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Abstract

In this paper, we address the problem of energy efficient resource optimization for downlink transmission in user-centric ultra-

dense networks enabled by wireless access via nonorthogonal multiple access and wireless backhaul via beamforming. Our

objective is to maximize the system energy efficiency by optimizing user/access point scheduling, subchannel assignment, and

power allocation jointly. The problem is formulated as a nonconvex mixed-integer nonlinear programming problem which is

NP-hard. We then transform it into a convex subproblem using the sum-of-ratios decoupling and the iterative successive convex

approximation method. An overall algorithm is further developed to solve the subproblem iteratively. Simulation results show

that the proposed algorithm has improved the system-wide energy efficiency significantly when compared to the benchmark

scheme.
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Energy Efficient Resource Optimization in
User-Centric UDNs with NOMA and Beamforming

Long Zhang, Guobin Zhang, Xiaofang Zhao, and Enchang Sun

Abstract—In this paper, we address the problem of energy
efficient resource optimization for downlink transmission in user-
centric ultra-dense networks enabled by wireless access via non-
orthogonal multiple access and wireless backhaul via beamform-
ing. Our objective is to maximize the system energy efficiency by
optimizing user/access point scheduling, subchannel assignment,
and power allocation jointly. The problem is formulated as a non-
convex mixed-integer nonlinear programming problem which is
NP-hard. We then transform it into a convex subproblem using
the sum-of-ratios decoupling and the iterative successive convex
approximation method. An overall algorithm is further developed
to solve the subproblem iteratively. Simulation results show that
the proposed algorithm has improved the system-wide energy
efficiency significantly when compared to the benchmark scheme.

I. INTRODUCTION

Recently, increased interest in emerging applications, e.g.,
extended reality, holographic display, tele-surgery, etc., has
propelled the explosive growth in mobile data traffic. Such
an 1000x traffic growth necessitates the configuration of ultra-
dense networks (UDNs) to fulfill network capacity and spectral
efficiency (SE) enhancement requirements for 5G and beyond
[1]. Instead of relying on a macro base station (MBS) sending
signals to users, UDNs deploy tens or hundreds more of small
access points (APs) to provide wireless access service for
users, which has potentials to enlarge cell coverage, improve
spatial reuse of resources, enhance performance gains, etc.

Due to the overlapped coverage for users caused by dense
deployment of APs, traditional cell-centric architecture poses
extra challenges on network planning and design for UDNs. It
is vital to transform network architecture from cell-centric to
user-centric via the idea of “network serving user” and cell-
free concept [2]. In user-centric UDNs, a user is simultane-
ously served by an AP group (APG) wherein the AP density
is comparable to or even higher than the user density. Through
the deconstruction of cellular structure, user-centric UDNs not
only eliminate cell boundaries with entirely suppressed inter-
cell interference, but also achieve dynamic APG configuration
and flexible resource allocation in a user-centric manner.

Although user-centric UDNs bring about multi-Gigabit-per-
second user experience and SE increases in access downlink,
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limited wireless resources lead to serious competitions among
APs for massive access opportunities of users. Recently, non-
orthogonal multiple access (NOMA) has been considered as
an enabling technique due to its high SE, massive connectivity,
high user fairness, and low latency [3]. Power-domain NOMA
allows multiple signals multiplexed to transmit simultaneously
on the same spectrum resource by differentiating the signals
via power levels. User can use successive interference can-
cellation (SIC) to decode its own received signal and reduce
the undesired interference effectively. On the other hand, for
backhauling, it is uneconomical for every AP to be connected
via fiber to core networks. An alternative is to use wireless
backhauling that allows low-cost APs to employ wireless links
to MBS for backhauling. Multiple-antenna technique has been
recently proposed as a promising solution to obtain higher SE
and powerful interference mitigation via beamforming. Given
this scenario, integration of wireless access via NOMA and
wireless backhaul via beamforming into user-centric UDNs is
not only an extension of UDNs, but also a practical application
incentive promoted to provide significant performance gains.
However, such a coupling in user-centric UDNs raise impor-
tant concerns about resource allocation and user scheduling,
among which notably is energy efficiency (EE) balance.

Several recent works are devoted to energy efficient resource
allocation in user-centric UDNs. In [4], Park et al. proposed a
user-centric reverse association scheme for joint optimization
of handover and power control to maximize the AP’s EE. In
[5], Zhang et al. developed a joint optimization framework of
load-aware user association and power allocation in mmWave-
based UDNs to maximize the system EE. Additionally, there
are a few existing works that investigate resource optimization
problem by incorporating either NOMA or beamforming into
user-centric UDNs. Liu et al. [6] devised a resource opti-
mization framework in NOMA-based user-centric UDNs with
access and backhaul downlink to maximize the system EE.
In [7], Qin et al. used matching theory to study the problem
of resource allocation and user association under a unified
NOMA framework in UDNs. In [8], Kwon and Park explored
the joint problem of resource allocation, user association, and
hybrid beamforming design in mmWave UDNs to maximize
the weighted sum rate with limited feedback.

However, aforementioned research are mainly highlighted as
(i) the impact of resource optimization on the EE balance for
wireless access [4], [5], (ii) joint design of access and backhaul
downlink using NOMA [6], (iii) uplink and downlink design
for wireless access via NOMA [7], and (iv) design of both
access and backhaul downlink through hybrid beamforming



[8]. Few consider utilizing NOMA and beamforming simulta-
neously for resource allocation in user-centric UDNs. This re-
search gap motivates us to pursue a solution for the problem of
energy efficient resource optimization to maximize the system
EE of downlink transmission integrating both access downlink
via NOMA and backhaul downlink via beamforming. Main
contributions of our work include:
• We develop a resource optimization framework in an

energy-efficient manner for downlink user-centric UDNs
with a close coupling of wireless access via NOMA and
wireless backhaul via beamforming.

• We formulate the system EE maximization problem as an
MINLP problem by jointly optimizing user/AP schedul-
ing, subchannel assignment, and power allocation.

• We transform the problem into a standard convex problem
via the relaxation of binary variables, the sum-of-ratios
decoupling, and the successive convex approximation
(SCA), and solve it via Lagrangian dual decomposition.

The rest of the paper is organized as follows. Section II
introduces the system model and problem formulation. Section
III proposes the problem transformation and algorithm design.
Simulation results are presented in Section IV, followed by
concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

Consider the downlink of a user-centric UDN, where an
MBS with an antenna array is located at the center with M AP-
s, denoted by setM={1, 2, · · · ,M}, densely deployed within
the macrocell coverage of that MBS. The macrocell’s radius is
r. There also exist N users, denoted by setN ={1, 2, · · · , N},
randomly distributed in the overlapping coverage area shar-
ing the same spectrum resource with MBS and APs. The
locations of APs follow independent homogeneous Poisson
point processes (HPPPs) with density that is comparable to
or even larger than user density. The bandwidth of spectrum
resource is equally divided to K subchannels, denoted by
set K = {1, 2, · · · ,K}. To avoid the interference between
access and backhaul, subchannel set K is separated into
A= {1, 2, · · · , δ} for access and B = {δ + 1, δ + 2, · · · ,K}
for backhaul. Moreover, densely distributed APs are grouped
into F disjoint clusters based on spatial directions, denoted by
set F={1, 2, · · · , F}. Thus, an AP can only provide wireless
access exactly for one or more user(s) on a subset of A within
the same cluster to avoid inter-cluster interference. In cluster
f , user n can be simultaneously associated with at most Mf

APs on one or more subchannel(s), for Mf �M and f ∈ F .
As such, Mf APs in cluster f constitute a generalized APG,
denoted by set Gf , to serve user n by concurrently transmitting
independent signals in a user-centric fashion, for Gf ⊂M.
B. Communication Model

1) Access Downlink via NOMA: For access downlink, a
user in each cluster can be simultaneously served by multiple
APs via an assigned subchannel from A in a user-centric way.
The power-domain NOMA is adopted for access downlink,

which enables that multiple signals from APs in a cluster
multiplex on the same subchannel at the same time. According
to the NOMA principle, one user can receive from APs in the
same cluster via multiple subchannels, and one subchannel
can be assigned to multiple users. To represent the association
status between user and AP, we introduce a binary variable
akfmn such that if user n on subchannel k associates with AP
m in cluster f then akfmn = 1, otherwise akfmn = 0.

We assume that all the subchannels for access downlink
follow a quasi-static block fading, where the channel gains
remain to be constant within the time duration. As such, we
denote the downlink channel coefficient from AP m in cluster
f to user n on subchannel k as hkfmn = gkfmnd

−ϑ1

fmn, where
gkfmn is the flat Rayleigh fading channel gain, dfmn is the
distance between AP m in cluster f and user n, and ϑ1 is
the path loss exponent. After receiving the superposed signals
from Mk

f APs on subchannel k in Gf , user n employs the SIC
technique to decode its desired messages, for 0 ≤Mk

f < Mf .

Let Hk
fmn =

|hkfmn|2
σ2
nk

be the channel to noise ratio (CNR)
of subchannel k from AP m in cluster f to user n, where
σ2
nk is the noise variance at user n on subchannel k. Without

loss of generality, the CNRs of the received signals at user n
on subchannel k served by Mk

f APs on subchannel k in Gf
are sorted as Hk

f1n ≤ · · · ≤Hk
fmn ≤ · · · ≤Hk

fMk
f n

. With the
NOMA principle, the achievable rate (in bps/Hz) of user n on
subchannel k served by AP m in Gf can be expressed as

Rkfmn = log2

1 +
pkfmnH

k
fmn

1 +
∑Mk

f

j=m+1 p
k
fjnH

k
fjn

 , (1)

where pkfmn is the transmit power of AP m in cluster f to
user n on subchannel k.

2) Backhaul Downlink via Beamforming: For backhaul
downlink, the MBS concurrently transmits independent signals
to the APs in different clusters over the sharing subchannels.
By exploiting multiple antennas at both the MBS and the APs,
downlink beamforming is considered in wireless backhaul not
only to increase the SE, but also to combat the inter-cluster
and intra-cluster interference. To characterize the association
status between MBS and AP, we introduce a binary variable
bkfm such that if AP m in cluster f associates with the MBS
using subchannel k then bkfm = 1, otherwise bkfm = 0.

Let Q be the number of transmit antennas in the MBS’s
antenna array. Denote φkf as the number of APs on subchannel
k in cluster f , for 0≤ φkf �M ≤Q. The downlink channel
coefficient vector between MBS and AP m on subchannel
k in cluster f is given by hkfm = h̃kfmd

−ϑ2

fm , where dfm is
the distance between MBS and AP m in cluster f , ϑ2 is
the path loss exponent, and h̃kfm is the small scale Rayleigh
fading channel coefficient vector that is assumed to be complex
Gaussian distributed with zero mean and unit variance matrix.
For beamforming, let wk

f =
[
wk
f1,w

k
f2, · · · ,wk

fφkf

]T
be the

beamforming vector for φkf APs on subchannel k in cluster
f . To simplify analysis, we consider that the number of



transmit antennas for beamforming at MBS is equal to the
number of APs on subchannel k in cluster f . As such, the
received signal at AP m on subchannel k in cluster f is
corrupted by three parts, i.e., intra-cluster interference, inter-
cluster interference, and AWGN. For analytical simplicity, we
employ the zero-forcing beamforming to eliminate the inter-
cluster interference. Thus, the achievable rate (in bps/Hz) of
AP m on subchannel k in cluster f can be obtained by

Rkfm = log2

1+
qkfm

∣∣∣hkfmwk
f

∣∣∣2∣∣∣hkfmwk
f

∣∣∣2∑φkf
j=1,j 6=m q

k
fj + σ2

mk

 , (2)

where qkfm is the transmit power of MBS to AP m on
subchannel k in cluster f and σ2

mk is the noise variance at
AP m on subchannel k.

C. Power Consumption Model
For access downlink, power consumption depends on the

power consumed at users in receiving mode and at APs in
transmission mode, respectively. Power consumption for user
n in cluster f is written as Pfn = PR

fn + ψAP
D
fn, where PR

fn

is the constant circuit power consumption for received signal
processing, PD

fn is the dynamic circuit power consumption
for signal decoding, and ψA is correlated with the number
of APs in every APG on each subchannel. Besides, power
consumption for AP m in cluster f sending signal to user n
on subchannel k is determined by transmitter circuit power
consumption PC

m and transmit power pkfmn, i.e., Pm = PC
m +

pkfmn. Let Nf be the number of users that are associated with
APs in cluster f , for 0 ≤ Nf � N . Then the sum power
consumption for access downlink is equal to

PA =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmn
(
Pfn + PC

m + pkfmn
)
. (3)

For backhaul downlink, power consumption is aimed at the
power consumed at APs in receiving mode and at MBS in
transmission mode. Power consumption for AP m in cluster
f can be modeled as Pfm = PR

fm+ψBP
D
fm, where PR

fm is
the constant circuit power consumption for received signal
processing, PD

fm is the dynamic circuit power consumption
for signal decoding, and ψB is correlated with the number of
APs in every cluster on each subchannel. Moreover, power
consumption of MBS mainly depends on transmit power qkfm
to AP m on subchannel k in cluster f . Thus, the sum power
consumption for backhaul downlink is expressed by

PB =

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bkfm
(
Pfm + qkfm

)
. (4)

D. Problem Formulation
The energy efficient resource optimization problem for the

downlink is to maximize the system EE metric via jointly
optimizing user/AP scheduling, subchannel assignment, and
power allocation. Combining the access downlink via NOMA
and the backhaul downlink via beamforming, the actual overall
achievable rate of system can be obtained as

RS =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmnR
k
fmn. (5)

Hence, the system EE for downlink transmission is defined
by ξEE = RS

PA+PB
(in bit/Hz/Joule). Let A = {akfmn}

Mf ,Nf ,δ
m,n,k=1 ,

B = {bkfm}
Mf ,K
m=1,k=δ+1, P = {pkfmn}

Mf ,Nf ,δ
m,n,k=1 , and Q =

{qkfm}
Mf ,K
m=1,k=δ+1, for f ∈ F . The optimization problem is

then formulated as

max
A,B,P,Q

RS

PA + PB
(6a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

akfmnR
k
fmn ≥ Rmin

n , ∀n, (6b)

F∑
f=1

K∑
k=δ+1

bkfmR
k
fm ≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

akfmnR
k
fmn, ∀m, (6c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bkfmq
k
fm ≤ Pmax, ∀f, ∀m,∀k, (6d)

Nf∑
n=1

δ∑
k=1

akfmnp
k
fmn ≤ Pmax

m , ∀f, ∀m, (6e)

akfmn, b
k
fm ∈ {0, 1} , ∀f, ∀m,∀n, ∀k, (6f)

where Rmin
n is the minimum data rate of user n, Pmax is the

MBS’s maximum power, and Pmax
m is the maximum power

of AP m. The user’s minimum rate constraint is shown in
(6b). (6c) dictates the achievable rate of backhaul should be
larger than that of access. (6d) is the MBS’s maximum power
constraint. (6e) denotes that AP’s power is restricted by its
maximum limit. Lastly, (6f) is the binary constraints to imply
the user/AP scheduling relations. Due to the existence of
interference terms in (6a), nonlinear rate constraints in (6b)
and (6c), and binary variables in (6f), problem (6) is a non-
convex MINLP problem. Such kind of problem is NP-hard
and is very difficult to solve directly for the UDN scenario
with larger numbers of densely distributed users and APs.

III. PROPOSED APPROACH

A. Problem Transformation

Considering that binary variables can be interpreted as user
association-dependent indicators for assigning subchannels,
we relax binary variables akfmn and bkfm to be continuous
real variables within the range of [0, 1] based on the time-
sharing relaxation idea. As such, the actual power of AP m
in cluster f to user n on subchannel k is represented as
p̃kfmn = akfmnp

k
fmn, the actual power of MBS to AP m on

subchannel k in cluster f is given by q̃kfm = bkfmq
k
fm. Thus,

we have P̃ = {p̃kfmn}
Mf ,Nf ,δ
m,n,k=1 , and Q̃ = {q̃kfm}

Mf ,K
m=1,k=δ+1,

for f ∈F . Then problem (6) can be reformulated as

max
A,B,P̃,Q̃

R̃S

P̃A + P̃B
(7a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

akfmnR̃
k
fmn ≥ Rmin

n , ∀n, (7b)



F∑
f=1

K∑
k=δ+1

bkfmR̃
k
fm ≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

akfmnR̃
k
fmn, ∀m, (7c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

q̃kfm ≤ Pmax, ∀f, ∀m,∀k, (7d)

Nf∑
n=1

δ∑
k=1

p̃kfmn ≤ Pmax
m , ∀f, ∀m, (7e)

akfmn, b
k
fm ∈ [0, 1] , ∀f, ∀m,∀n,∀k. (7f)

B. Sum-of-Ratios Decoupling

After the relaxation of binary variables, we can find that
the reformulated problem (7) is still not a convex problem.
To make this problem tractable, we recheck the structure of
objective function in (7a)., and observe that objective function
in (7a) holds the structure of a nonlinear sum of fractional
functions. To maximize a sum of fractional functions subject
to the non-convex constraints is a sum-of-ratios fractional pro-
gramming problem, which is difficult to solve by conventional
optimization methods [9]. To solve this problem, we use the
sum-of-ratios algorithm by decoupling the numerators and
denominators of objective function in (7a) into an equivalent
parametric subtractive structure, which can be represented by

ξ̃EE = R̃S − µ
(
P̃A + P̃B

)
, (8)

where µ is an auxiliary parameter. Note that objective function
in (8) is still non-concave due to the interference terms in non-
concave sum rate function R̃S. To obtain the convex structure
of objective function, through the feature of logarithmic struc-
ture, we rewrite R̃S as the difference of convex structure

R̃S =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmn

× log2

1+p̃kfmnHk
fmn+

Mk
f∑

j=m+1

p̃kfjnH
k
fjn


−

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmnlog2

1+ Mk
f∑

j=m+1

p̃kfjnH
k
fjn

 . (9)

Based on the subtractive structure in (8) and the logarithmic
operation in (9), problem (7) can be further rewritten by

max
A,B,P̃,Q̃

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmn

× log2

1+p̃kfmnHk
fmn+

Mk
f∑

j=m+1

p̃kfjnH
k
fjn


−

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmnlog2

1+ Mk
f∑

j=m+1

p̃kfjnH
k
fjn


−µ

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
Pfn + PC

m + p̃kfmn
)

− µ
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
Pfm + q̃kfm

)
(10)

s.t. (7b), (7c), (7d), (7e), (7f).

C. Successive Convex Approximation

Due to the non-convexity of problem (10) caused by con-
straints in (7b) and (7c), we resort to the iterative SCA method
for solving it, where, in each iteration, the original non-convex
problem is approximately converted into a convex problem.
For notational simplicity, let γk,1fmn =

p̃kfmnH
k
fmn

1+
∑Mk

f
j=m+1 p̃

k
fjnH

k
fjn

. As

in [10], a lower bound of R̃S is determined by

R̃S≥
F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
, (11)

where αkfmn and βkfmn are the auxiliary approximation vari-
ables, respectively, which can be calculated as follows to
tighten the lower bound in (11), i.e.,

αkfmn =
γk,1fmn

1 + γk,1fmn
, (12)

βkfmn = log2

(
1 + γk,1fmn

)
−

γk,1fmn

1 + γk,1fmn
log2

(
γk,1fmn

)
. (13)

By letting γk,2fm =
q̃kfm|hkfmwkf |2

|hkfmwkf |2
∑φk

f
j=1,j 6=m q̃kfj+σ

2
mk

, we can also

obtain a lower bound of R̃kfm, which can be given by

R̃kfm ≥ Λkfm log2

(
γk,2fm

)
+Ξkfm, (14)

where Λkfm and Ξkfm are the auxiliary approximation vari-
ables, respectively, which can be expressed as follows to
tighten the lower bound in (14), i.e.,

Λkfm =
γk,2fm

1 + γk,2fm
, (15)

Ξkfm = log2

(
1 + γk,2fm

)
−

γk,2fm

1 + γk,2fm
log2

(
γk,2fm

)
. (16)

Define p̂kfmn = log2

(
p̃kfmn

)
and q̂kfm = log2

(
q̃kfm

)
. Let

P̂ = {p̂kfmn}
Mf ,Nf ,δ
m,n,k=1 and Q̂ = {q̂kfm}

Mf ,K
m=1,k=δ+1, for f ∈F .

By applying the lower bounds in (11) and (14) as well as the
logarithmic change of variables into a logarithmic transforma-
tion of objective and constraint functions in problem (10), we
arrive at the following approximate parametric subproblem

max
A,B,P̂,Q̂

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
−µ

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
Pfn + PC

m + exp
(
p̂kfmn

))
−µ

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
Pfm+exp

(̂
qkfm
))
,ℵ
(
A,B,P̂,Q̂

)
(17)



s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
≥Rmin

n , ∀n,

F∑
f=1

K∑
k=δ+1

bkfm

(
Λkfm log2

(
γk,2fm

)
+Ξkfm

)
≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
, ∀m,

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

exp
(
q̂kfm

)
≤ Pmax, ∀f, ∀m,∀k,

Nf∑
n=1

δ∑
k=1

exp
(
p̂kfmn

)
≤ Pmax

m , ∀f, ∀m,

akfmn, b
k
fm ∈ [0, 1] , ∀f, ∀m,∀n, ∀k.

Note that subproblem (17) follows the log-sum-exp function
structure. Thus, we finally convert the original problem (6) into
a standard convex problem with logarithmic change variables.
In fact, we only maximize a lower bound of objective function
in (17). To effectively solve subproblem (17), with the SCA
method, we need to tighten the bound in (11) by iteratively
updating αkfmn and βkfmn, and also tighten the bound in
(14) by iteratively updating Λkfm and Ξkfm. Due to the space
limitation, detailed procedure of the iterative algorithm via the
SCA method to tighten the bounds in (11) and (14) is omitted
here, and readers can refer to [10] for detailed description.

D. Lagrangian Dual Decomposition

In this subsection, the standard convex problem in (17) is
solved by using the Lagrangian dual decomposition method.
The Lagrangian function is given by

L
(
A,B, P̂, Q̂,λ,ϕ, η,χ

)
=ℵ
(
A,B, P̂, Q̂

)
+

Nf∑
n=1

λn

 F∑
f=1

Mf∑
m=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
−Rmin

n


+

Mf∑
m=1

ϕm

 F∑
f=1

K∑
k=δ+1

bkfm

(
Λkfm log2

(
γk,2fm

)
+Ξkfm

)
−

F∑
f=1

Nf∑
n=1

δ∑
k=1

akfmn

(
αkfmnlog2

(
γk,1fmn

)
+βkfmn

)
+η

Pmax−
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

exp
(
q̂kfm

)
+

F∑
f=1

Mf∑
m=1

χfm

Pmax
m −

Nf∑
n=1

δ∑
k=1

exp
(
p̂kfmn

) , (18)

where λ, ϕ, η, and χ are the Lagrange multiplier vectors
for the constraints except for binary constraints in (17). The
boundary constraints for binary constraints will be absorbed
in the KKT conditions. The Lagrange dual function is given
as g (λ,ϕ, η,χ) = max

A,B,P̂,Q̂
L
(
A,B,P̂,Q̂,λ,ϕ, η,χ

)
. Then the

Lagrangian dual problem is formulated by

min
λ,ϕ,η,τ≥0

g (λ,ϕ, η,χ) . (19)

The dual variables are optimized by subgradient method
based on the KKT conditions, which are specified as in [11].
According to the KKT conditions, the optimal solutions of
the subproblem (17), denoted by {p̂k,∗fmn}, {q̂

k,∗
fm}, {a

k,∗
fmn},

and {bk,∗fm}, can be respectively obtained as
∂L (· · · )
∂p̂k,∗fmn

= 0 and
∂L (· · · )
∂q̂k,∗fm

= 0, (20)

∂L (· · · )
∂ak,∗fmn

=


< 0 ak,∗fmn = 0,

= 0 0 < ak,∗fmn < 1

> 0 ak,∗fmn = 1,

, (21)

∂L (· · · )
∂bk,∗fm

=


< 0 bk,∗fm = 0,

= 0 0 < bk,∗fm < 1,

> 0 bk,∗fm = 1.

(22)

The optimal power of AP m in cluster f to user n on sub-
channel k and the optimal power of MBS to AP m on sub-
channel k in cluster f is obtained by solving the equations

p̂k,∗fmn = ln

(
ak,∗fmnα

k
fmn (ϕm − λn − 1)

µ+ χf,m

×

1−
∑Mk

f

j=m+1exp
(
p̂k,∗fmn

)
Hk
fjn(

1+
∑Mk

f

j=m+1exp
(
p̂k,∗fmn

)
Hk
fjn

)
ln 2


 , (23)

q̂k,∗fm = ln

(
ϕmb

k
fmΛ

k
fm

µ+ η

×

1−
∣∣∣hkfmwk

f

∣∣∣2∑φkf
j=1,j 6=mexp

(
q̂k,∗fm

)
(∣∣∣hkfmwk

f

∣∣∣2∑φkf
j=1,j 6=mexp

(
q̂k,∗fm

)
+σ2

mk

)
ln 2


 .

(24)
Through the partial derivative of the Lagrangian, sub-

channel k∗ is assigned to user n by AP m in cluster f such
that ak

∗,∗
fmn = 1, and sub-channel k∗ is assigned to AP m in

cluster f by MBS such that bk
∗,∗
fm =1, which can be given as

ak
∗,∗
fmn

∣∣∣
k∗=arg max

k

∂L(··· )
∂a
k,∗
fmn

= 1, (25)

bk
∗,∗
fm

∣∣∣
k∗=arg max

k

∂L(··· )
∂b
k,∗
fm

= 1. (26)

We use the subgradient method and update the dual vari-
ables by setting the step sizes for each iteration. Due to the
space limitation, the specific updated process for dual variables
is omitted here, and readers can refer to [11] for detailed de-
scription. The overall algorithm to iteratively realize the joint
optimization of user/AP scheduling, subchannel assignment,
and power allocation is sketched in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we present simulations results to verify the
performance of our proposed algorithm as compared to the
equal-power based allocation scheme as a benchmark. We con-
sider a macrocell area with radius r = 200m centered at MBS,
wherein the locations of users and APs are randomly generated
with equal possibility and deployed subject to the independent



Algorithm 1 Proposed Resource Allocation Algorithm
1: Initialize maximum number of iterations Lmax and Lagrange multipliers
λ, ϕ, η, χ, set iteration index l = 1.

2: Obtain updated variables αk
fmn, βk

fmn, Λk
fm, Ξk

fm via SCA in [10].
3: repeat
4: for f = 1 to F do
5: for m = 1 to M do
6: Calculate sub-channel k∗ using (26) and update bk

∗,∗
fm .

7: Solve (24) to update q̂k
∗,∗

fm .
8: for n = 1 to N do
9: Calculate sub-channel k∗ using (25) and update ak

∗,∗
fmn.

10: Solve (23) to update p̂k
∗,∗

fmn.
11: end for
12: end for
13: end for
14: Update Lagrange multipliers λ, ϕ, η, χ by [11], and set l = l + 1.
15: until onvergence or l = Lmax.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Maximum associated number of APs for user in f , Mf 16
Maximum associated number of APs for MBS in f , φkf 10

Maximum number of APs on subchannel k in Gf , Mk
f 12

Path loss exponent for access downlink, ϑ1 2
Flat Rayleigh fading channel gain, gkfmn CN (0, 1)

Noise variance at user n on subchannel k, σ2
nk −174dBm/Hz

Path loss exponent for backhaul downlink, ϑ2 2

Small scale Rayleigh fading channel vector, h̃k
fm CN

(
0, IQ

)
Noise variance at AP m on subchannel k, σ2

mk −174dBm/Hz

HPPPs, respectively. The minimum distance between APs is
set to 3m, and the minimum distance between users is set to
1.2m. For downlink, the power consumption parameters are set
as PR

fn=5mW, PD
fn=10mW, PC

m=50mW, PR
fm=15mW, and

PD
fm =30mW. All the APs are separated into F =8 disjoint

clusters based on their spatial direction to MBS, i.e., 45°
direction angle interval. As in [12], beamforming vector for
AP on each sub-channel in a cluster is generated through the
channel coefficient vector h̃kfm between MBS and that AP. We
assume that the number of transmit antennas for beamforming
in antenna array of MBS is equal to the number of APs on
each sub-channel in a cluster for simplicity of simulations.
The other simulation parameters are summarized in Table I.

Fig. 1(a) shows the convergence of the proposed algorithm
for four cases with different combinations with the numbers
of APs and users. It can be seen that the proposed algorithm
converges rapidly in less than 10 iterations to reach the optimal
points. With different combinations of APs and users, better
system EE performance is obtained when M=N=200. From
Fig. 1(a), we can conclude that the proposed algorithm has
good convergence performance. In addition, Fig. 1(b) shows
the performance comparison in terms of system EE versus
the number of users between the proposed algorithm and the
benchmark scheme. We can find that the system EE greatly
increases with the continuous evolution of the number of users.
It is further observed that the proposed algorithm significantly
outperforms the benchmark scheme in terms of the system EE.
Such an insight, to some extent, is aligned with the fact that
the proposed algorithm fully achieves the joint optimization of
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Fig. 1. Simulation results achieved when Rmin

n =100bps/Hz, Pmax=46dBm,
and Pmax

m = 32dBm: (a) Convergence behavior of the proposed algorithm.
(b) System EE versus the number of users.

resource allocation, and thereby achieves good performance.

V. CONCLUSION

This paper studied the energy efficient resource optimization
problem for the downlink user-centric UDNs integrating NO-
MA and beamforming. The system EE maximization problem
was formulated as a non-convex MINLP problem. By using the
sum-of-ratios decoupling and the iterative SCA method, this
problem was transformed into a convex parametric subprob-
lem. Then the overall algorithm was devised to obtain the joint
optimization of user/AP scheduling, subchannel assignment,
and power allocation. The simulation results after comparison
with the benchmark scheme revealed that our proposed algo-
rithm accomplishes significant enhancement in the system EE.
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