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Abstract

Multiunit activity (MUA) has been proposed to mitigate the robustness issue faced by single-unit activity (SUA)-based brain-

machine interfaces (BMIs). Most MUA-based BMIs still employ a binning method for estimating firing rates and linear decoder

for decoding behavioural parameters. The limitations of binning and linear decoder lead to suboptimal performance of MUA-

based BMIs. To address this issue, we propose a method which consists of Bayesian adaptive kernel smoother (BAKS) as

the firing rate estimation algorithm and deep learning, particularly quasi-recurrent neural network (QRNN), as the decoding

algorithm. We evaluated the proposed method for reconstructing (offline) hand kinematics from intracortical neural data

chronically recorded from the primary motor cortex of two non-human primates. Extensive empirical results across recording

sessions and subjects showed that the proposed method consistently outperforms other combinations of firing rate estimation

algorithm and decoding algorithm. Overall results suggest the effectiveness of the proposed method for improving the decoding

performance of MUA-based BMIs.
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ABSTRACT Multiunit activity (MUA) has been proposed to mitigate the robustness issue faced by
single-unit activity (SUA)-based brain-machine interfaces (BMIs). Most MUA-based BMIs still employ
a binning method for estimating firing rates and linear decoder for decoding behavioural parameters. The
limitations of binning and linear decoder lead to suboptimal performance of MUA-based BMIs. To address
this issue, we propose a method which consists of Bayesian adaptive kernel smoother (BAKS) as the firing
rate estimation algorithm and deep learning, particularly quasi-recurrent neural network (QRNN), as the
decoding algorithm. We evaluated the proposed method for reconstructing (offline) hand kinematics from
intracortical neural data chronically recorded from the primary motor cortex of two non-human primates.
Extensive empirical results across recording sessions and subjects showed that the proposed method
consistently outperforms other combinations of firing rate estimation algorithm and decoding algorithm.
Overall results suggest the effectiveness of the proposed method for improving the decoding performance
of MUA-based BMIs.

INDEX TERMS Brain-machine interface, Bayesian adaptive kernel smoother, deep learning, firing rate
estimation, multiunit activity, neural decoding.

I. INTRODUCTION

BRAIN-machine interfaces (BMIs) seek to restore lost
motor function in severely paralysed patients by trans-

lating brain activity into control signals for guiding assistive
devices, such as a computer cursor [1]–[4], robotic arm [5]–
[7], or functional electrical stimulation (FES) system [8]–
[10]. Numerous BMI studies utilising neuronal action poten-
tials or spikes —also known as single-unit activity (SUA)—
have shown compelling results in animals [11]–[14] and
humans [1], [2], [6], [7]. Nevertheless, spike recordings are
not chronically stable, and the number of observable units
progressively decline over time [15]–[17]. Several factors
thought to cause this instability are glial scar formation
(induced by neural tissue responses) encapsulating the elec-

trodes, micromotion of the electrodes, insulation degradation,
and mechanical breakage [18], [19]. The instability of SUA
hinders clinical translation of SUA-based BMIs.

To overcome the above problem, multiunit activity (MUA)
has been proposed as an alternative input signal to single-unit
activity (SUA) [17], [20]–[22]. MUA refers to all spikes de-
tected via a threshold-crossing technique without classifying
(sorting) further into individual units. Thus, MUA represents
the aggregate spikes from an ensemble of neurons in the
vicinity of the recording electrode tip. Compared to SUA,
MUA is more stable and requires simpler signal process-
ing. Most MUA-based BMIs employ a binning method for
for estimating firing rates and linear decoders for decoding
movement parameters [23]–[29]. The binning method esti-
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mates firing rates by counting the number of spikes within a
predefined bin/window width. Despite being simple and fast,
binning results in a coarse/noisy estimate of firing rates. As
movements are usually smooth/continuous over time [26],
a method that can yield a smooth estimate of firing rates
could potentially improve decoding performance of MUA-
based BMIs. Additionally, the use of linear decoders with
their inherent assumptions leads to suboptimal decoding per-
formance since neural signals often exhibit non-linear, non-
stationary, and non-Gaussian characteristics [30]. Therefore,
it is highly desirable to develop a decoding algorithm that is
robust against the above neural signal characteristics. The rise
of deep learning in recent years has presented the opportunity
to potentially improve the decoding performance of MUA-
based BMIs [31]–[33]. So far, however, there have been very
few studies utilising deep learning for MUA-based BMIs.

The present work aims to improve the decoding perfor-
mance of MUA-based BMIs by proposing a method which
comprises (1) Bayesian adaptive kernel smoother (BAKS)
as the firing rate estimation algorithm and (2) deep learn-
ing, specifically quasi-recurrent neural network (QRNN), as
the decoding algorithm. We evaluate the proposed method
for decoding (offline) hand kinematics from neural signals
chronically recorded from the primary motor cortex (M1)
area of two nonhuman primates while performing self-paced
reaching tasks. We benchmark the proposed method against
all possible combinations of two firing rate estimation algo-
rithms (binning and fixed kernel smoother) and four decoding
algorithms (Kalman filter, Wiener filter, multilayer percep-
tron, and long short-term memory) as reported in previous
studies (e.g. [5], [22], [23], [31], [33], [34]). Lastly, we
compare the decoding performance between MUA and SUA
using the proposed method.

The remainder of this paper is organised as follows:
Section II describes the methods, including experimental
setup, signal processing, and decoding algorithms; Section
III presents the empirical results, followed by analyses and
discussion in Section IV; and finally, the conclusion is drawn
in Section V.

II. METHODS
Fig. 1 illustrates the schematic overview of spike-based BMI
system. Firing rate estimation was performed in an overlap-
ping fashion (overlap of half window width). The estimated
firing rate was then standardised (i.e. z-transformed) before
being fed to the decoding algorithm. Linear decoding algo-
rithms were implemented using Scikit-learn (v0.24.1) library
[35], whereas deep learning based decoding algorithms were
implemented using Tensorflow (v2.3.0) framework [36]. To
tune the deep learning decoders, we used a hyperparameter
optimisation framework called Optuna (v2.10.0) [37]. All
the experiments were conducted in Python programming
language (v3.8.8) running on a Windows-based machine
with Intel(R) Core(TM) i7-4790 CPU @3.6 GHz. The source
code used for conducting these experiments is available at
https://github.com/nurahmadi/spike_bmi.

A. NEURAL RECORDINGS
Neural data were obtained from publicly available dataset
deposited by Sabes lab [38]. The neural data were recorded
from the primary motor cortex (M1) area of two adult male
Rhesus macaque monkeys (Macaca mulatta), indicated as
monkey I (Indy) and monkey L (Loco). The recordings
were made using a 96-channel Utah microelectrode array
(Blackrock Microsystems, US) coated with platinum contact
(400 kΩ impedance, 400µm interelectrode spacing, 1 mm
electrode length). The recordings were referenced to a silver
wire placed under the dura (several cm away from the elec-
trodes). They were preamplified and filtered by using a 4th-
order low-pass filter at 7.5 kHz and were then digitised with
16-bit resolution at 24.4 kHz sampling rate. These digitised
recordings are referred to as raw neural signals. Details of the
experimental setup are described elsewhere [39]. For Mon-
key I data, we used a total of 34 recording sessions spanning
around 10 months between the first (I20160407_02) and last
(I20170131_02) sessions with varying durations from 6.00
to 56.05 minutes (average of 13.47 ± 10.61 minutes). The
first and last sessions correspond to 29 and 328 days after
the electrode implantation date, respectively. For Monkey
L data, a total of 10 recording sessions were used which
span 20 days between the first (L20170210_03) and last
(L20170302_02) sessions ranging from 18.67 to 53.32 min-
utes (average of 33.78 ± 10.22 minutes). The first and last
sessions correspond to 338 and 358 days after the electrode
implantation date, respectively. More detailed information
about the recording statistics, can be seen in Supplementary
Tables 1 and 2 for Monkey I and L, respectively.

B. BEHAVIOURAL TASKS AND KINEMATIC DATA
The monkeys were trained to reach randomly drawn circular
targets which were uniformly distributed around an 8 × 8
or 8 × 17 grid for monkey I and 6 × 6 for monkey L.
Monkey I reached the targets with the left arm, whereas
monkey L reached the targets with the right arm. The targets
were acquired when the monkeys reached the targets using
their fingertip and held them for 450 ms. Upon every target
acquisition, a new random target was presented immediately
without an inter-trial interval. The fingertip position of the
reaching hand and the target position (in x–y Cartesian
coordinates with mm unit) were both sampled at 250 Hz. The
position data were then low pass filtered with a non-causal,
4th-order Butterworth filter at 10 Hz to reject sensor noise. A
more detailed description of the behavioural task is given in
[39]. Velocity and acceleration data were computed using the
first and second derivative of the position data. The position,
velocity, and acceleration data, which herein are referred to
kinematic data, were downsampled to match the timescales
of the firing rate (feature) data. These pairs of firing rate
(input) and kinematic (output) data were used to train or fit
the decoding algorithms (i.e. decoders). Except for Kalman
filter which used all the kinematic state variables (position,
velocity, and acceleration), all other decoders only used the
velocity data. Velocity decoding was selected following sev-
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FIGURE 1. Schematic overview of spike-based BMI system

eral high-performing BMIs in the literature [33], [39], [40].

C. SPIKE SIGNAL PROCESSING
1) Multiunit activity (MUA)
The raw neural signals were band-pass filtered with a causal,
4th-order Butterworth IIR filter between 500 to 5000 Hz.
Spikes were then detected whenever the absolute value of the
band-passed signals crossed a threshold value (typically set
to between 3.5 and 4.0 times the standard deviation). Here,
MUA refers to all the detected spikes aggregated per channel.
This included unsorted spikes (also called ‘noise’ or ‘hash’
units) which represent threshold crossing spikes that did not
match any single-unit templates. Only MUA with spike rates
exceeding 0.5 Hz were included. For monkey I, the number
of MUA varied from 77 to 95 units (average of 88.09 ± 4.35)
across 34 recording sessions. For monkey L, the number of
MUA varied from 90 to 95 units (average of 92.50 ± 1.69)
across 10 recording sessions. See Supplementary Tables 1
and 2 for more detailed MUA statistics of Monkey I and L,
respectively.

2) Single-unit activity (SUA)
SUA was obtained by sorting (i.e. classifying) the detected
spikes into distinct putative single units via principal com-
ponent analysis and template matching. Each channel could
contain more than one units (up to five units, including
the ‘hash’ units). More detailed information on the spike
detection and sorting processes can be found in [39]. We only
included SUA with spike rates above 0.5 Hz. The number of
SUA varied from 90 to 170 units (average of 129.44±16.24)
for monkey I, and from 103 to 181 units (average of 138.80±
26.43) for monkey L (see Supplementary Tables 1 and 2 for
the details).

D. FIRING RATE ESTIMATION
1) Binning
Binning estimates firing rate by computing the number of
spikes within a predefined window width. The window width
was set to a certain value such that it maximises the decoding
performance.

2) Fixed kernel smoother (FKS)
FKS estimates firing rate by convolving a spike train with
a Gaussian kernel function with predefined window width
and fixed bandwidth (i.e. standard deviation) parameter. The
bandwidth parameter was set to one-quarter of the window
width which covers 95% of the observations. The window
width was tuned to maximise the decoding performance.

3) Bayesian Adaptive Kernel Smoother (BAKS)
BAKS estimates firing rate by convolving a spike train with a
Gaussian kernel function with predefined window width and
adaptive bandwidth (instead of fixed bandwidth as in FKS).
BAKS has two parameters, which are shape parameter (α)
and scale parameter (β). As in binning and FKS methods,
the window width for BAKS was tuned to maximise the
decoding performance. The shape parameter (α) was set to
4, while the scale parameter (β) was set to n4/5, where n
represents the number of spikes. The detailed derivation of
BAKS formula and its parameter tuning are described in our
previous study [41]. Briefly, the value of αwas tuned by min-
imising mean integrated squared error (MISE) of firing rate
estimation from synthetic spike train data. These synthetic
data were generated by using biologically plausible models,
inhomogeneous Gamma (IG) and inhomogeneous inverse
Gaussian (IIG), with known underlying rate functions. The
rate functions were selected such that they could represent
non-stationary processes usually encountered in empirical
data, which include continuous process with homogeneous
or heterogeneous frequency, and discontinuous process with
sudden rate changes.

E. DECODING ALGORITHM
1) Kalman filter (KF)
KFs have been employed in numerous BMI studies to predict
hand kinematics or kinetics from neural signals [5], [42]–
[45]. KF combines process and measurement models with
the assumption that both models are linear and Gaussian. The
process model defines the evolution of the state (assumed
to be Markovian) from the previous timestep to the current
timestep. It is composed of two steps, prediction and update,

VOLUME 1, 2020 3



Nur Ahmadi et al.: Improved Spike-based BMI Using Bayesian Adaptive Kernel Smoother and Deep Learning

which are performed in a recursive manner. In the prediction
step, a priori state estimate and a priori error covariance
at the current timestep are predicted from previous state
estimate and error covariance. In the update step, a posteriori
state estimate and a posteriori error covariance at the current
timestep are obtained from the predicted state estimate and
error covariance combined with the information from the
current measurement using Kalman gain weighting. Kalman
gain represents how much weight given to the measurements
to refine the current state estimate. Following Wu et al.’s
work [42], KF parameters were assumed to be invariant and
were estimated using least square regression on the training
data. State variables used in KF were hand position, velocity,
and acceleration in x and y directions.

2) Wiener filter (WF)
WF linearly estimates kinematic data from the neural signals
with the assumption of known stationary signal and additive
noise. WF produces an optimal estimate in minimum mean
squared error sense. WFs were employed in a number of prior
BMI studies [1], [2], [13], [46], [47]. An estimate of hand
kinematics, ŷ(t), is expressed as:

ŷ(t) =

C∑
i=1

L−1∑
τ=0

wi(τ)xi(t− τ) (1)

where wi(τ) denotes a filter kernel and xi represents the
measurements (i.e. firing rates). C is the number of channels,
whereas L is the number of taps. The filter weights (wi(τ))
were estimated using linear least-squares on the training data.
Parameter L was tuned from value range between 1 and
10 such that it maximises the decoding performance. The
state variables used in WF were hand velocity in x and y
directions.

3) Multilayer perceptron (MLP)
MLP is a type of feedforward artificial neural network (ANN)
comprising at least three layers (an input layer, one or more
hidden layers, and an output layer) of nodes or neurons. Each
node produces an output by computing weighted sum of its
inputs and passing through an activation function, which is
formulated as

y = φ(Wx + b) (2)

where W denotes the learnable parameters (weights), x
represent the input vector, b is the bias vector, and φ is the
activation function. We used a non-linear activation function
called rectified linear unit (ReLU; φ(z) = max(0, z)) for
all layers except for the output layer which uses linear ac-
tivation function (φ(z) = z). The number of layers along
with other hyperparameter values were determined through
hyperparameter optimisation procedure as described in the
following section.

4) Long short-term memory (LSTM)
LSTM, proposed by Hochreiter and Schmidhuber in 1997
[48], is one of the most popular deep learning methods and

has achieved state-of-the-art performance in various tasks,
particularly those with time-series data [49], including BMI
applications [31], [33], [50]. LSTM can effectively learn
long-term temporal dependencies via a memory cell that
maintains its state overtime and gating mechanism that con-
trols the flow of information into and out of the memory
cell. The states of LSTM components at timestep t are
mathematically expressed as follows:

ft = σ(Wfxt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ot = σ(Woxt + Uoht−1 + bo)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(3)

where x,h, f , i,o, c consecutively represent the input, out-
put, forget gate, input gate, output gate, and memory cell.
The operators �, σ, and tanh denote the element-wise multi-
plication, logistic sigmoid function, and hyperbolic tangent
function, respectively. Matrices W,U and bias vectors b
represent the input and recurrent weights, respectively. We
empirically selected 1 layer with the last timestep from the
LSTM output was connected to a fully connected layer to
obtain the final output. The other hyperparameter values were
determined through hyperparameter optimisation.

5) Quasi-recurrent neural network (QRNN)
QRNN which was developed by Bradbury et al. in 2016
[51] is another type of RNNs that is able to learn long-term
temporal dependencies of sequential data while also offers
increased parallelism as in convolutional neural networks
(CNNs). Recent studies showed that QRNN performed well
for hand kinematic decoding [52] and gait decoding [53].
QRNN consists of two main components: (1) convolutional
component which performs convolutions in parallel across
timesteps, and (2) pooling component which handles tem-
poral dependencies in parallel across feature dimensions.
The components of QRNN are mathematically formulated as
follows:

zt = tanh(Wz ∗X + bz)
ft = σ(Wf ∗X + bf )
ot = σ(Wo ∗X + bo)
ct = ft � ct−1 + (1 − ft) � zt
ht = ot � ct

(4)

where z, f ,o, c,h consecutively represent the candidate vec-
tors, forget gate, output gate, memory cell, and hidden state.
Operator ∗ represents a masked convolution which is a type
of convolution that depends only on the past and present
inputs. This means that the convolution cannot use input data
from the future. We empirically selected 1 layer and window
size of 2 with the last timestep from the QRNN output was
connected to a fully connected layer to obtain the final output.
As in MLP and LSTM, the other hyperparameter values of
QRNN were automatically selected through hyperparameter
optimisation.

4 VOLUME 1, 2020



Nur Ahmadi et al.: Improved Spike-based BMI Using Bayesian Adaptive Kernel Smoother and Deep Learning

TABLE 1. Hyperparameter optimisation search range.

Hyperparameter
Search Range

MLP LSTM QRNN

Number of timesteps 1 {1, 2, · · · , 5} {1, 2, · · · , 5}
Number of layers {1, 2, 3} 1 1
Number of units {50, 100, · · · ,max_units}
Number of epochs {1, 2, · · · , 100}
Batch size {32, 64, 96}
Dropout rate {0.1, 0.2, · · · , 0.5}
Learning rate {10−4, · · · , 10−1}
Optimiser {RMSProp, Adam}

To have comparable limit of maximum number of parame-
ters, max_units is set to 400, 250, and 600 for MLP, LSTM,
and QRNN, respectively; Maximum number of layers for
MLP is set to 3.

F. DEEP LEARNING OPTIMISATION AND TRAINING
Hyperparameters of deep learning (DL) based decoders were
optimised using validation sets which were split from train-
ing sets. The validation set size was 10% of the training set
size. The list of hyperparameters to be optimised along with
their search range is shown in Table 1. The hyperparameter
optimisation was conducted using a Bayesian optimisation
framework called Optuna [37] independently for each com-
bination of input signal (SUA or MUA), firing rate estimation
algorithm (binning, FKS, or BAKS) and decoding algorithm
(MLP, LSTM, or QRNN). It was run for 200 iterations with
pruning mechanism that would automatically stop unpromis-
ing trials at the early stages of the training. The pruning (also
known as automated early-stopping) mechanism sped up the
hyperparameter optimisation process. To save the computa-
tional time of experiments, the hyperparameter optimisation
was performed only once using the first recording session
of Monkey I (I20160407_02); for the subsequent sessions of
Monkey I and Monkey L, we used the same hyperparameter
configuration. The resulting optimised hyperparameter val-
ues for MUA-driven DL decoders are listed in Table 2. As
for SUA-driven DL decoders, the optimised hyperparameters
can be seen in Supplementary Table 3.

The DL decoders were trained using the optimised hyper-
parameter configuration and mean squared error (MSE) loss
function. The DL decoders were trained on each recording
session using the same hyperparameter configuration. We
trained the DL decoders using all number of MUA or SUA
which exceeded a minimum threshold of 0.5 Hz (see Supple-
mentary Table 1-2 for the details). The training data consisted
of firing rate as the input (feature) and velocity in x- and y-
directions as the output (ground truth). The firing rate was
obtained from a rolling segment (window) of 240 ms with an
overlap of 120 ms. All the DL decoders followed the same
training procedure.

G. PERFORMANCE EVALUATION AND METRICS
To evaluate the performance of the proposed method, we
used k-fold growing-window forward validation scheme
[54], where k=5, as illustrated in Fig. 2. Compared to k-

1
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Ite
ra
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n

Training set Testing set

FIGURE 2. Illustration of growing-window forward validation scheme.

fold cross-validation, this scheme is more appropriate for
performance evaluation of BMI decoding because it takes
into account the sequential information of the neural time-
series data, and it represents more accurate view of the
decoding performance in the past given the available data
at that time. In order not to lose too many training samples
when compared to k-fold cross-validation, the minimum size
of training data was set to 50% of the whole data within each
session.

Decoding performance was evaluated using two com-
monly used metrics [23], [55], [56]: (1) root mean square
error (RMSE) and (2) Pearson’s correlation coefficient (CC),
which are formulated as follows:

RMSE =

√∑N
i=1(ŷi − yi)

2/N (5)

CC =

∑N
t=1(yt − ȳ)(ŷt − ¯̂yt)√∑N

t=1(yt − ȳ)2
√∑N

t=1(ŷt − ¯̂yt)2
(6)

where yt and ŷt denote the true and decoded velocities in x-
and y- directions at timestep t, respectively, andN represents
the total number of samples. We employed velocity decoding
as in several previous studies [33], [39], [40]

H. STATISTICAL ANALYSIS
For each recording session, the mean and standard error of
the mean (SEM) of the decoding performance were evalu-
ated on k=5 different folds within the testing sets. Unless
otherwise noted, when reporting the decoding performance
with ± symbol, it represents the SEM value. To test statistical
significance between a pair of different decoders, a two-tailed
paired t-test was used if the difference between the pairs
follows normal distribution; otherwise, a two-tailed paired
Wilcoxon signed-rank test was used. The significance level
(α) was set to 0.05.

Boxplots were used to visualise the decoding performance
comparison across 34 recording sessions for monkey I and
10 recording sessions for monkey L. The horizontal line
and circle mark inside each boxplot represent the median
and mean, respectively. The coloured solid box represents
interquartile range (IQR) from 25th to 75th percentiles. The
whisker extends 1.5 times the IQR.
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TABLE 2. Hyperparameter configuration of MUA-driven DL decoders across firing rate estimation algorithms.

Hyperparameter
MUA-MLP MUA-LSTM MUA-QRNN

Binning FKS BAKS Binning FKS BAKS Binning FKS BAKS

Number of timesteps 1 1 1 5 5 5 5 5 5
Number of layers 3 2 2 1 1 1 1 1 1
Number of units 350 300 350 250 200 250 600 550 600
Number of epochs 6 4 6 12 10 11 10 11 14
Batch size 96 96 64 32 32 32 96 32 96
Dropout rate 0.3 0.4 0.3 0.3 0.1 0.3 0.4 0.4 0.5
Learning rate 0.0017 0.0038 0.0035 0.0117 0.0108 0.0101 0.0045 0.0054 0.0072
Optimiser RMSProp Adam RMSProp RMSProp RMSProp RMSProp Adam Adam RMSProp

Number of parameters 278252 118202 155402 341502 233202 341502 327002 299752 327002
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FIGURE 3. Decoding performance comparison across different firing rate estimation algorithms with varying window widths using MUA-driven WF decoder.
Performance comparison measured in (a) RMSE and (b) CC. The performance comparison used the validation set from session I20160407_02.

III. RESULTS

A. SELECTION OF WINDOW WIDTH

We assessed the impact of firing rate estimation algorithms
under different window widths on decoding performance. For
each firing rate estimation algorithm, we varied the value
of window width from 16 ms to 400 ms with an increment
of 16 ms. The firing rate estimation was conducted in an
overlapping fashion where the overlap size was set to half
of the window width. We used linear decoders (WF and KF)
for performance comparison because they have significantly
fewer number of hyperparameters than DL decoders. Thus,
the decoding performance is not confounded by the choice
of hyperparameters. Figs. 3(a)-(b) illustrate the impact of
varying window widths on average decoding performance
using WF decoder measured in RMSE and CC, respectively.
For the case of KF decoder, the performance comparison
can be seen in Supplementary Fig. 1. Empirical results from
both WF and KF decoders yielded similar finding where
increasing the window width up to a certain value would
improve the decoding performance; above this value, how-
ever, the decoding performance reached a plateau or tended
to decrease. Based on these results, for the subsequent ex-
periments and final performance evaluation on the testing
sets, we used window width of 240 ms. This is because using
larger window width would only increase the computational
complexity and execution time while offering very small
(negligible) performance improvement.

B. SELECTION OF NUMBER OF TAPS
We investigated the optimal number of taps for WF decoder
by varying the number of taps (L) from 1 to 10 with an
increment of 1. As shown Fig. 4, increasing L improves
the decoding performance and reaches the best decoding
performance at L=4. After this point, the decoding perfor-
mance decreases. This finding was consistently observed
across firing rate estimation algorithms measured with both
RMSE and CC metrics. Therefore, we used L=4 for final
performance evaluation of WF decoder on the testing sets.

C. DECODING PERFORMANCE UNDER VARYING
SHAPE PARAMETER VALUES
To study the sensitivity of BAKS to the values of its main
controlling parameter, we varied the values of α from 1 to
10 with an increment of 0.5 and compared their associated
decoding performance. The comparison of BAKS decoding
performance using WF decoder across different α values
is shown in Fig. 5. The best decoding performance was
achieved at α=6.5 and α=4.5 when measured in RMSE
and CC metrics, respectively. However, compared to that
of α=4.0, the difference in decoding performance was very
small (0.0111% for RMSE, 0.0002% for CC). As illustrated
in Fig. 5, the BAKS plot (green line) looks flat which indi-
cates negligible difference in decoding performance across
α values. If we zoom-in the BAKS plot (see the insets of
Fig. 5), we can then see the performance difference. We
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observed an average performance difference of 0.01% in both
RMSE and CC metrics. Despite the difference, the decoding
performance of BAKS across all the varied α values was
consistently better than those of binning and FKS. Since
binning and FKS do not use α parameter, their decoding
performance is exactly the same. For better readability when
compared to that of BAKS, binning and FKS are represented
by flat lines (in red and blue colours, respectively) across α
values. We also observed the same results when using KF
decoder as can be seen in Supplementary Fig. 2.

D. PERFORMANCE COMPARISON ACROSS FIRING
RATE ESTIMATION ALGORITHMS
Next, we evaluated the decoding performance of each firing
rate estimation algorithm using MUA-driven WF decoder
on the testing sets of all recording sessions of monkeys I
and L. Fig. 6(a)-(b) present long-term decoding performance
comparison over 34 recording sessions of monkey I across
firing rate estimations methods, measured in RMSE and CC,
respectively. We found that BAKS outperformed binning and
FKS in both metrics across all (100%) recording sessions.
The average decoding performance of each firing rate algo-
rithm was as follows (sorted from highest to lowest): BAKS
(RMSE = 47.664±1.063, CC = 0.758±0.007), FKS (RMSE
= 49.110± 1.073, CC = 0.739± 0.008), and binning (RMSE

= 49.165 ± 1.098, CC = 0.739 ± 0.007). The RMSE and
CC values are written in terms of mean ± standard error of
the mean (SEM). Compared to binning, BAKS yielded an
average performance improvement of 3.05% (RMSE) and
2.47% (CC). On the other hand, FKS exhibited an average
performance improvement of only 0.07% in RMSE and per-
formance degradation of 0.06% in CC. The boxplot compar-
ison among binning, FKS, and BAKS is shown in Fig. 2(c)-
(d). Statistical tests showed that the performance of BAKS
differed significantly (*** p<0.001) from that of binning
(in both RMSE and CC metrics). However, there was no
statistically significant difference in decoding performance
between FKS and binning (see Fig. 2(c)-(d)).

In the case of monkey L dataset, the average decod-
ing performance of firing rate estimation algorithms sorted
in descending order was as follows: BAKS (RMSE =
29.422 ± 1.276, CC = 0.543 ± 0.033), binning (RMSE =
29.899 ± 1.265, CC = 0.524 ± 0.033), and FKS (RMSE
= 29.985 ± 1.280, CC = 0.518 ± 0.034). Similar to that
of monkey I dataset, BAKS consistently outperformed other
algorithms in all 10 recording sessions available in monkey
L dataset as shown in Fig. 6(e)-(f). However, binning was
found to perform better than FKS. Relative to binning, BAKS
achieved 1.64% (3.91%) average performance improvement
in RMSE (CC), whereas FKS yielded 0.27% (1.19%) aver-
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FIGURE 6. Comparison of decoding performance of MUA-driven WF decoder across different firing rate estimation algorithms in monkeys I and L. (a),(b)
Performance comparison across 34 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording
sessions of monkey I measured in RMSE and CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and
CC, respectively. (c),(d) Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. Asterisks indicate firing rate
estimation algorithms whose performances differ significantly from that of binning (** p<0.01, *** p<0.001).

age performance degradation in RMSE (CC). There was a
statistical significant difference (*** p<0.001) in decoding
performance between BAKS and binning as illustrated in
Fig. 6(g)-(h).

To determine whether the above findings were also ob-
served when using different decoding algorithms, we per-
formed decoding comparison across firing rate estimation al-
gorithms using KF, LSTM, and QRNN decoders. Consistent
with the previous findings, BAKS was found to outperform
other algorithms across decoding algorithms in both monkeys
I and L, as shown in Supplementary Figs. 3–5 for KF, LSTM,
and QRNN decoders, respectively. We found that the perfor-
mance improvement of BAKS relative to binning was higher
when using the linear decoders (KF and WF) compared
to when using the DL decoders (LSTM and QRNN). The
performance improvements of BAKS when using the linear
decoders were 1.64%–3.26% and 2.41%–3.91% in RMSE
and CC, respectively. As for the cases of the DL decoders,
the performance improvements were 0.42%–1.64% (RMSE)
and 0.11%–1.68% (CC). There were statistical significant
differences (*** p<0.001) in decoding performance between
BAKS and binning when using KF, WF, and LSTM decoders
(see Supplementary Figs. 3–5). Overall results across ses-
sions, subjects, and decoders showed the superior perfor-

mance of BAKS compared to binning and FKS.

E. PERFORMANCE COMPARISON ACROSS DECODING
ALGORITHMS
Using BAKS as the firing rate estimation algorithm, we then
evaluated and compared the decoding performance of the
proposed decoder (QRNN) against other decoders (KF, WF,
MLP, and LSTM). Results from monkey I dataset are shown
in Fig. 7. Figs. 7(a)-(b) present the decoding performance
comparison over 34 recording sessions in terms of RMSE and
CC, respectively. We found that QRNN consistently outper-
formed all the other decoders. According to the decoding per-
formance (from highest to lowest), we obtained the following
order: QRNN (RMSE = 38.240±0.939, CC = 0.850±0.005),
LSTM (RMSE = 39.701±0.985, CC = 0.836±0.005), MLP
(RMSE = 41.609±1.057, CC = 0.825±0.004), WF (RMSE
= 47.664 ± 1.063, CC = 0.758 ± 0.007), and KF (RMSE =
48.226±1.016, CC = 0.755±0.007). Statistical tests showed
that there were statistically significant differences in decod-
ing performance between KF and other decoders (* p<0.05,
*** p<0.001) as observed from Figs. 7(c)-(e). Relative to KF,
DL decoders (MLP, LSTM, and QRNN) had significantly
larger performance improvement compared to linear decoder
(WF). Specifically, QRNN yielded an average performance
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FIGURE 7. Comparison of decoding performance of MUA-driven decoders from monkey I dataset with BAKS as the firing rate estimation algorithm. (a),(b)
Performance comparison across 34 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(e) Boxplot comparison across 34 recording
sessions measured in RMSE and CC, respectively. Asterisks indicate decoders whose performances differ significantly from that of binning-KF decoder (** p<0.01,
*** p<0.001). (d),(f) Performance improvement/degradation (in percent RMSE and CC, respectively) relative to KF decoder. Positive (negative) value indicates
performance improvement (degradation). Black error bars denote the standard error of the mean. (g)-(j) Snippet examples of true and decoded velocities in x- and
y- coordinates from different decoders which are taken from the last recording session (I20170131_02).

improvement of 20.83% (RMSE) and 12.79% (CC), whereas
WF yielded an average performance improvement of 1.23%
(RMSE) and 0.41% (CC) as shown in Figs. 7(d)-(f). When
comparing to that of binning-KF, the average performance
improvement of BAKS-QRNN increased to 23.41% (RMSE)
and 15.71% (CC) as can be seen in Supplementary Figs. 6(d)-
(f). Examples of actual and decoded velocities (in x- and
y-directions) in the cases of WF and QRNN are plotted in
Figs. 7(g)-(h) and Figs. 7(i)-(j), respectively.

When conducting decoding performance comparison on
monkey L dataset, we also found similar trends in that
QRNN on average outperformed all the other decoders
as illustrated in Figs. 8(a)-(b). QRNN yielded the highest
decoding performance (RMSE = 25.657 ± 1.338, CC =
0.658 ± 0.040), whereas WF (RMSE = 29.422 ± 1.276,
CC = 0.543 ± 0.033) had comparable decoding performance
to KF (RMSE = 29.488 ± 1.143, CC = 0.559 ± 0.032).
There was statistically significant difference in decoding
performance between QRNN and KF (see Figs. 8(c)-(e)).
Relative to KF, QRNN resulted in an average performance
improvement of 13.33% (RMSE) and 17.45% (CC) as seen
from Figs. 8(d)-(f). The average performance improvement
of BAKS-QRNN was larger (14.89% in RMSE and 21.73%

in CC) when comparing it binning-KF instead of BAKS-
KF (see Supplementary Figs. 7(d)-(f)). Figs. 8(g)-(h) and
Figs. 8(i)-(j) illustrate snippet examples of the actual and
decoded velocities (in x- and y-directions) taken from the last
monkey I recording session for the cases of WF and QRNN,
respectively. Detailed comparison of decoding performance
across firing rate algorithms, decoding algorithms, subjects,
and performance metrics is given in Table 3.

F. DECODING PERFORMANCE COMPARISON
BETWEEN SUA AND MUA

Further, we sought to determine whether MUA has better de-
coding performance compared to SUA. Thus, we compared
the decoding performance of MUA against SUA using BAKS
coupled with different decoders. Fig. 9 shows the decoding
performance comparison using WF decoder from monkeys
I and L datasets. MUA was found to be superior than SUA
as measured with RMSE and CC metrics across recording
sessions from both monkeys (Figs. 9(a)-(b) and 9(e)-(f)).
MUA had statistically significant differences in decoding
performance compared to SUA as shown in Figs. 9(c)-(d) and
9(g)-(h). MUA yielded RMSE = 47.664 ± 1.063 and CC =
0.758 ± 0.007 (RMSE = 29.422 ± 1.276 and CC = 0.543 ±
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TABLE 3. Decoding performance comparison between the proposed method (BAKS-QRNN) and other methods. Bold numerical texts indicate the best decoding
performance within each subject and metric.

Subject Decoder
RMSE CC

Binning FKS BAKS Binning FKS BAKS

Monkey I KF 49.856± 1.055 49.150± 1.015 48.226± 1.016 0.736± 0.008 0.741± 0.008 0.755± 0.007
WF 49.165± 1.098 49.110± 1.073 47.664± 1.063 0.739± 0.007 0.739± 0.008 0.758± 0.007
MLP 41.723± 1.068 41.726± 0.987 41.609± 1.057 0.825± 0.004 0.821± 0.005 0.825± 0.004
LSTM 40.125± 1.003 39.520± 0.984 39.701± 0.985 0.832± 0.005 0.837± 0.006 0.836± 0.005
QRNN 38.408± 0.948 38.346± 0.931 38.240± 0.939 0.849± 0.005 0.849± 0.005 0.850± 0.005

Monkey L KF 30.021± 1.125 29.719± 1.141 29.488± 1.143 0.540± 0.032 0.540± 0.032 0.559± 0.032
WF 29.899± 1.265 29.985± 1.280 29.422± 1.276 0.524± 0.033 0.518± 0.034 0.543± 0.033
MLP 26.392± 1.175 26.324± 1.194 26.510± 1.184 0.643± 0.032 0.639± 0.030 0.639± 0.033
LSTM 26.187± 1.354 26.019± 1.367 25.780± 1.372 0.636± 0.040 0.643± 0.040 0.647± 0.041
QRNN 26.004± 1.338 25.921± 1.333 25.657± 1.338 0.654± 0.040 0.657± 0.039 0.658± 0.040
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FIGURE 8. Comparison of decoding performance of MUA-driven decoders from monkey L dataset with BAKS as the firing rate estimation algorithm. (a),(b)
Performance comparison across 10 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(e) Boxplot comparison across 10 recording
sessions measured in RMSE and CC, respectively. Asterisks indicate decoders whose performances differ significantly from that of binning-KF decoder (** p<0.01,
*** p<0.001). (d),(f) Performance improvement/degradation (in percent RMSE and CC, respectively) relative to binning-KF decoder. Positive (negative) value
indicates performance improvement (degradation). Black error bars denote the standard error of the mean. (g)-(j) Snippet examples of true and decoded velocities
in x- and y- coordinates from different decoders which are taken from the last recording session (L20170302_02).

0.033), whereas SUA yielded RMSE = 51.936 ± 1.235 and
CC = 0.711 ± 0.008 (RMSE = 31.961 ± 1.404 and CC =
0.462±0.031) for monkey I (L) dataset. This corresponded to
an average improvement of RMSE = 8.08% and CC = 6.7%
for monkey I dataset and an average improvement of RMSE
= 7.88% and CC = 18.46% for monkey L dataset. Results
from using QRNN decoder also showed the same trend, that
is, MUA significantly and consistently outperformed SUA

across recording sessions, subjects, and performance metrics
as illustrated in Fig. 10. In this case, MUA yielded an average
improvement RMSE = 8.84% and CC = 4.11% (RMSE =
8.73% and CC = 13.12%) for monkey I (L) dataset. Results
from using other decoders, KF and LSTM, can be seen in
Supplementary Figs. 8 and 9, respectively. More detailed nu-
merical comparison of decoding performance between SUA
and MUA across decoders is given in Table 4.
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FIGURE 9. Comparison of decoding performance between SUA and MUA using BAKS-WF decoder in monkeys I and L. (a),(b) Performance comparison across 34
recording sessions of monkey I measured in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE
and CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. (c),(d) Boxplot
comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. Asterisk indicates that MUA yields statistically significant different
in decoding performance compared to that of SUA (*** p<0.001).

G. COMPARISON OF COMPUTATIONAL COMPLEXITY
Lastly, we compared the computational complexity of BAKS
against other firing rate estimation algorithms. The computa-
tion of BAKS is composed of two steps: adaptive bandwidth
estimation and kernel evaluation. To estimate firing rate at
one evaluation point (e.g. at the middle of observation inter-
val), each step of BAKS requires O(n) operations, where n
denotes the number of spikes within the observation interval
(i.e. window width); thus, the computational complexity of
BAKS is O(2n). In the case of FKS, there is no bandwidth
estimation step because the bandwidth is predefined and
fixed throughout the experiment. Using the this bandwidth,
FKS performs kernel evaluation, which has computational
complexity of O(n). In the case of binning, the computa-
tion is performed by simply counting the number of spikes
within the observation interval. Therefore, the computational
complexity of binning is O(1). We also compared average
runtime, that is, the average time needed by each algorithm to
produce one sample of firing rate. To make fair comparison,
we used data from the first recording session (I20160407_02)
of monkey I dataset with the same window width (240 ms)
for all the algorithms. The runtime was computed by using
time() function within time built-in module in Python.
We reported the average and standard deviation of the run-

time from 90 iterations (MUA channels) in Table 5. BAKS
took an average runtime of 132.30 ± 66.03µs which cor-
responds to 5.93 (1.50) times slower than binning (FKS).
The average runtime of FKS (88.33 ± 21.36µs) was 3.96
slower than that of binning (22.31 ± 7.83µs). The summary
of computational complexity and runtime comparison across
all methods can be seen in Table 5.

IV. DISCUSSION
According to rate coding theory, firing rate —the rate at
which a neuron ‘fires’ spikes— carries a significant amount
of information about behavioural task or stimuli. Thus, one
common preprocessing step in spike-based BMI is to esti-
mate firing rate from the spike train. A widely used binning
method results in a noisy estimate of firing rate, leading
to suboptimal decoding performance. Previous studies [23],
[57], [58] showed that decoding performance could be im-
proved by utilising Gaussian kernel smoother to obtain a
smooth estimate of firing rate. However, these studies em-
ployed a fixed smoothing parameter (bandwidth) which may
yield simultaneously under- and over-smoothing, depending
on the spike dynamics within the experiment. We hypoth-
esised that employing an adaptive (i.e. variable, instead of
fixed) bandwidth-based kernel smoother can improve the
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TABLE 4. Decoding performance comparison between SUA and MUA across decoders with BAKS as the firing rate estimation algorithm. Bold numerical texts
indicate the best decoding performance within each subject and metric.

Subject Decoder
RMSE CC

SUA MUA SUA MUA

Monkey I KF 50.804± 1.063 48.226± 1.016 0.725± 0.008 0.755± 0.007
WF 51.936± 1.235 47.664± 1.063 0.711± 0.008 0.758± 0.007
MLP 46.218± 1.074 41.609± 1.057 0.771± 0.006 0.825± 0.004
LSTM 42.163± 0.987 39.701± 0.985 0.811± 0.006 0.836± 0.005
QRNN 41.914± 0.966 38.240± 0.939 0.816± 0.006 0.850± 0.005

Monkey L KF 31.147± 1.193 29.488± 1.143 0.497± 0.034 0.559± 0.032
WF 31.961± 1.404 29.422± 1.276 0.462± 0.031 0.543± 0.033
MLP 28.628± 1.270 26.510± 1.184 0.545± 0.037 0.639± 0.033
LSTM 27.974± 1.391 25.780± 1.372 0.579± 0.042 0.647± 0.041
QRNN 28.099± 1.374 25.657± 1.338 0.586± 0.039 0.658± 0.040
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FIGURE 10. Comparison of decoding performance between SUA and MUA using BAKS-QRNN decoder in monkeys I and L. (a),(b) Performance comparison
across 34 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured
in RMSE and CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. (c),(d) Boxplot
comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. Asterisk indicates that MUA yields statistically significant different
in decoding performance compared to that of SUA (*** p<0.001).

quality of firing rate estimates, which, in turn, leads to
potentially better decoding performance.

To test our hypothesis, we proposed BAKS for estimat-
ing firing rate and applied it to MUA-based BMI using
linear decoders (KF and WF). These linear decoders were
selected due to significantly fewer number of hyperparam-
eters compared to DL decoders. This makes the decoding
performance comparison more reliable and less confounded

by the choice of hyperparameters. We then compared the
decoding performance of BAKS against binning and fixed
kernel smoother (FKS) algorithms. Comparison results from
chronic intracortical neural data demonstrated that BAKS
consistently and significantly outperformed other algorithms
across different recording sessions, subjects, decoders, and
performance metrics. BAKS incorporates a data-driven and
adaptive bandwidth parameter that allows for a smoother and
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TABLE 5. Computational complexity and runtime comparison of firing rate
estimation methods

Method Computational complexity Average Runtime (µs)

Binning O(1) 22.31± 7.83
FKS O(n) 88.33± 21.36
BAKS O(2n) 132.30± 66.03

TABLE 6. Statistical summary of the number of spikes within 240 ms window.

Statistics
Monkey I Monkey L

SUA MUA SUA MUA

Minimum 0 0 0 0
Maximum 28 50 20 30
Mean ± std 1.28 ± 1.91 3.67 ± 4.05 0.82 ± 1.29 2.18 ± 2.52

more accurate estimation of firing rate especially when there
is a rapidly changing spike dynamic [41]. This smoothing
may act as input denoising which could provide better regu-
larisation. On the other hand, both binning and FKS employ
a fixed, predefined bandwidth parameter; thus, they cannot
accurately estimate the firing rate from a spike train with
rapidly changing spike dynamic. Our results are in good
agreement with the previous studies [23], [57] showing that
a smooth estimate of spike rate can provide an improvement
of decoding performance over simple binning method.

The good performance of BAKS comes at the expense
of increased computational complexity and slower compu-
tational (run) time compared to binning and FKS. Although
BAKS scales linearly as O(2n), there is upper bound of the
number of spikes. Neurons possesses refractory period where
neuron has to wait before it can fire again. In this study, the
largest maximum and mean ± standard deviation of number
of spikes within 240 ms window were 50 and 3.67 ± 4.05,
respectively. The statistical summary of number of spikes for
each monkey is given in Table 6. This study focuses on the
decoding accuracy and uses naive straightforward implemen-
tation of BAKS formula without applying any optimisation
technique. A potential avenue for future work is to address
the computational complexity and time issues of BAKS.

We found that the average performance improvement of
BAKS relative to other firing rate estimation algorithms was
larger when using linear decoders (KF and WF) than when
using DL decoders (MLP, LSTM, and QRNN). In other
words, DL decoders are less sensitive to the smoothness and
accuracy of estimated firing rates than linear decoders. We
argue that this is because DL decoders can compensate for the
differences in estimated firing rates via different optimised
hyperparameter configurations. DL decoders have multiple
hyperparameters that can confound the analysis and perfor-
mance benchmark. To make fair comparison, we applied the
same hyperparameter optimisation procedure to DL decoders
with different firing rate estimation algorithms. In the case of
linear decoders, we can evaluate the impact of firing rate esti-
mation algorithms using the same and simple hyperparameter

setting, which eliminates bias in performance benchmark.
To further improve the decoding performance, we pro-

posed BAKS as firing rate estimation algorithm combined
with QRNN as the decoding algorithm. We compared the
proposed method (BAKS-QRNN) against other methods,
which are all other possible combinations of firing rate al-
gorithm (binning, FKS, or BAKS) and decoding algorithm
(KF, WF, MLP, or LSTM). Extensive experimental results
showed that BAKS-QRNN consistently and significantly out-
performed other methods across different recording sessions,
subjects, and performance metrics. We also found that DL
decoders were superior than linear decoders, which demon-
strates the effectiveness of DL decoders (especially QRNN)
in capturing the complex, non-linear relationship between
neural signals and hand kinematic data.

Next, we compared the decoding performance between
MUA and SUA using BAKS coupled with different decoders.
Empirical results revealed that MUA achieved significantly
higher decoding performance than SUA. The same finding
was observed across different recording sessions, subjects,
decoding algorithms, and performance metrics. These results
contradict several prior studies where SUA was shown to
yield better decoding performance than MUA [17], [20],
[22], [59]. It is difficult to find the exact reason to this con-
tradiction due to the differences in many aspects such as the
subject, recording setup, behavioural task, signal processing,
decoding algorithm, etc. One possible explanation is that in
our study, to obtain SUA, we only used well-isolated (sorted)
spikes and discarded unsorted spikes (also known ‘noise’ or
‘hash’ units). Hash units contained all spikes that did not
match any of the operator’s defined templates used for spike
sorting. Todorova et al. have recently shown that hash units
contained some information about movement and discarding
this information could degrade the decoding performance
[34]. On the contrary, when computing MUA, we used all the
detected spikes, including the hash units, which potentially
contributed to improved decoding performance.

This present study expands our previous study [60] by
adding new technical content and contributions as follows:
(1) proposing MUA as an alternative input signal and com-
paring its decoding performance to that of SUA, (2) adding
fixed kernel smoother (FKS) for performance benchmark,
(3) proposing QRNN based DL decoder and comparing
its decoding performance to other DL decoders and linear
decoders, (3) using chronic neural data from two monkeys
which span more than 11 months of recording sessions,
and (4) making the source code publicly available that en-
ables reproducibility and performance benchmark against
new methods.

V. CONCLUSION
This study proposes BAKS as a firing rate estimation algo-
rithm and QRNN as a decoding algorithm for MUA-based
BMI. Based on extensive performance evaluation on chronic
neural recordings, we have shown that BAKS coupled with
QRNN significantly outperforms other combinations of fir-
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ing rate estimation algorithm and decoding algorithm. This
suggests the feasibility and the potential use of BAKS and
QRNN for improving the decoding performance of MUA-
based BMIs.

ACKNOWLEDGMENT
We thank J. E. O’Doherty and P. N. Sabes for making their
neural data publicly available.

DATA AND CODE AVAILABILITY
The neural data are available from Zenodo at https://zeno
do.org/record/583331 and the source code is available from
Github at https://github.com/nurahmadi/spike_bmi.

REFERENCES
[1] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,

A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neu-
ronal ensemble control of prosthetic devices by a human with tetraplegia,”
Nature, vol. 442, no. 7099, p. 164, 2006.

[2] S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black,
“Neural control of computer cursor velocity by decoding motor cortical
spiking activity in humans with tetraplegia,” J. Neural Eng., vol. 5, no. 4,
p. 455, 2008.

[3] J. Simeral, S.-P. Kim, M. Black, J. Donoghue, and L. Hochberg, “Neural
control of cursor trajectory and click by a human with tetraplegia 1000
days after implant of an intracortical microelectrode array,” J. Neural Eng.,
vol. 8, no. 2, p. 025027, 2011.

[4] B. Jarosiewicz, A. A. Sarma, D. Bacher, N. Y. Masse, J. D. Simeral,
B. Sorice, E. M. Oakley, C. Blabe, C. Pandarinath, V. Gilja et al.,
“Virtual typing by people with tetraplegia using a self-calibrating intra-
cortical brain-computer interface,” Sci. Transl. Med., vol. 7, no. 313, pp.
313ra179–313ra179, 2015.

[5] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral,
J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt et al., “Reach
and grasp by people with tetraplegia using a neurally controlled robotic
arm,” Nature, vol. 485, no. 7398, p. 372, 2012.

[6] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara,
D. J. Weber, A. J. McMorland, M. Velliste, M. L. Boninger, and A. B.
Schwartz, “High-performance neuroprosthetic control by an individual
with tetraplegia,” The Lancet, vol. 381, no. 9866, pp. 557–564, 2013.

[7] B. Wodlinger, J. Downey, E. Tyler-Kabara, A. Schwartz, M. Boninger, and
J. Collinger, “Ten-dimensional anthropomorphic arm control in a human
brain- machine interface: difficulties, solutions, and limitations,” J. Neural
Eng., vol. 12, no. 1, p. 016011, 2014.

[8] C. E. Bouton, A. Shaikhouni, N. V. Annetta, M. A. Bockbrader, D. A.
Friedenberg, D. M. Nielson, G. Sharma, P. B. Sederberg, B. C. Glenn,
W. J. Mysiw et al., “Restoring cortical control of functional movement in
a human with quadriplegia,” Nature, vol. 533, no. 7602, p. 247, 2016.

[9] A. B. Ajiboye, F. R. Willett, D. R. Young, W. D. Memberg, B. A.
Murphy, J. P. Miller, B. L. Walter, J. A. Sweet, H. A. Hoyen, M. W.
Keith et al., “Restoration of reaching and grasping movements through
brain-controlled muscle stimulation in a person with tetraplegia: a proof-
of-concept demonstration,” The Lancet, vol. 389, no. 10081, pp. 1821–
1830, 2017.

[10] S. C. Colachis IV, M. A. Bockbrader, M. Zhang, D. A. Friedenberg,
N. V. Annetta, M. A. Schwemmer, N. D. Skomrock, W. J. Mysiw, A. R.
Rezai, H. S. Bresler et al., “Dexterous control of seven functional hand
movements using cortically-controlled transcutaneous muscle stimulation
in a person with tetraplegia,” Front. Neurosci., vol. 12, p. 208, 2018.

[11] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P.
Donoghue, “Instant neural control of a movement signal,” Nature, vol. 416,
no. 6877, pp. 141–142, 2002.

[12] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical control
of 3D neuroprosthetic devices,” Science, vol. 296, no. 5574, pp. 1829–
1832, 2002.

[13] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M.
Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis,
“Learning to control a brain–machine interface for reaching and grasping
by primates,” PLOS Biol., vol. 1, no. 2, p. e42, 2003.

[14] F. R. Willett, A. J. Suminski, A. H. Fagg, and N. G. Hatsopoulos,
“Improving brain–machine interface performance by decoding intended
future movements,” J. Neural Eng., vol. 10, no. 2, p. 026011, 2013.

[15] S. Suner, M. R. Fellows, C. Vargas-Irwin, G. K. Nakata, and J. P.
Donoghue, “Reliability of signals from a chronically implanted, silicon-
based electrode array in non-human primate primary motor cortex,” IEEE
Trans. Neural Syst. Rehabil. Eng, vol. 13, no. 4, pp. 524–541, 2005.

[16] J. C. Barrese, N. Rao, K. Paroo, C. Triebwasser, C. Vargas-Irwin, L. Fran-
quemont, and J. P. Donoghue, “Failure mode analysis of silicon-based
intracortical microelectrode arrays in non-human primates,” J. Neural
Eng., vol. 10, no. 6, p. 066014, 2013.

[17] D. Wang, Q. Zhang, Y. Li, Y. Wang, J. Zhu, S. Zhang, and X. Zheng,
“Long-term decoding stability of local field potentials from silicon arrays
in primate motor cortex during a 2D center out task,” J. Neural Eng.,
vol. 11, no. 3, p. 036009, 2014.

[18] M. D. Serruya, “Bottlenecks to clinical translation of direct brain-computer
interfaces,” Front. Syst. Neurosci., vol. 8, p. 226, 2014.

[19] M. D. Murphy, D. J. Guggenmos, D. T. Bundy, and R. J. Nudo, “Current
challenges facing the translation of brain computer interfaces from preclin-
ical trials to use in human patients,” Front. Cell. Neurosci., vol. 9, p. 497,
2016.

[20] G. W. Fraser, S. M. Chase, A. Whitford, and A. B. Schwartz, “Control of
a brain–computer interface without spike sorting,” J. Neural Eng., vol. 6,
no. 5, p. 055004, 2009.

[21] C. A. Chestek, V. Gilja, P. Nuyujukian, J. D. Foster, J. M. Fan, M. T.
Kaufman, M. M. Churchland, Z. Rivera-Alvidrez, J. P. Cunningham, S. I.
Ryu et al., “Long-term stability of neural prosthetic control signals from
silicon cortical arrays in rhesus macaque motor cortex,” J. Neural Eng.,
vol. 8, no. 4, p. 045005, 2011.

[22] B. P. Christie, D. M. Tat, Z. T. Irwin, V. Gilja, P. Nuyujukian, J. D. Foster,
S. I. Ryu, K. V. Shenoy, D. E. Thompson, and C. A. Chestek, “Comparison
of spike sorting and thresholding of voltage waveforms for intracortical
brain–machine interface performance,” J. Neural Eng., vol. 12, no. 1, p.
016009, 2014.

[23] J. P. Cunningham, V. Gilja, S. I. Ryu, and K. V. Shenoy, “Methods
for estimating neural firing rates, and their application to brain–machine
interfaces,” Neural Networks, vol. 22, no. 9, pp. 1235–1246, 2009.

[24] A. J. Brockmeier and J. C. Príncipe, “Decoding algorithms for brain–
machine interfaces,” in Neural engineering. Springer, 2013, pp. 223–257.

[25] J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian, and K. V. Shenoy,
“Information systems opportunities in brain–machine interface decoders,”
Proc. IEEE, vol. 102, no. 5, pp. 666–682, 2014.

[26] M. M. Shanechi, “Brain–machine interface control algorithms,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1725–1734, 2017.

[27] H. Pan, W. Mi, X. Lei, and J. Deng, “A closed-loop brain–machine inter-
face framework design for motor rehabilitation,” Biomed. Signal Process.
Control, vol. 58, p. 101877, 2020.

[28] H. Pan, W. Mi, F. Wen, and W. Zhong, “An adaptive decoder design based
on the receding horizon optimization in bmi system,” Cogn. Neurodyn.,
pp. 1–10, 2020.

[29] E. Okorokova, J. M. Goodman, N. Hatsopoulos, and S. J. Bensmaia,
“Decoding hand kinematics from population responses in sensorimotor
cortex during grasping,” J.Neural Eng., vol. 17, no. 4, p. 046035, 2020.

[30] D. L. Menzer, H. Bokil, J. W. Ryou, N. D. Schiff, K. P. Purpura, and
P. P. Mitra, “Characterization of trial-to-trial fluctuations in local field
potentials recorded in cerebral cortex of awake behaving macaque,” J.
Neurosci. Methods, vol. 186, no. 2, pp. 250–261, 2010.

[31] P.-H. Tseng, N. A. Urpi, M. Lebedev, and M. Nicolelis, “Decoding move-
ments from cortical ensemble activity using a long short-term memory
recurrent network,” Neural Comput., vol. 31, no. 6, pp. 1085–1113, 2019.

[32] B. A. Haghi, S. Kellis, S. Shah, M. Ashok, L. Bashford, D. Kramer, B. Lee,
C. Liu, R. Andersen, and A. Emami, “Deep multi-state dynamic recurrent
neural networks operating on wavelet based neural features for robust brain
machine interfaces,” in Adv. Neural Inf. Process. Syst., 2019, pp. 14 514–
14 525.

[33] J. I. Glaser, A. S. Benjamin, R. H. Chowdhury, M. G. Perich, L. E. Miller,
and K. P. Kording, “Machine learning for neural decoding,” Eneuro, vol. 7,
no. 4, 2020.

[34] S. Todorova, P. Sadtler, A. Batista, S. Chase, and V. Ventura, “To sort or
not to sort: the impact of spike-sorting on neural decoding performance,”
J. Neural Eng., vol. 11, no. 5, p. 056005, 2014.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:

14 VOLUME 1, 2020



Nur Ahmadi et al.: Improved Spike-based BMI Using Bayesian Adaptive Kernel Smoother and Deep Learning

Machine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–
2830, 2011.

[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A system for
large-scale machine learning,” in Proc. USENIX Symp. OS Design Impl.
(OSDI), 2016, pp. 265–283.

[37] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in ACM Proc. Int.
Conf. Knowl. Discov. Data Min. (KDD), 2019, pp. 2623–2631.

[38] J. E. O’doherty, M. M. B. Cardoso, J. G. Makin, and P. N. Sabes,
“Nonhuman primate reaching with multichannel sensorimotor cortex elec-
trophysiology,” Zenodo. [online]. doi: 10.5281/zenodo.583331, 2017.

[39] J. G. Makin, J. E. O’Doherty, M. M. Cardoso, and P. N. Sabes, “Superior
arm-movement decoding from cortex with a new, unsupervised-learning
algorithm,” J. Neural Eng., vol. 15, no. 2, p. 026010, 2018.

[40] V. Gilja, P. Nuyujukian, C. A. Chestek, J. P. Cunningham, M. Y. Byron,
J. M. Fan, M. M. Churchland, M. T. Kaufman, J. C. Kao, S. I. Ryu et al., “A
high-performance neural prosthesis enabled by control algorithm design,”
Nat. Neurosci., vol. 15, no. 12, pp. 1752–1757, 2012.

[41] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Estimation of
neuronal firing rate using Bayesian adaptive kernel smoother (BAKS),”
PLoS One, vol. 13, no. 11, 2018.

[42] W. Wu, M. J. Black, Y. Gao, M. Serruya, A. Shaikhouni, J. Donoghue, and
E. Bienenstock, “Neural decoding of cursor motion using a kalman filter,”
in Adv. Neural Inf. Process. Syst., 2003, pp. 133–140.

[43] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black,
“Bayesian population decoding of motor cortical activity using a kalman
filter,” Neural Comput., vol. 18, no. 1, pp. 80–118, 2006.

[44] G. H. Mulliken, S. Musallam, and R. A. Andersen, “Decoding trajectories
from posterior parietal cortex ensembles,” J. Neurosci., vol. 28, no. 48, pp.
12 913–12 926, 2008.

[45] W. Wu and N. G. Hatsopoulos, “Real-time decoding of nonstationary
neural activity in motor cortex,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 16, no. 3, pp. 213–222, 2008.

[46] N. Hatsopoulos, J. Joshi, and J. G. O’Leary, “Decoding continuous and
discrete motor behaviors using motor and premotor cortical ensembles,” J.
Neurophysiol., vol. 92, no. 2, pp. 1165–1174, 2004.

[47] S.-P. Kim, J. C. Sanchez, Y. N. Rao, D. Erdogmus, J. M. Carmena, M. A.
Lebedev, M. Nicolelis, and J. Principe, “A comparison of optimal MIMO
linear and nonlinear models for brain–machine interfaces,” J. Neural Eng.,
vol. 3, no. 2, p. 145, 2006.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[49] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A search space odyssey,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 10, pp. 2222–2232, 2017.

[50] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Decoding hand
kinematics from local field potentials using long short-term memory
(LSTM) network,” in IEEE/EMBS Conf. Neural Eng. (NER). IEEE,
2019, pp. 415–419.

[51] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-recurrent neural
networks,” in Int. Conf. Learn. Repr. (ICLR), 2017, pp. 1–12.

[52] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Robust and accurate
decoding of hand kinematics from entire spiking activity using deep
learning,” J. Neural Eng., vol. 18, no. 2, p. 026011, 2021.

[53] S. Nakagome, T. P. Luu, Y. He, A. S. Ravindran, and J. L. Contreras-
Vidal, “An empirical comparison of neural networks and machine learning
algorithms for eeg gait decoding,” Scientific reports, vol. 10, no. 1, pp.
1–17, 2020.

[54] M. Schnaubelt, “A comparison of machine learning model validation
schemes for non-stationary time series data,” FAU Discussion Papers in
Economics, Tech. Rep., 2019.

[55] A. K. Bansal, W. Truccolo, C. E. Vargas-Irwin, and J. P. Donoghue,
“Decoding 3D reach and grasp from hybrid signals in motor and premotor
cortices: spikes, multiunit activity, and local field potentials,” J. Neuro-
physiol., vol. 107, no. 5, pp. 1337–1355, 2012.

[56] V. Aggarwal, M. Mollazadeh, A. G. Davidson, M. H. Schieber, and
N. V. Thakor, “State-based decoding of hand and finger kinematics us-
ing neuronal ensemble and LFP activity during dexterous reach-to-grasp
movements,” J. Neurophysiol., vol. 109, no. 12, pp. 3067–3081, 2013.

[57] S. Koyama, S. M. Chase, A. S. Whitford, M. Velliste, A. B. Schwartz, and
R. E. Kass, “Comparison of brain–computer interface decoding algorithms
in open-loop and closed-loop control,” J. Comput. Neurosci., vol. 29, no.
1-2, pp. 73–87, 2010.

[58] C. Matlack, C. Moritz, and H. Chizeck, “Applying best practices from
digital control systems to bmi implementation,” in Proc. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC). IEEE, 2012, pp. 1699–1702.

[59] S. Perel, P. T. Sadtler, E. R. Oby, S. I. Ryu, E. C. Tyler-Kabara, A. P.
Batista, and S. M. Chase, “Single-unit activity, threshold crossings, and
local field potentials in motor cortex differentially encode reach kinemat-
ics,” J. Neurophysiol., vol. 114, no. 3, pp. 1500–1512, 2015.

[60] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Spike rate estima-
tion using Bayesian adaptive kernel smoother (BAKS) and its application
to brain-machine interfaces,” in 40th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC). IEEE, 2018, pp. 2547–2550.

VOLUME 1, 2020 15



Nur Ahmadi et al.: Improved Spike-based BMI Using Bayesian Adaptive Kernel Smoother and Deep Learning

NUR AHMADI (Member, IEEE) received the
B.Eng. degree in Electrical Engineering from Ban-
dung Institute of Technology (ITB), Indonesia, in
2011 and M.Eng. degree in Communication and
Integrated Systems from Tokyo Institute of Tech-
nology, Japan, in 2013. He received his Ph.D. de-
gree in Electrical and Electronic Engineering from
Imperial College London, UK, in 2020. His Ph.D.
research focused on signal processing and deep
learning for intracortical brain-machine interfaces.

He is now with the Center for Artificial Intelligence and School of Electrical
Engineering and Informatics, ITB. He received Travel Grant Award at IEEE
UKCAS 2018 and Young Researchers Poster Award at IEEE BioCAS 2019.
His current research interests include biomedical signal processing, artificial
intelligence/machine learning, brain-machine interfaces, neurotechnology,
digital and embedded systems.

AYU PURWARIANTI was graduated from PhD
program at Toyohashi University of Technology in
December 2007 with dissertation title of “Cross
Lingual Question Answering System (Indone-
sian Monolingual QA, Indonesian-English CLQA,
Indonesian-Japanese CLQA)”. The dissertation
was in the area of Natural Language Processing or
also known as Computational Linguistics which is
part of Artificial Intelligence knowledge domain.
Since then, she has worked as a lecturer at ITB

(Bandung Institute of Technology). Other than teaching and doing research,
her other activity is in Indonesian Association for Computational Linguistics
where she was elected as the chair for 2016-2018; and she was also the chair
of IEEE Education chapter of Indonesian section for 2017-2019. She has
joined IABEE since 2015 until now. She also founded a start up named
Prosa.ai since 2018. She is now the Chair of Artificial Intelligence Center
at ITB since August 2019.

TRIO ADIONO (Member, IEEE) received the
B.Eng. degree in electrical engineering and the
M.Eng. degree in microelectronics from Institut
Teknologi Bandung, Indonesia, in 1994 and 1996,
respectively, and the Ph.D. degree in VLSI design
from the Tokyo Institute of Technology, Japan, in
2002. He is currently a Professor at the School
of Electrical Engineering and Informatics and also
serves as the Head for the IC Design Laboratory,
Microelectronics Center, Institut Teknologi Ban-

dung. He holds a Japanese Patent on a high quality video compression
system. His research interests include VLSI design, signal and image pro-
cessing, VLC, smart cards, and electronics solution design and integration.

TIMOTHY G. CONSTANDINOU (AM’98–
M’01–SM’10) received the B.Eng. and Ph.D. de-
grees in electronic engineering from Imperial Col-
lege London, in 2001 and 2005, respectively. He is
currently a Professor of Bioelectronics at Imperial
College London, Director of the Next Generation
Neural Interfaces (NGNI) Lab, Head of the Cir-
cuits & Systems (CAS) Research Group, and the
Deputy Director of the Centre for Bio-Inspired
Technology. He is also a Group Leader within the

UK Dementia Research Institute, Care Research & Technology Centre. His
current research interests include neural microsystems, neural prosthetics,
brain machine interfaces, implantable devices, and low-power microelec-
tronics. He is a fellow of the IET, a chartered engineer, and member of
the IoP. Within the IEEE, he serves on several committees/panels, regularly
contributing to conference organization, technical activities, and governance.
He chairs the IEEE Sensory Systems Technical Committee, is a member
of the IEEE BioCAS Technical Committee, IEEE Brain Initiative Steering
Committee, and served on the IEEE Circuits and Systems Society Board of
Governors for the term 2017–2019. He was the technical program Co-Chair
of the 2010, 2011 and 2018 IEEE BioCAS conferences, General Chair of the
BrainCAS 2016 and NeuroCAS 2018 workshops, Special Session Co-Chair
of the 2017 IEEE ISCAS Conference, and Demonstrations Co-Chair of the
2017 BioCAS Conference. He is currently an Associate Editor-in-Chief of
the IEEE Transactions on Biomedical Circuits and Systems.

CHRISTOS-SAVVAS BOUGANIS received the
M.Eng degree in Computer Engineering and In-
formatics from University of Patras Greece in
1998, the MSc degree in Communications and
Signal Processing in 1999 and the Ph.D. degree
in 2004 both from Imperial College London. He is
currently a Reader in Intelligent Digital Systems
with the Department of Electrical and Electronic
Engineering, the Director of Postgraduate Studies
of the department and leads the Intelligent Digital

Systems Lab (iDSL). He has published over 100 research papers in peer-
referred journals and international conferences, and he has contributed three
book chapters on digital system design. His current research interests include
the theory and practice of reconfigurable computing and design automation,
mainly targeting the domains of Machine Learning, Computer Vision,
and Robotics. He currently serves on the program committees of many
international conferences, including FPL, FPT, DATE, SPPRA, and VLSI-
SoC. He is an Editorial Board Member of the IEEE Transactions on Image
Processing, IET Computers and Digital Techniques, Journal of Systems
Architecture, and ACM Transactions on Reconfigurable Technology and
Systems (TRETS).

16 VOLUME 1, 2020



Improved Spike-based BMI Using Bayesian Adaptive
Kernel Smoother and Deep Learning
Nur Ahmadi1,2,4,5*, Trio Adiono4, Ayu Purwarianti4,5, Timothy G. Constandinou1,2,3, and
Christos-Savvas Bouganis2

1Centre for Bio-Inspired Technology, Imperial College London, London, SW7 2AZ, UK
2Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK
3Care Research & Technology Centre, UK Dementia Research Institute at Imperial College London
4School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, 40132, Indonesia
5Center for Artificial Intelligence (U-CoE AI-VLB), Bandung Institute of Technology, Bandung, 40132, Indonesia
*Corresponding author (n.ahmadi16@imperial.ac.uk)

SUPPLEMENTARY INFORMATION

Suplementary Table 1. Statistical description of monkey I neural data.

No Recording session Duration Number of SUA Number of MUA Days since implantation

1 indy_20160407_02 13.63 114 90 29
2 indy_20160411_01 15.89 120 89 33
3 indy_20160418_01 22.63 136 91 40
4 indy_20160419_01 8.73 142 92 41
5 indy_20160420_01 25.89 147 91 42
6 indy_20160426_01 29.37 170 92 48
7 indy_20160622_01 40.83 155 94 105
8 indy_20160624_03 8.33 149 92 107
9 indy_20160627_01 56.05 156 91 110
10 indy_20160630_01 24.39 90 88 113
11 indy_20160915_01 6.35 135 88 190
12 indy_20160916_01 7.53 131 88 191
13 indy_20160921_01 6.00 135 88 196
14 indy_20160927_04 6.49 130 87 202
15 indy_20160930_02 7.68 133 90 205
16 indy_20161005_06 6.23 116 78 210
17 indy_20161006_02 8.37 133 87 211
18 indy_20161007_02 8.19 133 84 212
19 indy_20161011_03 11.23 139 91 216
20 indy_20161013_03 8.62 117 83 218
21 indy_20161014_04 8.65 142 90 219
22 indy_20161017_02 8.26 123 84 222
23 indy_20161024_03 7.87 125 77 229
24 indy_20161025_04 8.40 140 89 230
25 indy_20161026_03 8.29 120 84 231
26 indy_20161027_03 9.65 136 87 232
27 indy_20161206_02 12.30 111 90 272
28 indy_20161207_02 7.42 126 83 273
29 indy_20161212_02 9.35 108 85 278
30 indy_20161220_02 9.61 99 80 286
31 indy_20170123_02 10.16 109 92 320
32 indy_20170124_01 9.83 130 91 321
33 indy_20170127_03 12.23 123 94 324
34 indy_20170131_02 13.60 128 95 328
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Suplementary Table 2. Statistical description of monkey L neural data.

No Recording session Duration Number of SUA Number of MUA Days since implantation

1 loco_20170210_03 29.47 103 91 338
2 loco_20170213_02 40.29 120 94 341
3 loco_20170214_02 53.32 130 95 342
4 loco_20170215_02 18.67 114 92 343
5 loco_20170216_02 44.75 118 94 344
6 loco_20170217_02 30.68 124 94 345
7 loco_20170227_04 33.60 168 92 355
8 loco_20170228_02 29.68 165 90 356
9 loco_20170301_05 19.32 181 93 357
10 loco_20170302_02 38.06 165 90 358

Suplementary Table 3. Hyperparameter configuration of SUA-driven DL decoders across firing rate estimation algorithms.

Hyperparameter
SUA-MLP SUA-LSTM SUA-QRNN

Binning FKS BAKS Binning FKS BAKS Binning FKS BAKS

Number of timesteps 1 1 1 2 2 2 3 4 4
Number of layers 2 2 2 1 1 1 1 1 1
Number of units 150 200 200 200 250 250 600 600 600
Number of epochs 8 5 5 6 9 9 3 15 12
Batch size 96 64 64 32 96 32 96 32 64
Dropout rate 0.2 0.2 0.2 0.4 0.5 0.1 0.4 0.4 0.5
Learning rate 0.0047 0.0049 0.0054 0.0120 0.0164 0.0103 0.0121 0.0071 0.0069
Optimiser RMSProp RMSProp RMSProp RMSProp RMSProp RMSProp RMSProp Adam Adam

Number of parameters 40202 63602 63602 252402 365502 365502 413402 413402 413402
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Suplementary Figure 1. Decoding performance comparison using MUA-driven KF decoder across different firing rate
estimation algorithms with varying window widths. Performance comparison measured in (a) RMSE and (b) CC. Performance
comparison used the validation sets of the first session I20160407_02.

2/9



1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

Shape parameter ( )

35.32

35.65

35.98

36.31

36.64

Av
er

ag
e 

RM
SE

(a)

Binning FKS BAKS

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

Shape parameter ( )

0.752

0.757

0.762

0.767

0.772

Av
er

ag
e 

CC

(b)

Binning FKS BAKS

35.40

35.45

35.50

0.767

0.768

0.769

Suplementary Figure 2. Comparison of BAKS decoding performance using MUA-driven KF decoder under varying values
of shape parameter (α). Performance comparison measured in (a) RMSE and (b) CC. The insets show the zoom-in views of
BAKS decoding performance. Performance comparison used the validation sets of the first session I20160407_02.

29 33 40 41 42 48 10
5

10
7

11
0

11
3

19
0

19
1

19
6

20
2

20
5

21
0

21
1

21
2

21
6

21
8

21
9

22
2

22
9

23
0

23
1

23
2

27
2

27
3

27
8

28
6

32
0

32
1

32
4

32
8

Time since implantation (days)

36

44

52

60

68

Av
er

ag
e 

RM
SE

(a)

Monkey I
Binning FKS BAKS

33
8

34
1

34
2

34
3

34
4

34
5

35
5

35
6

35
7

35
8

Time since implantation (days)

22

26

30

34

38

Av
er

ag
e 

RM
SE

(e)

Monkey L
Binning FKS BAKS

29 33 40 41 42 48 10
5

10
7

11
0

11
3

19
0

19
1

19
6

20
2

20
5

21
0

21
1

21
2

21
6

21
8

21
9

22
2

22
9

23
0

23
1

23
2

27
2

27
3

27
8

28
6

32
0

32
1

32
4

32
8

Time since implantation (days)

0.54

0.62

0.70

0.78

0.86

Av
er

ag
e 

CC

(b)

Binning FKS BAKS

33
8

34
1

34
2

34
3

34
4

34
5

35
5

35
6

35
7

35
8

Time since implantation (days)

0.26

0.38

0.50

0.62

0.74

Av
er

ag
e 

CC

(f)

Binning FKS BAKS

Binning FKS BAKS
Method

36

43

50

57

64

Av
er

ag
e 

RM
SE

***
***

(c)

Binning FKS BAKS
Method

0.68

0.72

0.76

0.80

0.84

Av
er

ag
e 

CC ***
***

(d)

Binning FKS BAKS
Method

22

26

30

34

38

Av
er

ag
e 

RM
SE

*** ***

(g)

Binning FKS BAKS
Method

0.48

0.53

0.58

0.63

0.68

Av
er

ag
e 

CC

***

(h)

Suplementary Figure 3. Comparison of decoding performance of MUA-driven KF decoder across different firing rate
estimation algorithms in monkeys I and L. (a),(b) Performance comparison across 34 recording sessions of monkey I measured
in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE and
CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC,
respectively. (c),(d) Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation algorithms whose performances differ significantly from that of binning (** p<0.01,
*** p<0.001).
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Suplementary Figure 4. Comparison of decoding performance of MUA-driven LSTM decoder across different firing rate
estimation algorithms in monkeys I and L. (a),(b) Performance comparison across 34 recording sessions of monkey I measured
in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE and
CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC,
respectively. (c),(d) Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation algorithms whose performances differ significantly from that of binning (** p<0.01,
*** p<0.001).
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Suplementary Figure 5. Comparison of decoding performance of MUA-driven QRNN decoder across different firing rate
estimation algorithms in monkeys I and L. (a),(b) Performance comparison across 34 recording sessions of monkey I measured
in RMSE and CC, respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE and
CC, respectively. (e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC,
respectively. (c),(d) Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively.
Asterisks indicate firing rate estimation algorithms whose performances differ significantly from that of binning (** p<0.01,
*** p<0.001).
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Suplementary Figure 6. Decoding performance comparison between the proposed method (MUA-driven BAKS-QRNN
decoder) and other decoders from monkey I dataset. Other decoders use binning for firing rate estimation. (a),(b) Performance
comparison across 34 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(e) Boxplot comparison
across 34 recording sessions measured in RMSE and CC, respectively. Asterisks indicate decoders whose performances differ
significantly from that of binning-KF decoder (* p<0.05, *** p<0.001). (d),(f) Performance improvement/degradation (in
percent RMSE and CC, respectively) relative to binning-KF decoder. Positive (negative) value indicates performance
improvement (degradation). Black error bars denote the standard error of the mean. (g)-(j) Snippet examples of true and
decoded velocities in x- and y- coordinates from different decoders which are taken from the last recording session
(I20170131_02).
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Suplementary Figure 7. Decoding performance comparison between the proposed method (MUA-driven BAKS-QRNN
decoder) and other decoders from monkey L dataset. Other decoders use binning for firing rate estimation. (a),(b) Performance
comparison across 10 recording sessions of monkey I measured in RMSE and CC, respectively. (c),(e) Boxplot comparison
across 10 recording sessions measured in RMSE and CC, respectively. Asterisks indicate decoders whose performances differ
significantly from that of binning-KF decoder (** p<0.01, *** p<0.001). (d),(f) Performance improvement/degradation (in
percent RMSE and CC, respectively) relative to binning-KF decoder. Positive (negative) value indicates performance
improvement (degradation). Black error bars denote the standard error of the mean. (g)-(j) Snippet examples of true and
decoded velocities in x- and y- coordinates from different decoders which are taken from the last recording session
(L20170302_02).
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Suplementary Figure 8. Comparison of decoding performance between SUA and MUA using BAKS-KF decoder in
monkeys I and L. (a),(b) Performance comparison across 34 recording sessions of monkey I measured in RMSE and CC,
respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE and CC, respectively.
(e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. (c),(d)
Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. Asterisk indicates
that MUA yields statistically significant different in decoding performance compared to that of SUA (*** p<0.001).
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Suplementary Figure 9. Comparison of decoding performance between SUA and MUA using BAKS-LSTM decoder in
monkeys I and L. (a),(b) Performance comparison across 34 recording sessions of monkey I measured in RMSE and CC,
respectively. (c),(d) Boxplot comparison across 34 recording sessions of monkey I measured in RMSE and CC, respectively.
(e),(f) Performance comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. (c),(d)
Boxplot comparison across 10 recording sessions of monkey L measured in RMSE and CC, respectively. Asterisk indicates
that MUA yields statistically significant different in decoding performance compared to that of SUA (*** p<0.001).
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