ(yt), diag

(
σz
φ(yt)

2
))

.
We then consider two variants of GF-VAE with different as-
sumptions of the transformed variable distribution:
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has the same construction.
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Fig. 4. Architectures of the decoders for our GF-VAE-1 and GF-VAE-2
models.

• GF-VAE-1: pθ(yt|zt)∼N (µy
θ (zt), I),

• GF-VAE-2: pθ(yt|zt)∼N
(
µy
θ (zt), diag

(
σy
θ (zt)

2
))

.

It is worth emphasizing that the nature of transformed variable
vectors yt in the GF-VAE is different from that in the GF. In the
GF, yt is assumed to follow a standard Gaussian distribution
p(yt)∼N (0, I). By contrast, yt in the GF-VAE is assumed to
follow a Gaussian distribution parameterized by DNN outputs
as shown above.

The training cost functions for GF-VAE-1 DVGL1
θ,φ,ψ and

GF-VAE-2 DVGL2
θ,φ,ψ, which are the negative of (3), are

expressed as

DVGL1/2
θ,φ,ψ , −Ezt∼qφ(zt|yt) [ln pθ(yt|zt)]

+ KL(qφ(zt|yt)‖p(zt))−
K∑
k=1

ln

∣∣∣∣dgψ,k(hk−1)

dhk−1

∣∣∣∣
,Drp1/2

θ,φ,ψ +Dreg
φ,ψ +

K∑
k=1

Dflw
ψ,k, (12)

where

Drp1
θ,φ,ψ ,

1

2T

F̄ ,T∑
f,t=1

(
ln 2π+

(
{yt}f−{µ

y
θ (zt)}f

)2
)

=
1

2T

F̄ ,T∑
f,t=1

(
ln 2π+

(
{gψ(xt)}f−{µ

y
θ (zφ,ψ,t)}f

)2
)
,

(13)

Drp2
θ,φ,ψ,

1

2T

F̄ ,T∑
f,t=1

(
ln 2π+ln {σy

θ (zt)}
2

f

)
+

1

2T

F̄ ,T∑
f,t=1


(
{yt)}f−{µ

y
θ (zt)}f

)2

{σy
θ (zt)}

2

f

 .

=
1

2T

F̄ ,T∑
f,t=1

(
ln 2π+ln {σy

θ (zφ,ψ,t)}
2

f

)
+

1

2T

F̄ ,T∑
f,t=1


(
{gψ(xt)}f−{µ

y
θ (zφ,ψ,t)}f

)2

{σy
θ (zφ,ψ,t)}

2

f

 , (14)

zφ,ψ,t , µz
φ(gψ(xt)) + εσz

φ(gψ(xt)), (15)

with Dreg and Dflw
ψ,k are shown in (6) and (11), respectively, and

zφ,ψ,t is a random sample from qφ(zt|yt) obtained with the
reparameterization trick [8], whose ε ∼ N (0, I), as shown in
(15). The terms Drp1

θ,φ,ψ and Drp2
θ,φ,ψ are used for the GF-VAE-1

and the GF-VAE-2, respectively. The term Drp1
θ,φ,ψ is equivalent

(up to a constant) to the widely used mean squared error. The
training optimizes parameters θ, φ, and ψ simultaneously.

The models are obtained by attaching a VAE at the trans-
formed variable side of the GF shown in Fig. 2. The encoders
of the GF-VAE-1 and GF-VAE-2 are similar to the one of
VAE-2L shown in Fig. 1(a), but with yt=gψ(xt)∈RF̄ as the
input. The decoder of the GF-VAE-1 is similar to the one
shown in Fig. 1(b), but it returns µy

θ (zt)∈RF̄ as shown in
Fig. 4(a). Conversely, the output layers of the decoder of the
GF-VAE-2 are similar to those of its encoder, i.e., the de-
coder outputs µy

θ (zt)∈RF̄ and σy
θ (zt)

2 ∈RF̄+, as shown in
Fig. 4(b). The GF-VAE-1 has Denc

1 =Ddec
2 =480 and Denc

2 =
Ddec

1 =120, while the GF-VAE-2 has Denc
1 =Ddec

2 =360 and
Denc

2 =Ddec
1 =90. The total numbers of parameters are about

669k and 679k for the GF-VAE-1 and the GF-VAE-2, respec-
tively. Thus, our GF-VAEs are comparable in size to our VAEs
above. For random generation, we sample zt from N (0, I) to
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obtain µy
θ (zt) using the decoder. We then use ŷt,µy

θ (zt) to
obtain x̂t=g−1

ψ (ŷt) using the reverse flow.

IV. SPEECH ENHANCEMENT WITH DEEP SPEECH PRIOR

In addition to the speech generation capability of the differ-
ent deep speech models described above, we are also interested
in their application to speech enhancement. In this section,
we briefly review a state-of-the-art statistical semi-supervised
multichannel speech enhancement method [7], that uses a pre-
trained deep generative model of speech as a prior distribution,
and emphasize on how we integrate and use our VAE, GF,
or GF-VAE based deep speech model. In this case, the deep
speech model is also referred to as the deep speech prior. Al-
though the method can handle one speech source and multiple
noise sources, we consider one speech source and one noise
source in this paper because this setting is known to work well.
We refer to [7] for further details.

A. Source and Spatial Modeling

Let x̃S
ft∈CM and x̃N

ft∈CM be an M -channel speech image
and an M -channel noise image, respectively, at TF bin (t, f).
The observed multichannel mixture is expressed as

x̃ft =
∑

s∈{S,N}̃

xsft. (16)

Following the local Gaussian model [33], each TF bin is
assumed to follow a multivariate complex-valued circularly-
symmetric Gaussian distribution [31, Thm. 3.7.14]:

x̃sft ∼ NC
(
0,Rs

ft = νsftG
s
f

)
, (17)

x̃ft ∼ NC

0,Rft =
∑

s∈{S,N}

νsftG
s
f

 , (18)

where νsft∈R+ is the source power spectral density (or spectro-
gram) and Gs

f ∈S
M×M
+ is the positive-definite source spatial

covariance matrix.
The speech power spectrogram is parameterized as

νS
ft = ufvt{x̂t}f , (19)

where uf is a frequency-dependent scaling factor, vt is a
time-dependent scaling factor, and {x̂t}f is a power spectrum
estimate. Recall from Section III that {x̂t}f , {λθ(zt)−1}f
for the VAE-based speech model, {x̂t}f , {g−1

ψ (yt)}f for
the GF-based speech model, and {x̂t}f , {g−1

ψ (µy
θ (zt))}f

for the GF-VAE-based speech model.
The noise power spectrogram is modeled by a nonnegative

matrix factorization (NMF) [34] as

νN
ft =

L∑
l=1

wlfhlt, (20)

where L is the number of basis spectra indexed by l, wlf ∈R+

is the l-th basis spectrum, and hlt∈R+ is the l-th activation.

Let Ψ be a parameter set composed of all parameters uf , vt,
wlf , hlt, Gs

f , and yt or zt (depends on the deep speech model).
The log-likelihood function to be maximized is expressed as

ln p(X|Ψ)=

F,T∑
f,t=1

lnNC (x̃ft|0,Rft)

=

F,T∑
f,t=1

(
−tr
(
R−1
ft Rx

ft

)
−ln |Rft|

)
+const., (21)

where X is a set composed of all x̃ft and Rx
ft = x̃ftx̃

?
ft is

the observed mixture covariance matrix. The parameters of the
pretrained deep speech model are kept fixed. With this model,
we want to obtain the optimal generative model input yt or zt
that, together with the other parameters in Ψ, maximizes the
log-likelihood function (21).

B. Parameter Initialization

Let xt ,
[

1
M tr
(
Rx

1t

)
, 1
M tr
(
Rx

2t

)
, . . . , 1

M tr
(
Rx
Ft

)]
∈ RF+ be

the observed power spectrogram vector, where tr(·) is the
trace of a matrix. When the VAE-based speech model is used,
the speech latent variables are initialized with the encoder
given the observed power spectrogram, zinit

t , µz
φ(xt). When

the GF-based speech model is used, the speech transformed
variables are initialized with the flow, yinit

t = gψ(xt). When
the GF-VAE-based speech model is used, the speech latent
variables are initialized with the flow and the encoder, zinit

t ,
µz
φ(gψ(xt)). Note that although the deep speech models are

trained on clean speech, these models take noisy speech as
input for the parameter initialization, which results in non-
optimal speech latent or transformed variables. However, this
initialization with a recognition model arguably still results in
better initial speech latent or transformed variables for a speech
enhancement task than the random initialization by sampling
from the corresponding prior distribution. The speech spectral
scale parameters are initialized as uf = 1

F and vt = 1.
For the noise spectral parameters, the basis spectra wl ,[
wl1, wl2, . . . , wlF

]
is initialized with random samples from

a Dirichlet distribution [7, Eq. (78)] and the activation hlt is
initialized with random samples from a Gamma distribution
[7, Eq. (79)].

The speech spatial parameters are initialized based on the
observed mixture and the noise spatial parameters are initialized
as scaled identity matrices as follows:

GS
f ←

∑T
t=1 Rx

ft∑T
t=1 tr(Rx

ft)
, (22)

GN
f ←

1

M
I. (23)

C. Parameter Update

The parameter update [7, Algorithm 1] is based on the
minorization-maximization (MM) principle [35]. Specifically,
we derive a lower bound function with auxiliary parameters that
minorizes the log-likelihood function (21). We then iteratively
maximize the lower bound function (i.e., alternately optimize
the parameters of the likelihood function and the auxiliary
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parameters introduced for the minorization) so that the log-
likelihood function is maximized indirectly. The parameter
update is based on multiplicative update rules given by (25)–
(31). We refer to [7] for further details, including the auxiliary
function formula and the derivation of the update rules.

In each parameter update iteration, we first update the speech
spectral parameters uf and vt, the noise spectral parameters
wlf and hlt, and the source spatial parameters Gs

f . We then
update the speech latent variables zt (for the VAE-based or the
GF-VAE-based speech model) or transformed variables yt (for
the GF-based speech model) using multiple iterations of the
Metropolis sampling method [10]. At the end of each parame-
ter update iteration, the parameters are normalized to satisfy
the following constraints:

∑F
f=1 uf = 1;

∑F
f=1 wlf = 1,∀l;

and tr(Gs
f ) = 1,∀s,∀f . After the parameter update iterations,

the final estimated multichannel speech image is obtained by
multichannel Wiener filtering:̂̃xS

ft = RS
ftR

−1
ft x̃ft. (24)

The update rules for the speech spectral parameters uf and
vt are given by

uf ← uf

√√√√√∑T
t=1 vt{x̂t}f tr

(
GS
fR
−1
ft Rx

ftR
−1
ft

)
∑T
t=1 vt{x̂t}f tr

(
GS
fR
−1
ft

) , (25)

vt ← vt

√√√√√∑F
f=1 uf{x̂t}f tr

(
GS
fR
−1
ft Rx

ftR
−1
ft

)
∑F
f=1 uf{x̂t}f tr

(
GS
fR
−1
ft

) . (26)

The update rules for the noise spectral parameters wlf and hlt
are given by

wlf ← wlf

√√√√√∑T
t=1 hlt tr

(
GN
fR−1

ft Rx
ftR

−1
ft

)
∑T
t=1 hlt tr

(
GN
fR−1

ft

) , (27)

hlt ← hlt

√√√√√∑F
f=1 wlf tr

(
GN
fR−1

ft Rx
ftR

−1
ft

)
∑F
f=1 wlf tr

(
GN
fR−1

ft

) . (28)

The update rule for the spatial parameters Gs
f is given by

As
f =

T∑
t=1

νsftR
−1
ft Rx

ftR
−1
ft , (29)

Bs
f =

T∑
t=1

νsftR
−1
ft , (30)

Gs
f ←

(
Gs
fA

s
fG

s
f

)
#(Bs

f )−1, (31)

where A#B = A(A−1B)
1
2 is the geometric mean of two

positive semidefinite matrices A and B [36], [37].

V. EVALUATION

This section discusses the behavior and performance com-
parison of the different models. Section V-B examines whether
modeling the transformed variables with a VAE is easier than
modeling the observed variables directly. The following sec-
tions evaluate the performance of the different models for

speech generation and multichannel speech enhancement. We
first evaluate whether a model can reconstruct a clean speech
spectrogram in Section V-C. In this speech reconstruction task,
a clean speech spectrogram is assumed to be available and used
to estimate the oracle latent variables with a recognition model.
Since the test data is unseen during the training, the latent vari-
ables here are oracle in a loose sense. The latent variables are
then used to obtain a speech spectrogram with a generation
model. This reconstruction scenario is useful to check whether
our models, each consisting of a recognition model and a gen-
eration model, work well in a relatively ideal setting. However,
it obviously has a very limited practical usage. In practice,
we need to process noisy speech without any oracle informa-
tion. For a speech enhancement task, we are interested in the
generation capability of our models given non-oracle latent
variables. Instead of oracle latent variables, Section V-D thus
checks whether our generation models can generate a speech
spectrogram from random latent variables sampled from their
respective prior distributions. Afterwards, in Section V-E, we
use our models for a speech enhancement task, in which those
latent variables are iteratively optimized as described in Section
IV-C. Audio samples are available online2.

A. Settings

1) Dataset: We use the simulated training, development,
and test sets of the CHiME-3/4 corpus [38], [39] consisting of
multichannel mixtures of speech and noise. All data are sam-
pled at 16 kHz. We train all models on the training set (7138
utterances ≈ 15.0 hours) and validate them on the development
set (1640 utterances ≈ 2.9 hours). For this purpose, we only
use the clean speech from the microphone that directly faces
the speaker (hereafter referred to as the center front-facing
microphone). The evaluation is done on the test set (1320 ut-
terances ≈ 2.3 hours). The speech reconstruction task employs
single-channel clean speech of the center front-facing micro-
phone as in the model training, while the speech enhancement
task considers 5-channel noisy speech, including the center
front-facing microphone.

2) Time-Frequency Representation: The short-time Fourier
transform (STFT) coefficients [40] are extracted using a 1024-
point Hann window with 75% overlap resulting in F = 513.
The power spectrogram is the squared absolute of these coeffi-
cients.

3) Model Training: All models are optimized by RAdam
[41], a variant of Adam [42], with a learning rate of 10−3. Each
update is done given a minibatch of 4096 frames, composed
of randomly selected 128-frame continuous segments from
32 randomly selected utterances. A voice activity detection is
applied to minimize silent frames beforehand. The gradient
is normalized with a threshold of 1 [43]. The training of the
VAEs and the GF-VAEs begins with a warm-up stage, in
which the KL term annealing [44], [45] runs for the first 100
epochs. An early stopping mechanism [46] is used so that all
training is stopped after 50 consecutive epochs failed to lower
the validation error computed on the development set. The

2Demo webpage: https://aanugraha.gitlab.io/demo/taslp20

https://aanugraha.gitlab.io/demo/taslp20
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Fig. 5. Wasserstein distance computed between the input and output of the
standalone VAEs or the VAE part of the GF-VAEs (D = 32) after different
training epochs. Lower is better.

model with the lowest validation error is kept and used for the
evaluation.

B. VAE-Based Model: Transformed vs. Observed Variables

As stated in Section II-C, we expect that the transformed
variables obtained by the GF part of a GF-VAE is easier
to model by a VAE than the observed variables. Let xt be
an observed variable, i.e., a frame of clean speech power
spectrum. For the standalone VAE, the input is the observed
variable xt and the output is the reconstructed observed variable
x̂t,λθ(zt)

−1, where zt,µz
φ(xt) is the oracle latent variable.

For the VAE of a GF-VAE, the input is the transformed variable
yt=gψ(xt) and the output is the reconstructed transformed
variable ŷt,µy

θ (zt), where zt,µz
φ(yt) is the oracle latent

variable. We gathers the f -th element of xt for all T frames in
a single utterance to construct xf ,

{
{xt}f | ∀t∈ [1, T ]

}
. We

also construct x̂f , yf , and ŷf in a similar way.
Recall that the VAE part of our GF-VAEs and our VAEs

have different assumptions regarding the distribution of their
inputs. In a GF-VAE, the input of the VAE part is assumed to
have a Gaussian distribution. Conversely, the input of a stan-
dalone VAE is assumed to have an exponential distribution. To
have a fair comparison, we opt to compute the first Wasser-
stein distance [47] for each frequency bin of an utterance as
W1(xf , x̂f ) for the VAE, or W1(yf , ŷf ) for the VAE of a
GF-VAE. The utterance-level distance is then obtained by com-
puting the average across all frequency bins, and Fig. 5 shows
the average utterance-level distances computed on the whole
test set.

The figure shows that on average, the distribution of {xf}t
and that of {x̂f}t are getting closer along the training. The
figure also shows that the distribution of {yf}t and that of
{ŷf}t are close, even at the zeroth epoch, i.e., right after the
initialization. We observe that at the zeroth epoch, the values
of both {yf}t and {ŷf}t are close to zero. The close-to-zero
values of {yf}t can be attributed to the initialization scheme
of each flow step (see Section III-B), that makes the activation
normalization layer basically does a standardization on each
input. We then naturally obtain {ŷf}t that is also close to zero
because the initial weights of the VAE are small values around
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Fig. 6. Log-power spectral distance (LSD) computed on the speech spectrogram
reconstructed using the different models (D = 32). Lower is better.

zero. To sum up, this evaluation provides a strong indication
that the transformed variable yt is easier to model by a VAE
than the observed variable xt.

C. Speech Reconstruction Task

We validate whether a model can reconstruct a speech spec-
trogram given the oracle latent variables z ,

[
z1, z2, . . . , zT

]
estimated from clean speech x ,

[
x1,x2, . . . ,xT

]
. The la-

tent variables are obtained using the recognition process, i.e.,
zt , µz

φ(xt) for the VAE-based speech models and zt ,
µz
φ(gψ(xt)) for the GF-VAE-based speech models. The re-

constructed spectrogram is then generated by x̂t,λθ(zt)
−1

for the VAE-based models or x̂t,g
−1
ψ (µy

θ (zt)) for the GF-
VAE-based models. Additionally, we obtain the time-domain
speech given the reconstructed spectrogram and the original
clean speech phase. Note that the clean speech phase may
be inappropriate for the reconstructed, most likely distorted,
spectrogram. Nonetheless, it allows us to perform an informal
listening test. Since the GF achieves a perfect reconstruction
due to its bijective property, we test only the VAEs and the
GF-VAEs.

To have an objective measure on the reconstructed power
spectrogram, we compute the log-power spectral distance (LSD)
[48] for each TF bin and present the average over all frames
of the test set in Fig. 6. The LSD is computed as

LSDft = 10 |log10 ({xt}f )− log10 ({x̂t}f )| , (32)

where | · | returns the absolute value.
We also do a visual assessment on the reconstructed spec-

trogram. As shown in Fig. 7, all models are able to reproduce
the lower part of the speech harmonics. Above f ≥ 200 (≈
3.1 kHz), the VAEs’ harmonics start to be blurry. By con-
trast, as exhibited in Fig. 8, the GF-VAEs keep preserving
the harmonics for those higher frequency parts. Although we
have observed that the GF-VAEs preserve the harmonics bet-
ter than the VAEs, Fig. 6 shows that the average LSDs of
GF-VAE-1 and the VAEs are close in most cases and are bet-
ter than those of GF-VAE-2. For GF-VAE-1, we can easily
observe that there are periodic downward spikes happened ev-
ery 16 frequency bins. It coincides with the hyperparameter of
the squeeze function, which splits the spectrogram along the
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(b) VAE-2L
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Fig. 7. Log-power spectrogram examples of the speech reconstructed using the different models (D = 32). The segments are from the utterance
F05_442C020T_PED from the test set et05_ped_simu.
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Fig. 8. Harmonic structure examples of the speech reconstructed using the different models (D=32). These examples are parts of the log-power spectrograms
shown in Fig. 7. The segments are from the utterance F05_442C020T_PED from the test set et05_ped_simu.
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Fig. 9. Boxplots of signal distortion ratio (SDR) metric computed on the
speech reconstructed using the different models. The black dots are the mean
values. Higher is better.

frequency axis into 16 feature maps (see Section III-B). There
may be a trade-off between the use of a single squeeze func-
tion, as in this paper and [29], and the use of multiple squeeze
functions, as in [20]. We leave further investigation on the GF
design for future work.

We then evaluate the reconstructed time-domain speech in
terms of the signal-to-distortion ratio (SDR) score [49], the
wideband extension of the Perceptual Evaluation of Speech
Quality (WB-PESQ) score [50], [51], and the Short-Time Ob-
jective Intelligibility (STOI) score [52]. Interestingly, our visual

assessment above is not reflected on these objective metrics as
shown in Figs. 9 and 10. In terms of SDR, the GF-VAEs are
better than the VAEs for D = 8, and the opposite for D = 32.
In terms of WB-PESQ and STOI, GF-VAE-1 is generally bet-
ter than the VAEs for D ∈ {8, 16}, and the VAEs are better
than the GF-VAEs for D = 32. Nonetheless, the performance
of the GF-VAEs has smaller interquartile ranges in most cases,
especially for the SDR and WB-PESQ scores, and thus, is
more stable than that of the VAEs.

To conclude, although we observe that the GF-VAEs preserve
the harmonics better than the VAEs, all of our VAEs and GF-
VAEs can reconstruct a satisfying speech power spectrogram
given the oracle latent variables. To obtain a time-domain signal
given a reconstructed power spectrogram, we use the clean
phase, which is a simple, but sub-optimal, way. Several works
[53]–[55] propose better methods in estimating the phase given
a spectrogram. This kind of phase estimation methods should
be useful if we want to have a good time-domain signal.

D. Random Speech Generation Task

We have observed that our VAEs and GF-VAEs can recon-
struct a satisfying speech power spectrogram. We now validate
whether a model can generate a speech spectrogram, that is
characterized by its harmonic structures, given random la-
tent variables z ,

[
z1, z2, . . . , zT

]
or transformed variables

y ,
[
y1,y2, . . . ,yT

]
. For this, we first randomly sample 65
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Fig. 10. Boxplots of perceptual objective metrics computed on the speech reconstructed using the different models. The black dots are the mean values.
Higher is better.
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Fig. 11. Log-power spectrogram examples of the speech generated from random latent variables (D = 32) or transformed variables using the different models.

vectors from p(zt)∼N (0, I) or p(yt)∼N (0, I). We then per-
form interpolation so that we obtain a slowly-evolving sequence
of 256 vectors as z or y.

As shown in Fig. 11, the VAEs and the GF-VAEs can gener-
ate speech-like harmonic structures given some random latent
variables. The GF-VAEs produce finer structures than the VAEs
and, in general, the VAEs’ output tends to be smoother than
the GF-VAEs’. By contrast, the GF’s output does not resemble
a speech spectrogram because there is no noticeable harmonic
structure. This suggests that the GF lacks a generalization ca-
pability and thus, it might not be suitable for providing the
speech prior for the speech enhancement task below.

E. Multichannel Speech Enhancement Task

We use each model as the speech spectrogram model (a.k.a.
the deep speech prior) for the semi-supervised multichannel
speech enhancement method [7] described in Section IV. The
use of a deep speech model (either a GF, a VAE, or a GF-
VAE) as the deep speech prior is detailed in Section IV-A.
Additionally, the noise spectrogram model is provided by an
NMF whose number of basis vectors is L = 32. The number of
channels is M = 5. The number of parameter update iterations
is 128 and in each iteration, the latent variables are updated
by the Metropolis sampling method [10] for 32 times.

The performance is evaluated using the BSS-Eval toolbox
[56] to compute the signal-to-distortion ratio (SDR), the signal-
to-interferences ratio (SIR), and the signal-to-artifacts ratio
(SAR) on the enhanced 5-channel speech as shown in Fig. 12.
As expected from the speech random generation evaluation
above, the GF-VAEs and the VAEs clearly outperform the
GF. The SDRs, that are regarded as the overall performance
metrics, show that the GF-VAEs significantly outperform the
VAEs in most cases and the GF-VAE-2 always outperforms the
GF-VAE-1 and the VAEs. The VAE-3L significantly outper-
forms the VAE-2L only for D = 8. It indicates that increasing
the number of layers alone is not effective to achieve a per-
formance improvement. Most importantly, the GF-VAEs are
more robust to the setting of latent variable dimension than the
VAEs. The SDR medians for the different latent variable dimen-
sions D = 8, D = 16, and D = 32 are 14.3, 15.6, and 14.9,
respectively, for the VAE-2L, and 14.9, 15.8, and 15.0 for
the VAE-3L. By contrast, those are 15.5, 15.5, and 15.3 for
the GF-VAE-1, and 15.9, 16.1, and 16.0 for the GF-VAE-2.
Interestingly, the SIRs indicate that the noise removal capabil-
ity of both GF-VAEs is not significantly different. Thus, the
overall performance difference between two GF-VAEs can be
attributed to the difference of artifacts as shown by the SARs.

In addition to measuring the performance on the multichan-
nel enhanced speech, we also evaluate the performance on a
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Fig. 12. Boxplots of source separation metrics computed on the multichannel
speech enhanced using the different models. The black dots are the mean
values. Higher is better.

single channel (the center front-facing microphone) of the mul-
tichannel enhanced speech. We consider the SDR [49], the
WB-PESQ [50], [51], and the STOI [52] as shown in Figs. 13
and 14. As computed on the multichannel enhanced speech,
in terms of SDR, the GF-VAEs significantly outperform the
VAEs in most cases and the GF-VAE-2 always significantly
outperforms the GF-VAE-1 and the VAEs. The GF-VAE-2
also always significantly outperforms the other models in terms
of WB-PESQ. The differences of STOI scores are not statisti-
cally significant in most cases, but we can still observe that the
GF-VAE-2 tends to have higher score than the other models.
In short, the GF-VAE-2 provides the lowest signal distor-
tion, indicated by the SDR score, and the lowest perceptual

8 10 12 14 16 18 20 22
SDR

VAE-2L 

VAE-3L 

GF-VAE-1 

GF-VAE-2 

VAE-2L 

VAE-3L 

GF-VAE-1 

GF-VAE-2 

VAE-2L 

VAE-3L 

GF-VAE-1 

GF-VAE-2 

GF 

m
od

el

D
=

8
D

=
16

D
=

32

Fig. 13. Boxplots of signal distortion ratio (SDR) metric computed on a
single channel, corresponding to the center front-facing microphone, of the
multichannel speech enhanced using the different models. The black dots are
the mean values. Higher is better.
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Fig. 14. Boxplots of perceptual objective metrics computed on a single channel,
corresponding to the center front-facing microphone, of the multichannel speech
enhanced using the different models. The black dots are the mean values.
Higher is better.

distortion, indicated by the WB-PESQ and STOI scores.
Examples of speech spectrograms enhanced using the differ-

ent models are shown in Fig. 15. While the noise is minimally
reduced using the GF, we can effectively separate the speech
from the noise using the VAEs or the GF-VAEs. As we al-
ready observed in the speech reconstruction and the speech
generation tasks, the GF-VAEs produce better, although sub-
tle, fine structures than the VAEs as demonstrated in Fig. 16.
The spectrograms shown in Figs. 15 and 16 are the ones of
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Fig. 15. Log-power spectrogram examples of the speech enhanced using the different models compared to the input noisy spectrogram and the target clean
spectrogram. The latent variable dimension for the VAEs and the GF-VAEs is D = 16. The segments are from the utterance F05_442C020T_PED from the
test set et05_ped_simu.
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Fig. 16. Harmonic structure examples of the speech enhanced using the different models compared to the input noisy spectrogram and the target clean
spectrogram. These examples are parts of the log-power spectrograms shown in Fig. 15. The latent variable dimension for the VAEs and the GF-VAEs is
D = 16. The segments are from the utterance F05_442C020T_PED from the test set et05_ped_simu.

the center front-facing microphone.
In conclusion, the GF-VAE-2 is the best choice for the

considered speech enhancement task. Most importantly, the GF
should not be used to provide the speech prior for a statistical
semi-supervised speech enhancement method like the one we
use in this task.

F. Discussion

An interesting observation is that while the GF-VAEs tend
to underperform the VAEs in the speech reconstruction task
(Section V-C), the GF-VAEs tend to outperform the VAEs in
the speech enhancement task (Section V-E). Note that the ab-
solute SDR, WB-PESQ, and STOI scores cannot be compared
directly between these tasks because different data are pro-
cessed with different method complexities. The reconstruction
task processes a single-channel clean speech spectrogram. The
latent variables are simply estimated using a recognition model
and then used, without any further optimization, for the recon-
struction using a generative model. The time-domain speech
signal is obtained given the reconstructed spectrogram and the
original clean speech phase, which may not be suitable for
the reconstructed spectrogram. Conversely, the enhancement
task processes a multichannel noisy speech spectrogram. Al-
though the estimated latent variables are also initialized using
a recognition model, they are updated multiple times so that

the generated spectrogram maximizes the objective function.
The time-domain speech signal with appropriate phase is ob-
tained by multichannel Wiener filtering given the generated
speech spectrogram and other parameters, including the noise
spectrogram, the speech spectrogram scaling factors, and the
spatial parameters.

VI. CONCLUSION

This paper proposes a deep generative model called the
GF-VAE for modeling high-dimensional observed variables
by utilizing a variational autoencoder (VAE) to discover low-
dimensional latent variables from high-dimensional transformed
variables obtained by a generative flow (GF). Through evalu-
ation in the context of speech power spectrogram modeling,
we showed that the GF-VAE can reconstruct the fine harmon-
ics in the higher frequency bands better than the VAE. We
also showed that the GF-VAE outperformed the others for a
semi-supervised multichannel speech enhancement.

Future directions include incorporating temporal dependency
structures and non-Gaussian latent variable spaces [23], [57]
into the GF-VAE framework, and extending GF-VAE to deal
with complex-valued spectrograms with phase information [58].
Further, in a similar way that the VAE is used with conditional
inputs [59], a conditional GF-VAE would be useful for other
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applications, including source separation [60], speech synthesis
[61], voice conversion [62], and music composition [63].
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