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Abstract

Multiunit activity (MUA) has been proposed to mitigate the robustness issue faced by single-unit activity (SUA)-based brain-

machine interfaces (BMIs). Most MUA-based BMIs still employ a binning method for extracting firing rates and linear decoder

for decoding behavioural parameters. The limitations of binning and linear decoder lead to suboptimal performance of MUA-

based BMIs. To address this issue, we propose Bayesian adaptive kernel smoother (BAKS) as the feature extraction method

and long short-term memory (LSTM)-based deep learning as the decoding algorithm. We evaluated the proposed methods for

reconstructing (offline) hand kinematics from intracortical neural data chronically recorded from the motor cortex of a monkey.

Experimental results showed that BAKS coupled with LSTM outperformed other combinations of feature extraction method

(binning or fixed kernel smoother) and decoding algorithm (Kalman filter or Wiener filter). Overall results demonstrate the

effectiveness of BAKS and LSTM for improving the decoding performance of MUA-based BMIs.
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ABSTRACT Multiunit activity (MUA) has been proposed to mitigate the robustness issue faced by single-
unit activity (SUA)-based brain-machine interfaces (BMIs). Most MUA-based BMIs still employ a binning
method for extracting firing rates and linear decoder for decoding behavioural parameters. The limitations
of binning and linear decoder lead to suboptimal performance of MUA-based BMIs. To address this issue,
we propose Bayesian adaptive kernel smoother (BAKS) as the feature extraction method and long short-
term memory (LSTM)-based deep learning as the decoding algorithm. We evaluated the proposed methods
for reconstructing (offline) hand kinematics from intracortical neural data chronically recorded from the
motor cortex of a monkey. Experimental results showed that BAKS coupled with LSTM outperformed
other combinations of feature extraction method (binning or fixed kernel smoother) and decoding algorithm
(Kalman filter or Wiener filter). Overall results demonstrate the effectiveness of BAKS and LSTM for
improving the decoding performance of MUA-based BMIs.

KEYWORDS Brain-machine interface, Bayesian adaptive kernel smoother, deep learning, firing rate,
multiunit activity.

I. INTRODUCTION

BRAIN-machine interfaces (BMIs) seek to restore lost
motor function in severely paralysed patients by trans-

lating brain activity into control signals for guiding assistive
devices. Numerous BMI studies utilising neuronal action
potentials or spikes —also known as single-unit activity
(SUA)— have shown compelling results in animals [1]–[4]
and humans [5]–[8]. Nevertheless, spike recordings are not
chronically stable, and the number of observable units pro-
gressively decline over time [9]–[11]. Several factors thought
to cause this instability are glial scar formation (induced by
neural tissue responses) encapsulating the electrodes, micro-
motion of the electrodes, insulation degradation, and me-
chanical breakage [12], [13]. The instability of SUA hinders
clinical translation of SUA-based BMIs.

To overcome the above problem, multiunit activity (MUA)
has been proposed as an alternative input signal to single-
unit activity (SUA) [11], [14]–[16]. MUA refers to all spikes
detected via a threshold-crossing technique without clas-
sifying (sorting) further into individual units. Thus, MUA
represents the aggregate spikes from an ensemble of neurons

in the vicinity of the recording electrode tip. Compared to
SUA, MUA is more stable and requires simpler signal pro-
cessing. Most MUA-based BMIs employ a binning method
for extracting features (firing rates) and linear decoders for
decoding movement parameters [17]–[19]. Binning estimates
firing rates by counting the number of spikes within a pre-
defined bin/window width. Despite being simple and fast,
binning results in a coarse/noisy estimate of firing rates.
As movements are usually smooth or continuous over time,
a method that can yield a smooth estimate of firing rates
could potentially improve decoding performance of MUA-
based BMIs. Additionally, the use of linear decoders with
their inherent assumptions leads to suboptimal decoding per-
formance since neural signals often exhibit non-linear, non-
stationary, and non-Gaussian characteristics [20]. Therefore,
it is highly desirable to develop a decoding algorithm that is
robust against the above neural signal characteristics. The rise
of deep learning in recent years has presented the opportunity
to potentially improve the decoding performance of MUA-
based BMIs. So far, however, there have been very few
studies utilising deep learning for MUA-based BMIs.
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The present work aims to improve the decoding perfor-
mance of MUA-based BMIs by simultaneously proposing
(1) Bayesian adaptive kernel smoother (BAKS) originally
reported in [21] as the firing rate estimation method and
(2) long short-term memory (LSTM)-based deep learning
as the decoding algorithm. We evaluate BAKS and LSTM
for decoding (offline) hand kinematics from neural signals
chronically recorded from the primary motor cortex (M1)
area of a monkey while performing self-paced reaching tasks.
We benchmark the proposed methods against two firing rate
estimation methods (binning and fixed kernel smoother) and
two decoding algorithms (Kalman filter and Wiener filter) as
reported in previous studies (e.g. [16], [22]–[24]). Lastly, we
compare the decoding performance between MUA and SUA
using the proposed methods.

The remainder of this paper is organised as follows:
Section II describes the methods, including experimental
setup, signal processing, and decoding algorithm; Section
III presents the empirical results, followed by analyses and
discussion in Section IV; and finally, the conclusion is drawn
in Section V.

II. METHODS
Fig. 1 illustrates the schematic overview of spike-based
BMI system. Firing rate estimation was performed in an
overlapping fashion to match the timescale of the kinematic
data. The estimated firing rates were standardised (i.e. z-
transformed) before being fed to the decoding algorithm. All
the experiments and analyses were done in Python.

A. NEURAL RECORDINGS
Neural data were recorded from the primary motor cor-
tex (M1) area of an adult male Rhesus macaque monkey
(Macaca mulatta) by Sabes lab [25]. The recordings were
made with a 96-channel Utah microelectrode array (platinum
contact, 400 kΩ impedance, 400µm interelectrode spacing,
1 mm electrode length) referenced to a silver wire placed
under the dura (several cm away from the electrodes). The
recordings were preamplified and filtered by using a 4th-
order low-pass filter at 7.5 kHz and were then digitised with
16-bit resolution at 24.4 kHz sampling rate. These digitised
recordings are referred to as raw neural signals. Details of the
experimental setup are described elsewhere [26]. We used a
total of 26 recording sessions spanning 7.3 months between
the first (I20160627_01) and last (I20170131_02) sessions
with a varying duration from 6 to 13.6 minutes (average of
8.88 ± 1.96 minutes). The first and last sessions correspond
to 110 and 328 days after the electrode implantation date,
respectively.

B. BEHAVIOURAL TASK
The monkey was trained to reach randomly drawn circular
targets which were uniformly distributed around an 8 × 8
square grid. The target was acquired when the monkey
reached the target using his fingertip and held it for 450 ms.
Upon every target acquisition, a new random target was

presented immediately without an inter-trial interval. The fin-
gertip position of the reaching hand and the target position (in
x–y Cartesian coordinates with mm unit) were both sampled
at 250 Hz. The position data were then low pass filtered with
a non-causal, 4th-order Butterworth filter at 10 Hz to reject
sensor noise. Velocity and acceleration data were computed
using the first and second derivative of the position data. A
more detailed description of the behavioural task is given in
[26].

C. SPIKE SIGNAL PROCESSING
1) Multiunit activity (MUA)
The raw neural signals were band-pass filtered with a causal,
4th-order Butterworth IIR filter between 500 to 5000 Hz.
Spikes were then detected whenever the absolute value of the
band-passed signals crossed a threshold value (typically set
to between 3.5 and 4.0 times the standard deviation). Here,
MUA refers to all the detected spikes aggregated per channel.
Only MUA with spike rates exceeding 0.5 Hz were included.
The number of MUA varied from 77 to 95 units (average of
87.08 ± 4.44) across 26 recording sessions.

2) Single-unit activity (SUA)
SUA was obtained by sorting (i.e. classifying) the detected
spikes into distinct putative single units via principal com-
ponent analysis and template matching. Each channel could
contain more than one units. More detailed information on
the spike detection and sorting processes can be found in
[26]. We Only included SUA with spike rates above 0.5 Hz,
which resulted in a varying number of SUA ranging from 91
to 157 units (average of 125.73± 13.95) across 26 recording
sessions.

D. FIRING RATE ESTIMATION
1) Bayesian Adaptive Kernel Smoother (BAKS)
BAKS estimates firing rate, λ̂(t), by convolving a spike train
ρ(t) with a kernel function with adaptive bandwidthKh(t)(t),

λ̂(t) =

∫ ∞
−∞

Kh(t)(τ)ρ(t− τ)dτ (1)

where h(t) denotes adaptive bandwidth parameter. The spike
train is formulated as

ρ(t) =

n∑
i=1

δ(t− ti) (2)

where ti represents the spike time, n is the number of spikes,
and δ(t) is Diract function. By substituting Eq. (2) into
Eq. (1), we obtain

λ̂(t) =

n∑
i=1

Kh(t)(t− ti) (3)

We proposed a Gaussian kernel function and Gamma
prior distribution on the precision parameter (σ(t)), where
σ(t) = 1/h(t)2. Due to conjugate prior relationship, this
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FIGURE 1. Schematic overview of spike-based BMI system

combination leads to an analytical expression of the posterior
distribution. The Gamma prior distribution is given by

π(σ(t)) =
σ(t)α−1

Γ(α)βα
exp

{
−σ(t)

β

}
, σ > 0 (4)

where α > 0 is the shape parameter, β > 0 is the scale
parameter, and Γ(α) is Gamma function. By the change-of-
variable formula and transformation technique, Eq. (4) can
be expressed as:

π(h(t)) =
2h(t)−2α−1

Γ(α)βα
exp

{
− 1

βh(t)2

}
(5)

Using Bayes’ theorem, the posterior distribution of kernel
bandwidth, π(h(t)|ρ(t)), can be computed by

π(h(t)|ρ(t)) =
f̂(ρ(t)|h(t))π(h(t))∫

f̂(ρ(t)|h(t))π(h(t))dh(t)
(6)

where f̂(ρ(t)|h(t)) represents an approximation of likeli-
hood function based on Gaussian kernel, which is formulated
as

f̂(ρ(t)|h(t)) =
1

n

n∑
i=1

1√
2πh(t)

exp

{
− (t− ti)2

2h(t)2

}
(7)

By substituting Eq. (5) and Eq. (7) into Eq. (6), we obtain an
analytical expression as follows

π(h(t)|ρ(t)) =

n∑
i=1

h(t)−2α−2 exp
{
− 1
h(t)2

[
(t−ti)2

2 + 1
β

]}
1
2Γ(α+ 1

2 )
n∑
i=1

[
(t−ti)2

2 + 1
β

](−α− 1
2 )

(8)
Under squared error loss function, the adaptive bandwidth
estimate can be computed by

ĥ(t) =

Γ(α)
n∑
i=1

[
(t−ti)2

2 + 1
β

]−α
Γ(α+ 1

2 )
n∑
i=1

[
(t−ti)2

2 + 1
β

]−α− 1
2

(9)

The adaptive bandwidth in Eq. (9) is then used for firing rate
estimation in Eq. (3).

Firing rate was estimated using 256 ms window width,
parameter shape (α) = 4, and parameter scale (β) = n4/5; n
represents the number of spikes. The formula of BAKS and
its parameter setting are described in [21].

2) Fixed kernel smoother (FKS)

FKS estimates firing rate by convolving a spike train with
a 256 ms Gaussian kernel with fixed bandwidth parameter
(110 ms). This bandwidth value was chosen because it re-
sulted in better performance than 50 ms and 150 ms used in
[22].

3) Binning

Binning estimates firing rate by computing the number of
spikes within a 256 ms rectangular window. As in BAKS and
FKS, the window width was set to 256 ms because, according
to our previous study [27], this value yielded the highest
decoding performance.

E. DECODING ALGORITHM

1) Long short-term memory (LSTM)

LSTM, proposed by Hochreiter and Schmidhuber in 1997
[28], is one of the most popular deep learning methods and
has achieved state-of-the-art performance in various tasks,
particularly those with time-series data [29]. It has success-
fully addressed the vanishing gradient problem commonly
encountered in traditional recurrent neural networks (RNNs).
LSTMs can effectively learn long-term temporal dependen-
cies via a memory cell that maintains its state overtime and
gating mechanism that controls the flow of information into
and out of the memory cell. The states of LSTM components
at timestep t are mathematically expressed as follows:

ft = σ(Wfxt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ot = σ(Woxt + Uoht−1 + bo)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(10)
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TABLE 1. Hyperparameter configuration of SUA- and MUA-driven LSTM decoders across firing rate estimation methods

Hyperparameter Value range
SUA MUA

Binning FKS BAKS Binning FKS BAKS

Number of units {50, 75, · · · , 200} 200 200 200 150 175 200
Number of epochs {2, 3, · · · , 8} 6 7 8 6 5 6
Batch size {64, 96, 128} 64 96 64 64 32 32
Dropout rate {0, 0.1, · · · , 0.5} 0 0.2 0.2 0 0.5 0.1
Learning rate {5, 10, · · · , 50} × 10−4 0.002 0.004 0.005 0.0035 0.0035 0.003

where x,h, f , i,o, c consecutively represent the input, out-
put, forget gate, input gate, output gate, and memory cell.
The operators�, σ, and tanh denote the element-wise multi-
plication, logistic sigmoid function, and hyperbolic tangent
function, respectively. Matrices W,U and bias vectors b
represent the input and recurrent weights, respectively.

We empirically selected the number of layers and number
of timesteps to be one and two, respectively. The last timestep
from the LSTM output was connected to a fully connected
layer to obtain the final output. Other hyperparameters, which
include the number of units, number of epochs, batch size,
dropout rate and learning rate, were determined through hy-
perparameter optimisation from predefined ranges (Table 1).
The hyperparameter optimisation was conducted using a
Bayesian optimisation package called Hyperopt [30] sepa-
rately for each spike signal and firing rate estimation method
and was run for 300 iterations. The resulting optimised hyper-
parameters are shown in Table 1. To save the computational
time of experiments, the hyperparameter optimisation was
performed only once using the first recording session; for
the subsequent sessions, we used the same hyperparameter
configuration. The LSTM decoders were implemented using
Keras/TensorFlow deep learning framework [31] and trained
using RMSprop optimiser with root mean squared error
(RMSE) loss function.

2) Kalman filter (KF)
KFs have been employed in numerous BMI studies to predict
hand kinematics or kinetics from neural signals [23], [32]–
[35]. KF combines process and measurement models with
the assumption that both models are linear and Gaussian. The
process model defines the evolution of the state (assumed to
be Markovian) from the previous timestep t−1 to the current
timestep t as:

yt = Fyt−1 + qt, qt ∼ N (0,Q) (11)

where F denotes the state transition matrix that linearly
maps the previous state to the current state; qt represents the
process noise. The state yt at timestep t is formulated as:

yt = [sx, sy, vx, vy, ax, ay]Tt (12)

where sx, sy, vx, vy, ax, ay denote the hand position, ve-
locity, and acceleration in x and y directions, respectively;
d refers to the dimension of the state. The measurement

model describes the relationship between the state and the
measurement at the current timestep t, expressed as:

xt = Hyt + rt, rt ∼ N (0,R) (13)

where H denotes the measurement matrix that linearly trans-
form the state yt into the measurement xt; rt represents the
measurement noise.

KF is composed of two steps, prediction and update, which
are performed in a recursive manner. In the prediction step,
a priori state estimate (ŷ′t) and a priori error covariance
(P′t) at the current timestep are predicted from previous state
estimate (ŷ′t−1) and error covariance (Pt−1),

ŷ′t = Fŷt−1
P′t = FPt−1F

T + Q
(14)

In the update step, a posteriori state estimate (ŷt) and a
posteriori error covariance (Pt) at the current timestep are
obtained from the predicted state estimate and error co-
variance combined with the information from the current
measurement using the following equations:

ŷt = ŷ′t + Kt(xt −Hŷ′t)
Pt = (I−KtH)P′t

(15)

where Kt is the Kalman gain that represents how much
weight given to the measurements to refine the current state
estimate.

Following Wu et al.’s work [32], parameters F, H, Q, and
R were assumed to be invariant and were estimated using
least square regression on the training data.

3) Wiener filter (WF)
WF linearly estimates kinematic data from the neural signals
with the assumption of known stationary signal and additive
noise. WF produces an optimal estimate in minimum mean
squared error sense. WFs were employed in a number of
prior BMI studies [3], [5], [6], [36], [37]. An estimate of hand
kinematics, ŷ(t), is expressed as:

ŷ(t) =

C∑
i=1

L−1∑
τ=0

wi(τ)xi(t− τ) (16)

where wi(τ) denotes a filter kernel and xi represents the
measurements (i.e. firing rates). C is the number of channels,
whereasL is the number of lags/taps.Lwas empirically set to
15, and the filter weights (wi(τ)) were estimated using linear
least-squares on the training data.
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FIGURE 2. Comparison of decoding performance of MUA-driven KF decoder across different firing rate estimation methods. (a),(b) Performance comparison over
long-term recording sessions measured in RMSE and CC, respectively. (c),(e) Boxplot comparison across sessions measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation methods whose performances differed significantly from that of BAKS (*** p<0.001). (d),(f) Performance
improvement/degradation (in percent RMSE and CC, respectively) relative to binning. Positive (negative) value indicates performance improvement (degradation).
Black error bars denote 95% confidence intervals. (g)-(j) Snippet examples of true and decoded velocities in x- and y- coordinates from different firing rate
estimation methods (data from recording session I20170131_02).

F. PERFORMANCE EVALUATION AND METRICS
The neural data were divided into 10 non-overlapping con-
tiguous blocks of equal size which were categorised further
into three sets: training (8 concatenated blocks), validation
(1 block) and testing (1 block). The training, validation, and
testing sets were used to train, optimise, and evaluate the
decoder, respectively.

Decoding performance was evaluated using two com-
monly used metrics: (1) root mean square error (RMSE)
and (2) Pearson’s correlation coefficient (CC), which are
formulated as follows:

RMSE =

√∑N
i=1(ŷi − yi)2/N (17)

CC =

∑N
t=1(yt − ȳ)(ŷt − ¯̂yt)√∑N

t=1(yt − ȳ)2
√∑N

t=1(ŷt − ¯̂yt)2
(18)

where yt and ŷt denote the true and decoded hand kinematics
at timestep t, respectively, and N represents the total number
of samples.

For each session, the mean and confidence interval of
the decoding performance were evaluated on 10 different
blocks within the testing set. To test statistical significance
between a pair of different decoders, a two-tailed paired t-test
was used if the difference between the pairs follows normal
distribution; otherwise, a two-tailed paired Wilcoxon signed-
rank test was used. The significance level (α) was set to 0.05.

When using boxplot for visualisation, the horizontal line
and circle mark inside each boxplot represent the median
and mean, respectively. The coloured solid box represents in-
terquartile range (from 25th to 75th percentiles). The whisker
extends 1.5 times the interquartile range.

III. RESULTS
A. PERFORMANCE COMPARISON ACROSS FIRING
RATE ESTIMATION METHODS

First, we evaluated the decoding performance of each fir-
ing rate estimation method using MUA-driven KF decoder.
Figs. 2a and 2b present long-term decoding performance
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FIGURE 3. Comparison of decoding performance of MUA-driven WF decoder across different firing rate estimation methods. (a),(b) Performance comparison over
long-term recording sessions measured in RMSE and CC, respectively. (c),(e) Boxplot comparison across sessions measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation methods whose performances differed significantly from that of BAKS (* p<0.05, ** p<0.01, *** p<0.001). (d),(f) Performance
improvement/degradation (in percent RMSE and CC, respectively) relative to binning. Positive (negative) value indicates performance improvement (degradation).
Black error bars denote 95% confidence intervals. (g)-(j) Snippet examples of true and decoded velocities in x- and y- coordinates from different firing rate
estimation methods (data from recording session I20170131_02).

comparison across firing rate estimations methods, measured
in RMSE and CC, respectively. We found that BAKS out-
performed both binning and FKS in all metrics across all
recording sessions (100%). The average decoding perfor-
mance of each method was as follows (sorted from highest to
lowest): BAKS (RMSE = 60.08 ± 1.44, CC = 0.73 ± 0.01),
binning (RMSE = 62.70±1.40, CC = 0.71±0.01), and FKS
(RMSE = 65.21± 1.60, CC = 0.70± 0.01). The RMSE and
CC values are written in terms of mean ± standard error
of the mean (SEM). Compared to binning, BAKS yielded
an average performance improvement of 4.2% (RMSE) and
3.3% (CC); however, FKS exhibited an average performance
degradation of 3.9% (RMSE) and 1.0% (CC), as can be
seen in Figs. 2d and 2f. Statistical tests showed that the
performance of BAKS differed significantly from that of
other methods (in both RMSE and CC metrics) as shown
in Figs. 2c and 2e. Snippet examples of actual and decoded
velocities (in x- and y-directions) from binning and BAKS
are illustrated in Figs. 2g-j.

To determine whether the above findings were also ob-
served when using different decoding algorithms, we per-
formed decoding comparison across firing rate estimation
methods using WF and LSTM decoders. We found that
BAKS consistently outperformed other methods as shown
in Fig. 3 for WF decoder and Fig. 4 for LSTM decoder.
There was a statistical significant difference in decoding
performance between BAKS and other methods as illustrated
in Figs. 3c,e (WF decoder) and Figs. 4c,e (LSTM decoder).
In the case of WF decoder, according the decoding perfor-
mance, we found the following descending order: BAKS
(RMSE = 49.49 ± 0.98, CC = 0.76 ± 0.01) > FKS (RMSE
= 49.75 ± 0.96, CC = 0.76 ± 0.01) > binning (RMSE =
51.60± 0.99, CC = 0.74± 0.01). Relative to binning, BAKS
achieved 4.11% (3.41%) average performance improvement
in RMSE (CC), whereas FKS gained 3.59% (3.03%) aver-
age performance improvement in RMSE (CC), as shown in
Fig. 3d (3f). In the case of LSTM decoder, we obtained the
following descending order: BAKS (RMSE = 41.56 ± 0.84,
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FIGURE 4. Comparison of decoding performance of MUA-driven LSTM decoder across different firing rate estimation methods. (a),(b) Performance comparison
over long-term recording sessions measured in RMSE and CC, respectively. (c),(e) Boxplot comparison across sessions measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation methods whose performances differed significantly from that of BAKS (*** p<0.001). (d),(f) Performance
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estimation methods (data from recording session I20170131_02).

CC = 0.84 ± 0.01) > binning (RMSE = 41.87 ± 0.85, CC =
0.83±0.01) > FKS (RMSE = 42.75±0.84, CC = 0.83±0.00).
The average performance improvement achieved by BAKS
relative to binning in the case of LSTM was considerably
smaller (RMSE = 0.76%, CC = 0.35%) than in the cases of
KF and WF (see Figs. 4d,f). Examples of actual and decoded
velocities (in x- and y-directions) in the cases of WF and
LSTM are plotted in Figs. 3g-j and Figs. 4g-j, respectively.

B. IMPACT OF WINDOW WIDTH ON DECODING
PERFORMANCE

Next, we assessed the impact of firing rate estimation meth-
ods under different window widths on decoding performance.
For each firing rate estimation method, we varied the value
of window width from 16 ms to 400 ms with an increment
of 16 ms. We used KF and LSTM decoders for performance
comparison. Figs. 5a,b and 5c,d illustrate the impact of vary-
ing window widths on decoding performance using KF and
LSTM decoders, respectively. Results showed that increasing

the window width up to a certain value would improve the
decoding performance; above this value, however, the de-
coding performance reached a plateau or tended to decrease.
Binning and BAKS were found to reach the plateau level
faster than FKS in both KF and LSTM decoders. All firing
rate estimation methods reached the plateau level faster in
the case of LSTM decoder than in the case of KF decoder.

C. PERFORMANCE COMPARISON ACROSS DECODING
ALGORITHMS

Using BAKS as the firing rate estimation method, we then
evaluated the decoding performance of different decoders
(KF, WF, and LSTM). Figs. 6a and 6b present the decod-
ing performance comparison over 26 sessions in terms of
RMSE and CC, respectively. We found that LSTM outper-
formed other decoders in all sessions. By sorting descend-
ingly according to the decoding performance, we obtained
the following order: LSTM (RMSE = 41.56 ± 0.84, CC =
0.84±0.01), WF (RMSE = 49.49±0.98, CC = 0.76±0.01),
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FIGURE 5. Decoding performance comparison across different firing rate estimation methods with varying window widths. (a),(b) Performance comparison using
MUA-driven KF decoder measured in RMSE and CC, respectively. (c),(d) Performance comparison using MUA-driven LSTM decoder measured in RMSE and CC,
respectively. Red stars indicate window widths that yielded the best decoding performances on validation set from session I20160627_01.

11
0

11
3

19
0

19
1

19
6

20
2

20
5

21
0

21
1

21
2

21
6

21
8

21
9

22
2

22
9

23
0

23
1

23
2

27
2

27
3

27
8

28
6

32
0

32
1

32
4

32
8

Time since implantation (days)

26

44

62

80

98

Av
er

ag
e 

RM
SE

(a)

KF WF LSTM

11
0

11
3

19
0

19
1

19
6

20
2

20
5

21
0

21
1

21
2

21
6

21
8

21
9

22
2

22
9

23
0

23
1

23
2

27
2

27
3

27
8

28
6

32
0

32
1

32
4

32
8

Time since implantation (days)

0.38

0.53

0.68

0.83

0.98

Av
er

ag
e 

CC

(b)

KF WF LSTM

KF WF
LSTM

Decoder

28

42

56

70

84

Av
er

ag
e 

RM
SE

***p<0.001

***

***

(c)

WF
LSTM

Decoder

−2

10

22

34

46

ΔA
ve

ra
ge

 R
M

SE
 (%

)

18.5

36.9

(d)

KF

KF WF
LSTM

Decoder

0.60

0.68

0.76

0.84

0.92

Av
er

ag
e 

CC

***p<0.001

***

***

(e)

WF
LSTM

Decoder

−2

7

16

25

34

ΔA
ve

ra
ge

 C
C 

(%
)

5.1

24.0

(f)

KF

FIGURE 6. Comparison of decoding performance of MUA-driven decoders with firing rates computed by BAKS. (a),(b) Performance comparison over long-term
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and KF (RMSE = 60.08±1.44, CC = 0.73±0.01) as observed
from Figs. 6c and 6e. Relative to KF, LSTM yielded an
average performance improvement of 30.64% (RMSE) and

14.56% (CC), whereas WF yielded an average performance
improvement of 17.41% (RMSE) and 4.20% (CC) as shown
in Figs. 6d and 6f. Statistical tests showed that there were
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FIGURE 7. Comparison of decoding performance between SUA- and MUA-driven decoders with firing rates computed by BAKS. (a),(b) Long-term decoding
comparison between SUA- and MUA-driven KF decoders measured in RMSE and CC, respectively. (c),(d) Long-term decoding comparison between SUA- and
MUA-driven WF decoders measured in RMSE and CC, respectively. (e),(f) Long-term decoding comparison between SUA- and MUA-driven LSTM decoders
measured in RMSE and CC, respectively.

statistically significant differences in decoding performance
between LSTM and other decoders (p<0.001).

D. DECODING PERFORMANCE COMPARISON
BETWEEN SUA AND MUA
Lastly, we compared the decoding performance of MUA
against SUA using BAKS coupled with different decoders.
Figs. 7a-b, Figs. 7c-d, and Figs. 7e-f plot the decoding
performance comparison between MUA and SUA across
26 sessions for the case of KF, WF, and LSTM decoders,
respectively. Extensive results revealed that MUA yielded
significantly better decoding performance than SUA in all
sessions regardless of the decoders. Relative to SUA, aver-
age performance improvement achieved by MUA from each
decoding algorithm was as follows: KF (RMSE = 7.53%, CC
= 6.34%), WF (RMSE = 5.94%, CC = 5.21%), and LSTM
(RMSE = 7.26%, CC = 3.94%).

IV. DISCUSSION

We aim to improve the decoding performance of MUA-based
BMI by proposing BAKS as a feature extraction method
coupled with LSTM as a decoding algorithm. Firstly, we
compared the decoding performance of BAKS against two
commonly used feature extractions methods (binning and
FKS) under three different decoding algorithms (KF, WF,
and LSTM). Comparison results demonstrated that BAKS
consistently outperformed other methods across different de-
coding algorithms. When varying the window width values,
we also observed consistently better performance of BAKS
compared to other methods. This could be attributed to
BAKS’ capability to obtain a smoother and more accurate
estimate of firing rate. BAKS incorporates a data-driven and
adaptive bandwidth parameter that allows for more accurate
estimation of firing rate when there is a rapidly changing
spike dynamic. On the other hand, both binning and FKS
employ a fixed, predefined bandwidth parameter; thus, they
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cannot accurately estimate the firing rate from a spike train
with rapidly changing spike dynamic.

We found that the average performance improvement of
BAKS relative to other methods was more significant in the
case of linear decoders (KF and WF) than deep learning
decoder (LSTM). This might be because LSTM can com-
pensate for the differences in estimated firing rates through
gradient-based optimisation algorithm during the training. In
other words, LSTM is less sensitive to the smoothness and
accuracy of estimated firing rates than both KF and WF.
Using BAKS as the feature extraction algorithm, we then
compared the performance of LSTM against KF and WF.
Results showed that LSTM significantly outperformed both
KF and WF, which demonstrates the effectiveness of LSTM
in capturing the complex, non-linear relationship between
neural signals and hand kinematic data.

Lastly, using BAKS coupled with LSTM, we compared
the decoding performance of MUA to that of SUA. Empir-
ical results revealed that MUA achieved significantly higher
decoding performance than SUA. When using BAKS cou-
pled with KF or WF, we also observed the same finding.
These results contradict several prior studies where SUA was
shown to yield better decoding performance than MUA [11],
[14], [16], [38]. It is difficult to find the exact reason to
this contradiction due to the differences in recording setup,
behavioural task, signal processing, decoding algorithm, etc.
across studies. One possible explanation is that in our study,
to obtain SUA, we only used well-isolated (sorted) spikes
and discarded unsorted spikes (also known ‘noise’ or ‘hash’
units). Hash units contained all spikes that did not match any
of the operator’s defined templates used for spike sorting.
Todorova et al. have recently shown that hash units con-
tained some information about movement and discarding this
information could degrade the decoding performance [24].
On the contrary, when computing MUA, we used all the
detected spikes, including the hash units, which potentially
contributed to improved decoding performance.

This present study expands our previous conference paper
[39] by adding the following contributions: (1) proposing
MUA as an alternative input signal and comparing its decod-
ing performance to that of SUA, (2) proposing deep learning
decoder and comparing its decoding performance to that of
linear decoder, (3) using chronic neural data spanning more
than 7.3 months of recording sessions, and (4) adding FKS
and WF for performance benchmark. In summary, overall
results demonstrated that our proposed methods, BAKS and
LSTM, achieved better decoding performance than other
methods.

V. CONCLUSION
We have presented BAKS and LSTM for MUA-based BMI
and evaluated its decoding performance on chronic neural
recordings. We have shown that BAKS coupled with LSTM
significantly outperformed combinations of other firing rate
estimation methods and decoding algorithms. This suggests
the feasibility and the potential use of BAKS and LSTM for

improving the decoding performance of MUA-based BMIs.
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