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Abstract

This paper proposes integrated guidance and control design to intercept a non-maneuvering target at a pre-specified time of

interception. The problem is addressed considering nonlinear engagement kinematics and the interceptor is steered using the

combined effects of canard as well as tail configurations (dual control interceptors). Different formulations of time-to-go, without

the restrictive assumption of interceptor’s small heading angle, have been used in deriving the guidance commands, allowing

the proposed strategies to remain effective over a wide range of impact time values. A weighted effort allocation scheme, in

canard and tail deflections, has been proposed to generate the required lateral acceleration. The overall design uses sliding mode

control owing to its simplicity of design. Finally, simulations are presented for various scenarios, including impaired actuator,

vindicating the efficacy of the proposed technique.
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1 Introduction

In recent years, constrained terminal phase guidance has received a lot of attention, especially in improving endgame

performance. One of such constraints is the requirement of simultaneous arrival, also known as salvo [1], for which,

control over impact time is necessary. The customary approach treats guidance and control design as two separate

processes. By only considering kinematics of the engagement, the guidance system generates suitable commands to

be tracked by the control system, whose response is assumed ideal or similar to that of a low pass filter [2]. Due

to unexpected flight conditions, one cannot expect the response of the control system to be ideal. Disregarding the

effect of controller dynamics while designing the guidance command can lead to incongruities between actual and ideal

performances of the control system, engendering unsatisfactory behavior, especially in the endgame [3, 4]. However,

integrating separate guidance and control loops into a single loop, to directly generate the fin deflections, significantly

enhances the endgame performance of the homing interceptor [4–6].
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Pioneering work in impact time guidance can be attributed to [7] wherein a biased proportional-navigation guidance

(PNG) strategy was used by combining PNG with a feedback of impact time error, derived using a linearized engagement

geometry. Impact time control necessitates that time-to-go, a quantity associated with flight conditions in future, be

known a priori. However, obtaining a closed form expression for the same is not a trivial task [8]. A time-to-go estimate

taking interceptor’s heading angle into account was presented in [9], and was widely used in conjunction with small

angle assumption. The work in [10] provided an extension to some special classes of impact time guidance strategies

using a time-to-go prediction formula and a desired error dynamics.

With rising interest in time-constrained guidance over the years, many advanced guidance strategies have been

proposed using Lyapunov methods and sliding mode control (SMC) [11–14]. The guidance strategy in [11] required the

interceptor look angle to decrease monotonically during the engagement to satisfy impact time requirements. Note that

such a variation in look angle may not lead to a wide range of achievable impact time values. The work in [12] achieved

a larger impact time interval by considering large heading angle errors and even interceptor’s negative closing speed.

Authors in [13] reported simplifications of the sliding surface to design an impact time guidance strategy and handled

the singularities in the guidance command by suitable modification. By considering an improved time-to-go estimate,

without small angle assumptions, it was demonstrated in [14] that significantly wider range of impact time values can

be achieved for arbitrary initial heading of the interceptor.

The aforementioned results were primarily obtained against stationary targets and they can be extended to intercept

constant speed targets using the concept of predicted interception point (PIP) [9,12,14]. Approximations, such as PIP,

are susceptible to errors in impact time, which may lead to a miss. Moreover, since the time-to-go expressions used to

derive the guidance commands in the aforementioned studies were mere estimates, it is likely that the initial value of the

same might be erroneous. An impact time guidance strategy, for both 2D and 3D engagements against a moving target,

was proposed in [15] wherein conventional time-to-go estimate was used to derive the guidance command. Under large

heading errors, conventional time-to-go estimates may become less accurate, eventually leading to error in impact time.

In [16], the impact time guidance strategy was designed against non-stationary targets without using explicit time-to-go,

by constructing a sliding manifold as a weighted sum of the relative range and the desired time-to-go. The weighting

functions in [16] were polynomial-based, which may impose computational burden on the guidance system if the order of

polynomial is increased. The time-constrained strategy proposed in [17] utilized deviated pursuit guidance [18], originally

developed to intercept constant speed targets, making PIP approximations unnecessary. The deviated pursuit guidance

also offers an exact expression of time-to-go from the beginning of the engagement, thereby nullifying the chances of

errors that creep in due to its estimation.

The above guidance strategies were designed considering engagement kinematics only, and neglect the interceptor

dynamics and actuators involved. However, in practice, the desired lateral acceleration cannot be achieved instanta-

neously by the interceptor. While designing the outer guidance loop and inner control loop separately simplifies the

overall design process, it has been shown in [3–6] that an integrated design of guidance and control (IGC) outper-

forms separate two-loop designs. IGC design using sliding mode control have been reported in [19, 20] wherein the

studies demonstrated improvements in the performance of the homing interceptor in terms of smaller response time,
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reduced miss distance and better dynamic behavior. A comprehensive Monte Carlo simulation was presented in [21]

to demonstrate the effectiveness of IGC design over separate two-loop ones. In [22], the integrated design was studied

from the perspective of optimal control formulations, wherein the autopilot design and the interceptor’s guidance law

were formulated in a unified state space framework. Integrated guidance and control was also found to be effective in

satisfying terminal angle constraints [23, 24]. It should be noted that although effective, the above mentioned studies

used only a single control surface, either a canard or a tail, to generate the necessary lateral acceleration. However,

recent studies, [25,26], have shown that by using both canard and tail control configurations, not only superior guidance

performance can be realized, but the additional degree of freedom may also be used to achieve additional objectives.

Motivated by the efficacy of integrated guidance and control in satisfying terminal angle constraints, it stands to

reason that other important terminal constraints, such as impact time, can also be met. To the best of the authors’

knowledge, integrated guidance and control to meet impact time requirement has not been reported in the literature so

far. Towards that end, the contributions of this work are five fold.

• The complete design, against a non-maneuvering target, is carried out in nonlinear settings. Consequently,

possible errors due to linearization of the kinematics and dynamics, using small angle assumptions, are avoided.

The proposed strategies remain applicable even for the engagements with large initial heading angle errors.

• The time-to-go expression used in deriving the guidance commands are based on an improved estimate in the case

of stationary targets, and an exact one in the case of constant speed targets. This, naturally, allows the proposed

strategies to remain effective for wide interval of impact time.

• Design of the proposed strategies utilizes sliding mode control, which offers ease of design and insensitivity to

matched anomalies.

• A weighted allocation technique has been proposed to apportion the required effort via canard and tail deflections.

By adjusting the weights, suitable deflections, and in turn, required lateral acceleration can be generated.

• Actuator dynamics have also been considered while designing the proposed strategies, and time-constrained in-

terception in the event of actuator failure is also briefly discussed.

The remainder of this paper is organized as follows. Section 2 presents the nonlinear engagement kinematics and the

interceptor dynamics, along with the main problem addressed in this work, followed by the derivation of the integrated

guidance and control strategies in Section 3. Section 4 presents simulations for various cases to support the theory, and

Section 5 concludes the paper with some directions for future investigations.
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2 Problem formulation

Consider the planar engagement geometry between an endo-atmospheric interceptor and a target as shown in Fig. 1,

whose kinematics is governed by the set of nonlinear equations given by

ṙ = VT cos(γT − θ)− VM cosσ = Vr, (1a)

rθ̇ = VT sin(γT − θ)− VM sinσ = Vθ, (1b)

γ̇M = aM/VM, γ̇T = aT/VT, σ = γM − θ, (1c)

where VM, VT denote the speed of the interceptor and the target, respectively, while γM and γT are their respective

flight path angles. The relative distance and the line-of-sight (LOS) between the adversaries are represented by r and θ,

respectively, while the interceptor’s look angle is denoted by σ. The components of relative velocities along and across

the LOS are Vr and Vθ, respectively, while the lateral accelerations of the interceptor and the target are aM and aT,

respectively. It is assumed that the interceptor and the target possess only lateral acceleration capabilities, with their

speeds being constant throughout the engagement.

Figure 1: Planar engagement geometry.

Figure 2: Planar interceptor dynamics.

For an interceptor steered by the combined effects of various aerodynamic surfaces, as shown in Fig. 2, the planar

dynamics, in the pitch plane [25], is governed by

α̇ = q − L(α, δc, δt)/(mVM) = q − aM/VM, (2a)

q̇ = M(α, q, δc, δt)/I, λ̇ = q, (2b)

δ̇c = (δcc − δc)/τc, δ̇t = (δct − δt)/τt, (2c)

where α, λ, and q denote the angle of attack, pitch angle, and the pitch rate, respectively. The lift and the aerodynamic
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pitch moment acting on the interceptor are represented by L(·) and M(·), respectively, while m and I, are respective

representations of interceptor’s mass and moment of inertia. It is assumed that the interceptor’s tail and canard, which

are the actuators, are described by first-order dynamics with time constants τc and τt, respectively. The deflection of

the canard is represented by δc while that of the tail is denoted by δt. The commanded deflections, δcc and δct , act as

control inputs for the aerodynamic surfaces, the canard and the tail, respectively.

The lift forces and the aerodynamic pitch moments generated by the interceptor’s body and the control surfaces can

be described by

L/m =Lβαg1(α) + Lδcg2(α+ δc) + Lδtg3(α+ δt), (3)

M/I =Mqq +Mβ
αg4(α) +Mδcg5(α+ δc) +Mδtg6(α+ δt), (4)

where Lβα, Lδc , Lδt are the lift coefficients, and Mq, M
β
α , Mδc , Mδt are the moment coefficients. The functions gi(·) ∀ i =

1, . . . , 6 are assumed to be smooth, bounded, and nonlinear functions, describing the aerodynamic characteristics of the

interceptor. The interceptor’s lateral acceleration is related to aerodynamics forces (lift) as aM = L/m, and is given by

(3).

Here we are concerned with terminal constraints on the interceptor’s trajectory, especially a specified impact time.

Impact time, Tf , is defined as the total time at which the interceptor intercepts the target, which is the sum of the

time elapsed post its launch, tel, and the time remaining from that instant until interception, also known as time-to-go,

tgo, [12].

The main problem addressed in this paper is to design integrated guidance commands for the interceptor, which

enables a time-constrained interception of a non-maneuvering target. The guidance commands, or the canard and the tail

deflections, should provide necessary lateral acceleration to steer the endo-atmospheric interceptor on a course requisite

for a time-constrained interception. It is also important that the proposed strategies remain effective for engagements

with large heading errors, allowing the interceptor to achieve a wide range of impact time.

3 Integrated Guidance and Control Design

In this section, we derive the necessary commands to satisfy the guidance objectives. First, we obtain the relation

among the dynamics of interceptor’s lateral acceleration, aerodynamic forces, surface deflections, and other parameters

by differentiating (3), as

ȧM =Lβαg
′
1(α)α̇+ Lδc(α̇+ δ̇c)g

′
2(α+ δc) + Lδt(α̇+ δ̇t)g

′
3(α+ δt)

=
[
Lβαg

′
1(α) + Lδcg

′
2(α+ δc) + Lδtg

′
3(α+ δt)

]
α̇+

Lδc(δcc − δc)g′2(α+ δc)

τc
+
Lδt(δ

c
t − δt)g′3(α+ δt)

τt

=Γq − Γ
aM
VM
−
[
Lδc
τc
g′2(α+ δc)δc +

Lδt
τt
g′3(α+ δt)δt

]
+
Lδc
τc
g′2(α+ δc)δ

c
c +

Lδct
τt
g′3(α+ δt)δ

c
t , (5)
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where Γ =
[
Lβαg

′
1(α) + Lδcg

′
2(α+ δc) + Lδtg

′
3(α+ δt)

]
. It is worth noting that both the aerodynamic surface deflection

commands, δcc and δct , have relative degree one with respect to the dynamics of interceptor’s lateral acceleration.

For subsequent design of IGC strategies enabling a time-constrained interception against a non-maneuvering target,

the error in time of interception is defined as

et = tgo − tdgo = tgo − Tf + tel, (6)

where tdgo is the desired time-to-go and ṫdgo = −ṫel = −1.

The integrated guidance and control design against a stationary target is delineated first, followed by the same

against a constant speed target.

3.1 Stationary Targets

For a stationary target, VT is zero, reducing the relative velocities, (1a)–(1b), in the engagement kinematics to ṙ =

−VM cosσ and rθ̇ = −VM sinσ. For a stationary target, the time-to-go estimate accounting for interceptor’s heading

angle, [9], without any small angle assumption, is given by

tgo =
r

VM

(
1 +

sin2 σ

K

)
; K = 4N − 2, (7)

where N is the navigation constant in the notions of PNG. It is worth noting from (7) that an interception is guaranteed

if and only if the time-to-go estimate, (7), is zero. We first present some intermediate results that aid in the design

process. On differentiating (6) with respect to time, one may obtain

ėt = ṫgo + 1, (8)

which can be further simplified by differentiating (7) once, as

ėt =1− ṙ

VM

(
1 +

sin2 σ

K

)
+

r

VM

(
sin 2σ

K

)
σ̇ = 1− cosσ

(
1 +

sin2 σ

K

)
−

(
rθ̇ sin 2σ

KVM

)
+

(
r sin 2σ

KV 2
M

)
aM

=− cosσ

(
1− sin2 σ

K

)
+

(
r sin 2σ

KV 2
M

)
aM, (9)

from which it is immediate that the time-to-go error of interceptor-target engagement has a relative degree one with

respect to the interceptor’s lateral acceleration. It follows from (5) that δcc and δct have relative degree of one with

respect to aM. Hence, differentiating (9) once more gives a relation between the time-to-go error and the aerodynamic

surface deflections as

ët =

[
1 +

(2− 3 sin2 σ)

K

]
VM sin2 σ

r
+

2r cos 2σ

KV 3
M

a2M +

[
1 +

(2− 5 sin2 σ)

K

]
sinσ

VM
aM +

r sin 2σ

KV 2
M

ȧM,

6



which can be further simplified using (5) as

ët =

[
1 +

(2− 3 sin2 σ)

K

]
VM sin2 σ

r
+

2r cos 2σ

KV 3
M

a2M +

[
1 +

(2− 5 sin2 σ)

K

]
sinσ

VM
aM +

r sin 2σ

KV 2
M

[Γq

−Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt +

Lδc
τc
g′2(α+ δc)δ

c
c +

Lδct
τt
g′3(α+ δt)δ

c
t

]
. (10)

Thus, the time-to-go error of interceptor-target engagement has a relative degree of two with respect to the control

surface deflections.

We shall use the notions of SMC to design the IGC strategies, with the central idea being the confinement of

the system trajectories on a reduced order subspace/manifold.. This offers alluring features such as suppression of

disturbances, desired dynamical behavior and tractability of design, for various applications [12–14,27]. The significance

of the relative degrees of et and ėt are apparent upon constructing a sliding manifold of the form

s = ėt + c et, (11)

where c > 0 is a parameter governing the rate of convergence of et during sliding mode. Differentiating (11) with respect

to time, and using (9) and (10), yield

ṡ =ët + c ėt = ẗgo + c ṫgo + c = F + Bcδcc + Btδct , (12)

where

F =

[
1 +

(2− 3 sin2 σ)

K

]
VM sin2 σ

r
+

2r cos 2σ

KV 3
M

a2M +

[
1 +

(2− 5 sin2 σ)

K

]
sinσ

VM
aM +

r sin 2σ

KV 2
M

[Γq

−Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt

]
+ c

[
1− cosσ

(
1− sin2 σ

K

)
+

(
r sin 2σ

KV 2
M

)
aM

]
, (13)

Bc =
Lδcg

′
2(α+ δc)r sin 2σ

KV 2
Mτc

,Bt =
Lδtg

′
3(α+ δt)r sin 2σ

KV 2
Mτt

. (14)

It is apparent from (10) and (12) that the sliding manifold, (11), is influenced by both δcc and δct . The time-to-go

tracks its desired value after the occurrence of sliding mode, as described in the next theorem.

Theorem 1. For a planar engagement between an endo-atmospheric interceptor and a stationary target, whose engage-

ment kinematics is governed by (1), with the time-to-go error, (6), and the sliding manifold, (11), a time-constrained

interception is guaranteed to occur at a desired time, Tf , if the control surface deflections are chosen to satisfy the

relation

Bcδcc + Btδct = −F − µ sign(s), µ > 0. (15)

Proof. By considering a Lyapunov function candidate, V = s2/2, and differentiating it with respect to time, one obtains

V̇ =sṡ = s (ët + c ėt) = s (F + Bcδcc + Btδct ) . (16)

7



Choosing Bcδcc + Btδct = −F − µ sign(s) renders the dynamics of the sliding manifold, (12), as ṡ = −µ sign(s). Hence,

(16) simplifies to V̇ = −µ|s|, which is negative for any µ > 0, resulting in the stability of the sliding mode dynamics.

After sliding mode is enforced, (11) becomes zero. As a result, the error, et, exhibits an exponential decay whose

rate is governed by the parameter c. In other words, et(t) = et(ts)e
−c(t−ts), for all t > ts, where ts < Tf is the time

when sliding mode occurs. Therefore, the interceptor’s time-to-go tracks the desired value asymptotically, resulting in

a time-constrained interception at a desired time, Tf . This concludes the proof.

From the expression of V, one can write s =
√

2V, and therefore, V̇ = −µ|
√

2V|. The reaching time, ts, can be

determined by evaluating ∫ 0

V(0)

dV
|
√

2V|
= −

∫ ts

0

µdt,

which results in ts =

√
2V(0)

µ
=
s(0)

µ
. This shows that sliding mode is enforced on the manifold, (11), in a finite time,

ts.

It can be inferred from (12) and Theorem 1 that there exist various ways to enforce sliding mode, that is, there are

infinitely many choices of δcc and δct which ensure a time-constrained interception at a desired time. One possibility is to

use either of the aerodynamic surfaces while neglecting the other. In practice, the capabilities of both the aerodynamic

surfaces may not be similar. Thus, it might be more meaningful to suitably allocate the available effort in both the

aerodynamic surfaces depending on their capabilities. In what follows next, we present a general design procedure of

weighted allocation that provides flexibility in apportioning the available effort by considering a cost function of the

form

J =

√(
δcc
wc

)2

+

(
δct
wt

)2

, (17)

where wc > 0, wt > 0 are weighting parameters. The cost function, (17), can be thought of as instantaneous minimization

of the overall aerodynamic surface deflection. Note that we do not aim for overall minimization of the control effort

throughout the engagement. The expressions for the proposed IGC commands are presented in the next theorem.

Theorem 2. For a planar engagement between an endo-atmospheric interceptor and a stationary target, whose en-

gagement kinematics is governed by (1), with the dynamics of the interceptor described by (2) and the sliding manifold

chosen as (11), the proposed integrated guidance and control commands

δcc =− Lδcg
′
2(α+ δc)τcτ

2
t

L2
δc
τ2t g
′2
2 (α+ δc) + L2

δt
τ2c g
′2
3 (α+ δt)w2

[
2a2M

VM tan 2σ
+
VM(K + 2− 5 sin2 σ)

2r cosσ
aM +

V 3
M tanσ

2r2
(K + 2

−3 sin2 σ
)

+ Γq − Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt −

cKV 2
M tanσ/2

2r cosσ
+
cV 2

M sinσ

2r

+caM +
KV 2

M

r sin 2σ
µ sign(s)

]
, (18)
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δct =− Lδtg
′
3(α+ δt)τtτ

2
cw

2

L2
δc
τ2t g
′2
2 (α+ δc) + L2

δt
τ2c g
′2
3 (α+ δt)w2

[
2a2M

VM tan 2σ
+
VM(K + 2− 5 sin2 σ)

2r cosσ
aM +

V 3
M tanσ

2r2
(K + 2

−3 sin2 σ
)

+ Γq − Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt −

cKV 2
M tanσ/2

2r cosσ
+
cV 2

M sinσ

2r

+caM +
KV 2

M

r sin 2σ
µ sign(s)

]
, (19)

minimize the cost function, (17), subject to the constraint (15), where F , Bc and Bt are given by (13)–(14). Further,

this leads to the interceptor attaining a course requisite for time-constrained interception within a finite-time, ts, and

guarantees target interception at a desired time, Tf .

Proof. It follows from Theorem 1 that sliding mode is enforced within ts if (15) is satisfied. By treating Bcδcc + Btδct =

−F − µ sign(s) = Υ, in (15), as a constraint in the minimization of the cost, (17), one can write δct =
Υ− Bcδcc
Bt

which,

upon substituting in (17), yields

J =

[(
δcc
wc

)2

+

(
Υ− Bcδcc
Btwt

)2
]1/2

. (20)

The solution to
∂J
∂δcc

= 0, with (15) as a constraint, results in

δcc =
BcΥ

B2c + B2tw2
, δct =

BtΥw2

B2c + B2tw2
, (21)

where w = wt/wc. It can be readily verified that the values corresponding to the aerodynamic surface deflections, in

(21), are minimum, by evaluating
∂2J
∂δc2c

at these values. Substituting the values of Υ, Bc and Bt, obtained in this part, in

(21), the expressions for the canard and the tail surface deflections, given in (18)–(19) can be obtained. This concludes

the proof.

3.2 Constant Speed Targets

The engagement geometry for this case remains the same as in (1). The time-to-go estimate, (7), albeit good against

stationary targets, may be prone to error when PIP is used to intercept a constant speed target. In other words, if

there are errors in the estimation of time-to-go, PIP approximation might lead to a miss. This motivates us to resort

to a technique that was originally developed to intercept moving targets– use of deviated pursuit. The expression of

time-to-go for an interceptor guided by deviated pursuit, with a fixed deviation angle σ, is given by

tgo =
r

η
[Vr + 2VM cosσ − Vθ tanσ] =

r secσ

η
[VM + VT cos (γT − θ + σ)] , (22)

where η = V 2
M − V 2

T . Note that the expression in (22) is exact [17, 18] and does not involve any approximation or

small angle assumption, thus eliminating errors arising due to time-to-go estimation and small angle approximations.

Consequently, the proposed design remains effective in engagements that may require the interceptor’s heading error to

be large. From (22), it is immediate that tgo = 0 ⇐⇒ r = 0, as shown in [17]. This observation is similar to that in

the previous case of stationary target interception. To derive the IGC commands for interception of a constant speed
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target, we proceed by computing the derivatives of the time-to-go error, (6), using the expression of time-to-go, (22), as

ėt =1 + ṫgo = 1 +
1

η2
[Vr(Vr + 2VM cosσ − Vθ tanσ) + r(V̇r − 2VM sinσσ̇ −V̇θ tanσ − Vθ sec2 σσ̇)

]
=
V 2
θ sec2 σ

η
− rVθ sec2 σ

VMη
aM, (23)

where V̇r =
V 2
θ

r
+ aM sinσ and V̇θ = −VrVθ

r
− aM cosσ were used. Similarly, ët = ẗgo can be obtained by differentiating

(23) with respect to time as

ët =
2VθV̇θ sec2 σ

η
− 2V 3

θ sec2 σ tanσ

rη
− 2rVθ sec2 σ tanσ

V 2
Mη

a2M +
sec2 σ

VMη

[
4V 2

θ tanσ − VrVθ − rV̇θ
]
aM −

rVθ sec2 σ

VMη
ȧM,

which can be further simplified by substituting (5) as

ët =
2Vθ

η cos2 σ

[
V̇θ −

V 2
θ tanσ

r

]
− 2rVθ sec2 σ tanσ

V 2
Mη

a2M +
sec2 σ

VMη

[
4V 2

θ tanσ − VrVθ − rV̇θ
]
aM −

rVθ sec2 σ

VMη
[Γq

−Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt +

Lδc
τc
g′2(α+ δc)δ

c
c +

Lδct
τt
g′3(α+ δt)δ

c
t

]
. (24)

It can be inferred from (23) and (24) that the relative degrees of the time-to-go error, (6), with respect to the lateral

acceleration and the aerodynamic surface deflections are one and two, respectively. These observations are similar to

those in the case of stationary targets.

As a result, the same sliding manifold, (11), can be used to derive the integrated guidance and control commands,

and indicate that the essence of Theorem 1 remains valid in this case. However, F , Bc and Bt, for this case are different

from those obtained in (13)–(14), as they depend on (22)–(24), and can be determined by substituting (23) and (24) in

(12). The following theorem summarizes this and is stated without proof since its proof is similar to that of Theorem 2.

Theorem 3. For a planar engagement between an endo-atmospheric interceptor and a constant speed target, whose en-

gagement kinematics is governed by (1), with the time-to-go error, (6), and the sliding manifold, (11), a time-constrained

interception at a desired time, Tf , is guaranteed to occur if the relation in (15) holds for chosen surface deflections,

where

F =
2Vθ

η cos2 σ

[
V̇θ −

V 2
θ tanσ

r

]
− 2rVθ sec2 σ tanσ

V 2
Mη

a2M +
sec2 σ

VMη

[
4V 2

θ tanσ − VrVθ − rV̇θ
]
aM −

rVθ sec2 σ

VMη
[Γq

−Γ
aM
VM
− Lδc

τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δt −

cVθ sec2 σ

η

(
Vθ −

r

VM
aM

)
, (25)

Bc =
Lδcg

′
2(α+ δc)rVθ

τcVMη cos2 σ
, Bt =

Lδtg
′
3(α+ δt)rVθ

τtVMη cos2 σ
. (26)

The next theorem presents the proposed integrated guidance and control commands that ensure interception of a

constant speed target.

Theorem 4. For a planar engagement between an endo-atmospheric interceptor and a constant speed target, whose

engagement kinematics is governed by (1), with the dynamics of the interceptor described by (2) and the sliding manifold

10



chosen as (11), the proposed integrated guidance and control commands

δcc =
Lδcg

′
2(α+ δc)τcτ

2
t

L2
δc
τ2t g
′2
2 (α+ δc) + L2

δt
τ2c g
′2
3 (α+ δt)w2

[
−2 tanσ

VM
a2M +

2VM
r

(
V̇θ −

V 2
θ tanσ

r

)
+

4V 2
θ tanσ − VrVθ − rV̇θ

rVθ

− Γq + Γ
aM
VM

+
Lδc
τc
g′2(α+ δc)δc +

Lδt
τt
g′3(α+ δt)δt −

cVθ sec2 σ

η

(
Vθ −

r

VM
aM

)
+

VMη

rVθ sec2 σ
µ sign(s)

]
, (27)

δct =
Lδtg

′
3(α+ δt)τtτ

2
cw

2

L2
δc
τ2t g
′2
2 (α+ δc) + L2

δt
τ2c g
′2
3 (α+ δt)w2

[
−2 tanσ

VM
a2M +

2VM
r

(
V̇θ −

V 2
θ tanσ

r

)
+

4V 2
θ tanσ − VrVθ − rV̇θ

rVθ

− Γq + Γ
aM
VM

+
Lδc
τc
g′2(α+ δc)δc +

Lδt
τt
g′3(α+ δt)δt −

cVθ sec2 σ

η

(
Vθ −

r

VM
aM

)
+

VMη

rVθ sec2 σ
µ sign(s)

]
(28)

minimize the cost function, (17), subject to the constraint Bcδcc + Btδct = −F − µ sign(s), where F , Bc and Bt are given

by (25)–(26). Further, this guarantees that the interceptor converges to the pure deviated course within a finite-time, ts,

and results in an interception at a desired time, Tf .

Proof. We proceed in a similar fashion as in the proof of Theorem 2. Using the expressions of F , Bc and Bt, as in

(25)–(26), minimization of the cost, (17), with Bcδcc +Btδct = −F −µ sign(s) = Υ as a constraint, results in the guidance

commands as the ones given in (21). On substituting the values of Υ, Bc and Bt in (21), one may obtain the expressions

of the canard and the tail surface deflections, given in (27) and (28), respectively. This concludes the proof.

Figure 3: A schematic diagram of the proposed IGC design.

Interceptors are safety-critical systems in a realistic scenario, that is, even a minor failure in the system can lead to

a catastrophe, resulting in mission failure. To avoid such situations, redundant actuators are often used which come into

play after the main actuators have developed a fault. However, employing redundant actuators may require more space,

better design efficiency, increased fuel and cost. A more in-depth consideration of such cases are currently beyond the

scope of the current work. Nonetheless, we briefly discuss the case when a single actuator develops a fault at a certain

time instant, t1 < Tf , leaving the sole onus of time-constrained interception on the other actuator. In this paper, we

say that an actuator has developed a fault if it stops responding to the commanded value after t1. For brevity, we shall

consider that the tail develops some fault, while the canard remains operational throughout the engagement. In other

words, the tail is unable to generate necessary deflection and remains stuck with its value at t1 for all future time, that

is, δt(t ≥ t1) = δt(t1) and δct (t ≥ t1) = 0. The canard, however, compensates for the tail using suitable deflections to

generate the necessary lateral acceleration. Thus, the integrated guidance and control commands are modified, using

11



Theorems 2 and 3, to accommodate such situations. For a stationary target interception, the command (18) becomes

δcc =
−τc

Lδcg
′
2(α+ δc)

[
2a2M

VM tan 2σ
+
VM(K + 2− 5 sin2 σ)

2r cosσ
aM +

V 3
M tanσ

2r2
(
K + 2− 3 sin2 σ

)
+ Γq − Γ

aM
VM

− Lδc
τc
g′2(α+ δc)δc −

Lδt
τt
g′3(α+ δt)δ

?
t −

cKV 2
M tanσ/2

2r cosσ
+
cV 2

M sinσ

2r
+caM +

KV 2
M

r sin 2σ
µ sign(s)

]
, (29)

and for interception of a constant speed target, the command (27) gets modified to

δcc =
τc

Lδcg
′
2(α+ δc)

[
−2 tanσ

VM
a2M +

2VM
r

(
V̇θ −

V 2
θ tanσ

r

)
+

4V 2
θ tanσ − VrVθ − rV̇θ

rVθ
− Γq + Γ

aM
VM

+
Lδc
τc
g′2(α+ δc)δc +

Lδt
τt
g′3(α+ δt)δ

?
t −

cVθ sec2 σ

η

(
Vθ −

r

VM
aM

)
+

VMη

rVθ sec2 σ
µ sign(s)

]
, (30)

where δ?t denotes the value of δt ∀t > t1. Note that the canard failure can be dealt with in a similar fashion.

A schematic of the proposed integrated guidance and control design is illustrated in Fig. 3. The desired impact

time, Tf , is compared with the current time to generate the desired time-to-go, which is again compared with the

time-to-go at every instant to generate the impact time error. The time-to-go at every moment is obtained from the

engagement kinematics. The kinematic information along with the sliding manifold, designed using the impact time

error and its rate, and the states of interceptor are utilized by the IGC system to generate the commanded control

surface deflections, that is, δcc and δct . These commanded signals are fed to the actuators, which generate the effective

canard and tail surface deflections, δc and δt. These further modify, as necessary, the angle of attack of the interceptor,

and thus, achieve desired lift and lateral acceleration. Once the sliding mode is enforced, the interceptor maintains a

course requisite for time-constrained interception, eventually intercepting the target at a desired time, Tf .

4 Simulation Studies

In this section, the theoretical claims in the preceding sections are validated using simulations for various engagement

scenarios. We assume that the interceptor’s aerodynamic surfaces, the canard and the tail, may exhibit a maximum

bounded deflection of 40◦ each. The nonlinear functions gi(·), i = 1, 2, . . . , 6 are chosen as sigmoid functions, [12], with

suitable boundary layers. The key parameters same across all the cases are presented in Table 1, while the values of

aerodynamic coefficients are chosen to be the same as those in [25].

In Fig. 4, the origin is assumed to be located at the interceptor’s launch position while the stationary target is

located at an initial LOS of θ(0) = 0◦. The interceptor is launched with a flight path angle of γM = 10◦. For an

impact time of 30 s, Fig. 4(a) depicts the trajectory of the interceptor in physical space, with a black circle marker

representing the launch location and a red square marker representing the stationary target. It can be observed that

the interceptor makes a detour initially until the time-to-go error is nullified, after which it attains the requisite course

enabling an interception at the desired time. Fig. 4(b) shows the behavior of time-to-go estimate with the proposed

scheme. In the given geometry, the initial time-to-go estimate is 25.08 s, which is lower than the desired one. As soon as

sliding mode is enforced, the time-to-go error converges to its desired value within 10 s. Since the lead angle is initially

12



Table 1: Simulation parameters.

Parameter Values Unit Parameter Values Unit

VM 400 m/s r(0) 10 km
c 1 – K 10 –

Lβα 1190 m/s2 Mβ
α −100 m/s2

Lδc 40 m/s2 Lδt 40 m/s2

Mδc 80 s−2 Mδt −80 s−2

Mq −5 s−1 α 0 deg(◦)
τc 0.5 s τt 0.01 s
µ 6 – w 1 –

non-zero, and the desired time is greater than the initial time-to-go estimate, the lead angle increases in the reaching

phase to 76.8◦, and then decreases monotonically to zero in the sliding phase. This is shown in Fig. 4(c), along with

the lateral acceleration profile, which is initially high, around 10 g, to impose the proper interceptor’s heading, but

starts to tend to zero in the sliding phase. Similar phenomenon is exhibited by the aerodynamic surfaces, as portrayed

in Fig. 4(d), demanding a high value at the beginning and a gradual reduction in demand with the onset of sliding

phase. With initially high surface deflections, the angle of attack, and the pitch rate are also observed to be higher at

the beginning, as shown in Figs. 4(e)–4(f). It should be noticed that once sliding mode occurs, interceptor’s look angle,

lateral acceleration, aerodynamic surface deflections, angle of attack, and the pitch rate, all tend toward zero with a

zero terminal magnitude, which also helps in maximizing the speed of impact at the time of target interception.

With initial flight path angle set at 0◦, the performance of proposed design is demonstrated in Fig. 5 for target

interception at various impact times, starting 40, 50 and 60 s, whereas the initial time-to-go is 25 s. It can be inferred

from the behavior of interceptor’s trajectories (in relative geometry) that until the time-to-go error converges, the

interceptor goes slightly farther from the target to attain the desired collision geometry. As soon as the error converges,

the interceptor takes a path that will lead to a time-constrained interception. In doing so, higher lateral acceleration is

demanded in the beginning, but reduces thereafter.

The efficacy of proposed design is also demonstrated for various engagement geometries, by varying the interceptor’s

heading and the LOS angle, as illustrated in Fig. 6. Due to these variations, the initial time-to-go values are different

in each of the three cases, and are found to be 25.62 s, 26.25 s, and 25.45 s. For Tf = 35 s, an accurate tracking is

observed and the error converges within 15 s for each of these cases. Similar conclusions can be drawn as in the previous

cases, attesting the performance of the proposed IGC design. This also affirms that the proposed design, developed

using nonlinear relations, remains valid for engagements with arbitrary initial geometry.

Next, we demonstrate the efficacy of the proposed IGC scheme to intercept a constant speed target, moving with

VT = 300 m/s, at a time chosen a priori. Under the action of the proposed IGC commands, (27)–(28), Fig. 7 shows

a time-constrained interception of a constant speed target moving with a heading of γT = 120◦. The LOS for the

interceptor-target engagement in Fig. 7 is 0◦, and the interceptor is launched with a flight path angle of 10◦. In Fig.

7(a), a black circle marker represents the initial position of the endo-atmospheric interceptor, while magenta circle

markers appear on the plot of the target every 10 s of engagement. With a desired time of interception set at 40 s, it can
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Figure 4: Interception of a stationary target at an impact time of 30 s. (a) Trajectory. (b) Time-to-go
estimate. (c) Lead angle and lateral acceleration. (d) Control surface deflections. (e) Angle of attack. (f)
Pitch rate.
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Figure 5: Interception of a stationary target for various impact time. (a) Trajectory. (b) Time-to-go estimate.
(c) Control surface deflections and lateral acceleration.

be observed from Fig. 7(a) that a successful time-constrained interception occurs. The initial time-to-go, as seen from

Fig. 7(b), is 30.05 s. As soon as sliding mode is enforced, the time-to-go tracks the desired profile in 5.45 s. During this

time, the deviation angle (the look angle), σ, gets fixed, facilitating the time-constrained interception (see Fig. 7(c)).

The lateral acceleration (Fig. 7(c)), the control surface deflections (Fig. 7(d)), the angle of attack (Fig. 7(e)) and the

pitch rate (Fig. 7(f)) exhibit similar behavior after the error in impact time has converged to zero. Compared to the

case of stationary target in Fig. 4, the control effort is lesser in the case of a constant speed target, shown in Fig. 7.

This may be attributed to the exact nature of the time-to-go expression, (22), in the case of constant speed targets, as
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Figure 6: Interception of a stationary target under various geometries at an impact time of 35 s. (a) Trajectory.
(b) Time-to-go estimate. (c) Control surface deflections and lateral acceleration.
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Figure 7: Interception of a constant speed target at an impact time of 40 s. (a) Trajectory. (b) Time-to-go.
(c) Deviation angle and lateral acceleration. (d) Control surface deflections. (e) Angle of attack. (f) Pitch
rate.

opposed to the estimate, (7), in the case of stationary ones. It is also worth noting that the terminal demand of lateral

acceleration and the aerodynamic surface deflections have zero magnitude. This is a desirable feature in any guidance

design. This essentially means that once the interceptor has aligned itself on a course desirable for time-constrained

interception, only a little effort is needed to maintain the course.

Fig. 8(a) depicts interception of a constant speed target at various impact time values. The flight path angles of the

target and interceptor are 80◦ and 180◦, respectively, while the initial LOS angle is −170◦. Fig. 8(a) depicts various

trajectories corresponding to each impact time. For a larger impact time, the interceptor takes a higher curvature path
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Figure 8: Interception of a constant speed target for various impact time. (a) Trajectory. (b) Time-to-go. (c)
Control surface deflections and lateral acceleration.
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Figure 9: Interception of a constant speed target under various geometries at an impact time of 45 s. (a)
Trajectory. (b) Time-to-go estimate. (c) Control surface deflections and lateral acceleration.
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Figure 10: Interception of a stationary target with impaired actuator. (a) Trajectory. (b) Time-to-go estimate.
(c) Control surface deflections.

initially until the impact time error is nullified. As soon as the time-to-go converges to the desired value, the interceptor

converges to the pure deviated course with a fixed deviation angle. Fig. 8(b) portrays the time-to-go profiles for each

impact time. It is remarkable that the proposed design not only enables a time-constrained interception at values higher

than the initial time-to-go, but even lower than the initial time-to-go. This, clearly, vindicates the proposed design in

satisfying a wide range of impact time. The behavior of the canard and the tail surfaces, along with that of the lateral

acceleration, are depicted in Fig. 8(c), which show a tendency to reduce to zero after the convergence of time-to-go
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Figure 11: Interception of a constant speed target with impaired actuator. (a) Trajectory. (b) Time-to-go.
(c) Control surface deflections.

error.

Similar to Fig. 6, the interception of the constant speed target from various engagement geometries, is illustrated in

Fig. 9. It can be seen that the proposed IGC design is applicable over arbitrary initial engagement geometry. The initial

time-to-go in this case are 36.27 s, 25.87 s and 43.98 s, which converge to a desired value of 45 s with the enforcement

of sliding mode. The behavior of aerodynamic surface deflections and the lateral acceleration follow a similar trend as

in the previous cases.

Fig. 10 depicts the time-constrained interception of a stationary target with impaired tail for Tf = 30 s. The initial

conditions for the results shown in Fig. 10 are same as the ones chosen for Fig. 4. Three different fault time instants,

t1, are considered to demonstrate the effectiveness of the proposed design when the tail actuator fails. The time instant,

t1 = 5 s, denotes the time before the convergence of the time-to-go to the desired value, while t1 = 8 s is the instant

when the time-to-go is just about to converge. Finally, t1 = 15 s is the time instant when the time-to-go has converged

and the interceptor is on the collision geometry. Figs. 10(a) and 10(b) depict that the trajectories and the time-to-go

for each case do not differ much. However, it is evident from Fig. 10(c) that the canard deflection is more when the tail

fails before the time-to-go has converged. It is also worth noting that the terminal magnitude of canard is non-zero in

such case. If the tail fails closer to the convergence of time-to-go or later in the engagement, then the behavior of δc is

similar to the one in Fig. 4(d), with a zero terminal magnitude. In each case, δt does not change after t1, as seen from

Fig. 10(c).

For the case of tail failure, Fig. 11 portrays the interception of a constant speed target at Tf = 30, with the same

initial conditions as those used for Fig. 7, except γM, which is −5◦ in this case. Similar to the case of tail failure in the

stationary target interception, we show the effectiveness of the proposed commands for faults occurring before time-to-go

convergence as well as after the time-to-go has tracked its desired value. The time-to-go, in this case, converges to its

desired value within 5 s. Noticeably, the behavior of the trajectories and time-to-go (see Figs. 11(a)–11(b)) are similar

irrespective of the time, t1, at which a fault occurs. The canard, however, tries to compensate for the tail contribution

to ensure a time-constrained interception, as shown in Fig. 11(c). From the results shown in Figs. 10–11, it can be

inferred that the proposed integrated guidance and control design exhibits some degree of robustness or a tolerance to

incidents such as actuator failure.
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5 Concluding remarks

This work presented the idea of integrated guidance control design, using sliding mode control, to intercept a non-

maneuvering target at a desired impact time. To the best of the author’s knowledge, such a scheme with impact

time constraints did not exist in the literature earlier. A weighted allocation scheme provided additional flexibility in

apportioning the available effort in both canard and tail configurations to generate the suitable lateral acceleration.

Moreover, a general framework for choosing surface deflection was also provided, which opens up several possibilities

in selection of these commanded control surface deflections. With some astute modifications, the additional control

effort, either canard or tail, might be used to meet additional objectives. The complete nonlinear framework allowed

the proposed scheme to remain applicable for a wide variety of engagement geometries, including those that induce

significantly large heading errors. This also helped the proposed strategies to satisfy a wide range of impact time values.

The actuator fault tolerance case was briefly discussed to show that the proposed design offers some degree of robustness

to such scenarios.

Interception of maneuvering targets, along with additional terminal constraints, may be an interesting future ex-

tension of this work. The proposed integrated guidance and control design may also be utilized to design a cooperative

salvo guidance in future.
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