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Abstract

Single-relay selection is a simple but efficient scheme for cooperative diversity among multiple user devices. However, the wrong

selection of the best relay due to aged channel state information (CSI) remarkably degrades its performance, overwhelming

this cooperative gain. Multi-relay selection is robust against channel aging but multiple timing offset (MTO) and multiple

carrier frequency offset (MCFO) among spatially-distributed relays hinder its implementation in practical systems. In this

paper, therefore, we propose a deep learning-based cooperative diversity method coined predictive relay selection (PRS) that

chooses a single relay with the largest predicted CSI, which can alleviate the effect of channel aging while avoiding MTO and

MCFO. Performance is evaluated analytically and numerically, revealing that PRS clearly outperforms the existing schemes

with a negligible complexity burden.
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Abstract—Single-relay selection is a simple but efficient scheme
for cooperative diversity among multiple user devices. However,
the wrong selection of the best relay due to aged channel
state information (CSI) remarkably degrades its performance,
overwhelming this cooperative gain. Multi-relay selection is robust
against channel aging but multiple timing offset (MTO) and mul-
tiple carrier frequency offset (MCFO) among spatially-distributed
relays hinder its implementation in practical systems. In this
paper, therefore, we propose a deep learning-based cooperative
diversity method coined predictive relay selection (PRS) that
chooses a single relay with the largest predicted CSI, which can
alleviate the effect of channel aging while avoiding MTO and
MCFO. Performance is evaluated analytically and numerically,
revealing that PRS clearly outperforms the existing schemes with
a negligible complexity burden.
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I. INTRODUCTION

Cooperative diversity [1] is an effective technique to achieve

spatial diversity as same as multi-input multi-output (MIMO),

through the collaboration among multiple single-antenna n-

odes, when there is no possibility of embedding an antenna

array on a mobile terminal. A main difference between MI-

MO and cooperative diversity is the inherent asynchronization

among spatially-distributed relays in the latter. Multiple timing

offset (MTO) [2] and multiple carrier frequency offset (MCFO)

[3] among simultaneously transmitting relays make multi-

relay selection methods, such as distributed beam-forming

[4] and distributed space-time coding (DSTC) [5], hard to

implement for practical systems. In contrast, a single-relay

selection approach called opportunistic relay selection (ORS)

has been extensively recognized as a simple but efficient way to

achieve cooperative diversity [6]. Despite only a single node is

opportunistically selected to retransmit, identical performance

as all-participating strategy using DSTC is expected, while

avoiding the need on multi-relay synchronization.

However, channel state information (CSI) used to select the

best relay may differ from the actual CSI due to feedback delay.

Retransmitting signals on a wrong relay selected in terms of

∗This work was supported by German Federal Ministry of Education and
Research (BMBF) through TACNET4.0 project (Grant no. KIS15GTI007) and
KICK project (Grant no. 16KIS1105).

aged CSI substantially deteriorates the performance of ORS

[7]–[9]. To remain cooperative diversity under channel aging,

Generalized Selection Combining (GSC) [10] and its enhanced

version called N plus normalized threshold GSC (N+NT-GSC)

[11] have been proposed. But these schemes require at least

N orthogonal channels to retransmit, resulting in around 1/N
spectral efficiency. In [12], one author of this paper proposed

a scheme called opportunistic space-time coding (OSTC) that

alleviates the effect of aged CSI but avoids the decrease of

spectral efficiency. By far, to the best knowledge of the authors,

OSTC can achieve the best result under channel aging, but its

gap to the optimal performance is still large, which motivates

the work in this paper.

Recently, a technique referred to as channel prediction [13],

[14], which can improve the timeliness of CSI by forecasting

future CSI in advance, attracts the attention of researchers. In

this paper, leveraging its capability on time-series prediction, a

deep recurrent neural network with Long Short-Term Memory

(LSTM) [15] is employed to build a channel predictor. Upon

this, we propose a novel cooperative diversity method coined

predictive relay selection (PRS). Its key idea is to choose a

single relay (in order to avoid MTO and MCFO in multi-

relay selection) with the largest predicted CSI, earning a

prediction horizon to counteract induced delay. A closed-form

expression of outage probability for PRS is derived and then

verified by simulations. Performance evaluation reveals that

it clearly outperforms the existing schemes, without bring

complexity burden. The rest of this paper is organized as

follows: Section II introduces the system model. Section III

and IV present the proposed scheme and analyze its outage

probability, respectively. Numerical results are given in Section

V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

A. Model of Cooperative Networks

Consider a two-hop decode-and-forward (DF) cooperative

network where a source s communicates with a destination d
with the help of K relays, neglecting the direct link due to line-

of-sight blockage. The received signal in link A→B is modeled

as yB=hA,BxA+zB , where xA ∈ C is the transmitted symbol

from Node A with average power PA=E[|xA|
2] (E denotes the

expectation operator), hA,B represents channel coefficient that



is a zero-mean circularly-symmetric complex Gaussian random

variable with variance σ2
h, i.e., h∼CN (0, σ2

h), under Rayleigh

flat-fading channels, and zB stands for additive white Gaussian

noise with zero-mean and variance σ2
n, i.e., z∼CN (0, σ2

n).
The instantaneous signal-to-noise ratio (SNR) of link A→B
is denoted by γA,B=|hA,B |

2PA/σ
2
n and the average SNR

γ̄A,B=E[γA,B ]=σ2
hPA/σ

2
n. Node A can be the source A=s

or k-th relay A=k, k∈{1, ...,K}, corresponding to B=k or

B=d, respectively.

Because of severe signal attenuation, the relays with a single

antenna should operate in half-duplex transmission mode to

avoid harmful self-interference between the circuits of trans-

mitter and receiver. Without loss of generality, time-division

multiplexing is applied for analysis hereinafter and therefore

the signal transmission is organized into two phases. In the

first phase, as shown in Fig.1, the source (e.g., the drone in

the figure) transmits a signal and those of relays which can

correctly decode this signal form a decoding subset (marked

by DS) of source-relay link

DS ,

{

k

∣

∣

∣

∣

1

2
log2(1 + γs,k) > R

}

, (1)

where R is the end-to-end target rate for the two-hop cooper-

ative network. Note that the required rate for either link raises

to 2R due to the half-duplex mode.

The best relay k̇ in the conventional ORS is opportunistically

selected from DS in terms of k̇ = argmaxk∈DS γ̂k,d, where

γ̂k,d is the SNR of relay-destination link at the instant of

relay selection, which is an outdated version of γk,d at the

time of actual signal transmission. In comparison, the proposed

PRS scheme replaces the aged CSI with the predicted CSI

ȟ, and determines k̇ in terms of k̇ = argmaxk∈DS γ̌k,d,

where γ̌k,d=|ȟk,d|
2Pk/σ

2
n. In our notation, h is actual CSI,

ĥ denotes aged CSI, and ȟ means predicted CSI. In addition

to the best relay, OSTC needs to select another relay with

the second strongest SNR, i.e., k̈ = argmaxk∈DS−{k̇} γ̂k,d.

In the first phase, the source broadcasts a pair of symbols

(x1, x2) to all relays on two consecutive symbol durations.

The regenerated signals are encoded by means of the Alamouti

scheme, a unique space-time code achieving both full-rate and
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Fig. 1. Schematic diagram of DF cooperative diversity with different relaying
strategies: ORS, PRS, and OSTC.

full-diversity, at the pair of selected relays. In the second

phase, a relay transmits (x1,−x∗
2) while another sends (x2, x

∗
1)

simultaneously at the same frequency.

B. Model of Aged CSI

From a practical point of view, the CSI ĥ used to select

relay(s) may remarkably differ from the actual CSI h at the

instant of using the selected relay(s) to forward regenerated

signals, leading to performance deterioration. To quantify such

CSI inaccuracy, the correlation coefficient between h and ĥ is

introduced, i.e.,

ρo =
E[hĥ]

√

E[|h|2]E[|ĥ|2]
. (2)

According to [16], we have

ĥ = σĥ

(

ρo
σh

h+ ε
√

1− ρ2o

)

, (3)

where ε∼CN (0, 1) and σ2
ĥ

is the variance of ĥ. Under the

assumption of a Jakes’ model, the correlation coefficient takes

the value ρo = J0(2πfdτ), where fd is the maximal Doppler

frequency, τ stands for the delay between the outdated and

actual CSI, and J0(·) denotes the zeroth order Bessel function

of the first kind.

C. Model of Predicted CSI

To train a deep learning (DL) predictor, the applied objective

is to generate predicted CSI ȟ that approximates to the actual

CSI (zero-mean complex Gaussian random variable) as close

as possible. Hence, we can assume that ȟ also follows zero-

mean complex Gaussian distribution, i.e., ȟ∼CN (0, σ2
ȟ
). The

relationship between ȟ and h can be modeled as

ȟ = h+ e, (4)

where e is the prediction error that is zero-mean complex

Gaussian variable with variance σ2
e . Like (2), the correlation

coefficient between ȟ and h can be obtained. Replacing ĥ with

ȟ and substituting (4) into (2), yields

ρp =
E[hȟ]

√

E[|h|2]E[|ȟ|2]
=

σh

σȟ

=
1

√

1 + σ2
e

. (5)

In the field of machine learning (ML), normalized mean

squared error (NMSE) is an usual metric applied to measure the

accuracy of data fitting, which can be easily acquired during

both the training and predicting phase. In our case of channel

prediction, the NMSE is

NMSE =
E[|h− ȟ|2]

E[|h|2]
, (6)

and it can be straightforward derived that the NMSE is re-

lated to e by NMSE = σ2
e/σ

2
h. The model-less ML tech-

niques make traditional statistics-based performance analysis

intractable, but the availability of NMSE provides another

method for performance evaluation.



The actual CSI h and its predicted version ȟ follow joint

complex Gaussian distribution. Then, the instantaneous SNR

of relay-destination link γk,d conditioned on γ̌k,d follows non-

central Chi-square distribution with two degrees of freedom.

Substituting (5) into Eq. (12) of [17], the probability density

function (PDF) in terms of σ2
e is obtained, that is

fγk,d|γ̌k,d
(γ|γ̌)

=
(1 + σ2

e)e
−

γ̌+γ(1+σ2
e)

σ2
eγ̄k,d

σ2
e γ̄k,d

I0

(

2
√

(1 + σ2
e)γγ̌

γ̄k,dσ2
e

)

, (7)

where γ̄k,d means the average SNR of relay-destination link,

and I0(·) denotes the zeroth order modified Bessel function

of the first kind.

III. PREDICTIVE RELAY SELECTION

This section introduces the principles of deep learning with

LSTM and the corresponding channel predictor, analyzes its

computational complexity, and then depicts the protocol design

to implement predictive relay selection.

A. DL-based Channel Predictor

Unlike feed-forward neural networks, recurrent neural net-

works (RNNs) can memorize historical information in its

internal state, exhibiting great power in time-series prediction.

But back-propagated error signals in RNN tend to infinity

(gradient exploding), resulting in oscillating weights, or apt

to zero (gradient vanishing) that implies a prohibitively-long

training time. To this end, Long Short-Term Memory were

proposed by Hochreiter and Schmidhuber in their pioneer work

of [15], where special units called memory cells and mul-

tiplicative gates that control information flow are introduced

into the RNN structure. Each LSTM memory cell contains

three gates: an input gate protecting the memory contents

from perturbation by irrelevant interference, a forget gate to

filter out useless memory, and an output gate that controls the

extent to which the memory information applied to generate an

output activation. Despite of its short history, LSTM has been

successfully applied to popular commercial products such as

Apple Siri and Google Translate.

The upper part of Fig.2 shows a deep LSTM network

consisting of an input layer, multiple hidden layers, and an

output layer. At time t, the instantaneous CSI h[t] is acquired

at the receiver through estimating a pilot symbol. Because

the relay selection relies on the value of SNR, only real-

valued amplitude |h[t]| is enough, rather than complex-valued

h[t], which in turn can simplify the implementation of neural

network by using real-valued weights. Feeding |h[t]| into the

input feed-forward layer to get an intermediate activation d
(1)
t ,

further activating the memory cells in the first hidden layer.

Along with the recurrent unit from the previous time step, d
(2)
t

is generated and then forwarded to the second hidden layer.

This recursive process continues until the output layer gets the

predicted CSI |ȟ[t+1]|. As illustrated in the lower part of Fig.2,

a memory block has two internal states: the short-term state

and the long-term state. At the lth hidden layer, the short-term
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Fig. 2. Block diagram of a DL-based predictor and an LSTM memory block.

state s
(l)
t−1 getting at time step t−1, together with the input

vector d
(l)
t , activates four different fully connected (FC) layers

to generate the gate vectors:

f
(l)
t = δg

(

W
(l)
f d

(l)
t +U

(l)
f s

(l)
t−1 + b

(l)
f

)

, (8)

i
(l)
t = δg

(

W
(l)
i d

(l)
t +U

(l)
i s

(l)
t−1 + b

(l)
i

)

, (9)

o
(l)
t = δg

(

W(l)
o d

(l)
t +U(l)

o s
(l)
t−1 + b(l)

o

)

, (10)

where W and U represent weight matrices for the FC layers, b

denotes bias vector, the subscripts f , i, and o associate with the

forget, input, and output gate, respectively, and δg represents

the Sigmoid activation function δg(x) =
1

1+e−x . Besides, there

is an intermediate element

g
(l)
t = δh

(

W(l)
g d

(l)
t +U(l)

g s
(l)
t−1 + b(l)

g

)

, (11)

where δh is the hyperbolic tangent (tanh) function δh(x) =
e2x−1
e2x+1 . Traversing the block, the previous long-term state c

(l)
t−1

first discards some outdated memories at the forget gate, on-

boards new information selected by i
(l)
t , and then transforms

into c
(l)
t = f

(l)
t ⊗ c

(l)
t−1 + i

(l)
t ⊗ g

(l)
t , where ⊗ denotes the

Hadamard product (element-wise multiplication) for matrices.

Further, c
(l)
t goes through the tanh function and then is filtered

by o
(l)
t to update the short-term memory, which serves also as

the output activation, i.e., s
(l)
t = d

(l+1)
t = o

(l)
t ⊗ δh

(

c
(l)
t

)

.

B. Computational Complexity

The computational complexity brought by deep learning is

a general concern. Here, let’s assess the predictor’s complexity

through calculating the number of complex multiplications.

The applied deep recurrent network can be quantified as



follows: an input layer with ni neurons, an output layer with

no neurons, and L hidden layers, which has nl
c LSTM cells at

layer l=1, . . . , L. According to [14], the number of parameters

including both weights and biases can be computed by:

NDL = 4(ni × n1
c + n1

c × n1
c + n1

c)

+

L
∑

l=2

4
(

nl−1
c × nl

c + nl
c × nl

c + nl
c

)

+ nL
c × no + no. (12)

Under the typical stochastic gradient descent training, each

parameter requires O(1) at each time step. Consequently, the

complexity per time step in the training phase is measured by

O(NDL). During the predicting phase, each weight requires

one complex-valued multiplication, amounting to the complex-

ity of O(NDL) per prediction.

C. Predictive Relay Selection

The implementation of cooperative relaying schemes can be

mainly divided into two categories: distributed [6] and central-

ized. The former relies on a timer at each relay, and applies

a contention period (CP) to determine the best relay. The

latter has a centralized controller, e.g., the destination, which

collects global CSI, makes the selection decision, and informs

the selected relays to retransmit. The information exchange

between the controller and the relays not only requires extra

signaling, but also brings the feedback delay that exacerbates

the aged CSI problem. By introducing channel prediction, the

CSI got at the current frame is applied to generate predicted

CSI that will be used at the next frame, such a prediction

horizon provides a new degree of freedom to design a relaying

protocol. Here, we depict a distributed implementation for

predictive relay selection, as follows:

1) At frame t, as shown in Fig.3, the source broadcasts a

packet containing a pilot called Ready-To-Send (RTS)

and data payload. The channel gain hs,k[t] is acquired at

relay k by estimating RTS and is used for detecting the

data symbols. Those relays which correctly decode the

source signal comprise DS and will participate in the

relay selection process.

2) Clear-To-Send (CTS) is sent from the destination, and

relay k estimates hd,k[t] from the received pilot ycts[t],
and then knows hk,d[t] due to channel reciprocity. It

feeds hk,d[t] into its embedded channel predictor to

generate ȟk,d[t + 1], and buffers it in the memory for

its usage at the upcoming frame t+ 1.

3) On the other hand, relay k fetches ȟk,d[t] from the buffer

that is stored at frame t − 1. This operation starts once

the arrival of CTS, parallel with step 2.

4) Then, a timer with a duration inversely proportional to

ȟk,d[t] is started at relay k.

5) The timer on the relay with the largest channel gain

expires first, which sends a short packet to announce.

6) Once receive the best relay’s packet of its presence, other

relays terminate their timers and keep silent. The selected

relay retransmits the regenerative signal until the end of

this frame.

It is possible that the number of relays in DS is zero or the

duration of timer is too long due to a very small channel gain.

To deal with these anomalies, a maximal duration is required to

set for CP. If this duration expires, the relay selection process

is interrupted regardless of the presence of the best relay.

Frame t

C
T
S

R
T
S source CP

CSI-E CSI-P CSI-B

relay

Frame t+1

C
T
S

R
T
S source CP relay

[ 1]h t +[ 1]h t[ 1[ 1[ 1[ 1[ ]ctsy t

Fig. 3. Frame structure of PRS. CSI-E: CSI Estimation, CSI-P: CSI Prediction,

CSI-B: CSI Buffering, CP: Contention Period.

IV. OUTAGE PROBABILITY ANALYSIS

In information theory, outage is defined as the event that

instantaneous channel capacity falls below a target rate R,

where reliable communication cannot be realized whatev-

er coding used. The metric to measure the probability of

outage is referred to as outage probability that is defined

by P (R)=P {log2(1 + γ) < R}, where P is the notation of

mathematical probability. Let DSL denotes the set of all de-

coding subsets having L relays, and DSp
L denotes pth element

of DSL, namely, DSL={DSp
L|p=1, ..., |DSL|}, where | · |

represents the cardinality of a set. Then, the outage probability

of PRS can be calculated by

Pprs(R) =

K
∑

L=0

|DSL|
∑

p=1

P(R|DSp
L)P(DSp

L), (13)

where P(DSp
L) is the occurrence probability of DSp

L, and

P(R|DSp
L) is the outage probability conditioned on DSp

L. Sup-

pose that all source-relay links are independent and identically-

distributed (i.i.d.) Rayleigh channels, the values of P(DSp
L) are

the same for any p∈{1, ..., |DSL|}, and as well P(R|DSp
L)

if all relay-destination channels are i.i.d. Then, (13) can be

simplified to

Pprs(R) =

K
∑

L=0

P (R||DS| = L)P (|DS| = L) , (14)

where P(|DS|=L) denotes the probability that the number

of relays in decoding subset is L. In Rayleigh channels, the

instantaneous SNR of each source-relay channel is exponen-

tially distributed, i.e., γs,k∼EXP
(

1
γ̄s,k

)

, whose Cumulative

Distribution Function (CDF) can be expressed by

Fγs,k
(x) = 1− e−x/γ̄s,k , x > 0. (15)

According to (1), the probability that a relay falls into DS
equals to 1−Fγs,k

(γo), where γo=22R−1 is the threshold

SNR corresponding to the target rate R. The probability of



successfully decoding L out of K relays follows Binomial

distribution, we have

P(|DS| = L) =

(

K

L

)

(

e
− γo

γ̄s,k

)L (

1− e
− γo

γ̄s,k

)K−L

(16)

Thus, the second term in (14) is determined. Let’s turn to the

first term P (R||DS| = L), which is derived, conditioned on

the number of L, as follows:

a) L=0: In the case that no relay can decode the source’s

signal, the relaying will definitely fail, i.e.,

P(R||DS| = 0) = 1 (17)

b) L=1: Only a unique relay successfully decodes the

signal, it becomes k̇ directly and a process of relay selection

is skipped. Similar to (15), the CDF of SNR over this relay-

destination link is given by Fγ
k̇,d

(x)=1−e−x/γ̄k,d . The outage

probability conditioned on L=1 is equal to

P(R|L = 1) = Fγ
k̇,d

(γo) =
(

1− e
− γo

γ̄k,d

)

. (18)

c) L>1: In this case, a relay is opportunistically selected

from the decoding set according to the predicted CSI in relay-

destination links. For the sake of mathematical tractability, we

further rewrite γ̌k,d, k∈DSL as γ̌l, l∈{1, ..., L}. Defining Ak̇

as the event that:

Ak̇ :=

{

(γ̌1, ..., γ̌L)

∣

∣

∣

∣

k̇ = arg max
l=1,...,L

γ̌l

}

, (19)

which means that Ak̇ is a set of L elements (γ̌1, ..., γ̌L)
where γ̌k̇ is the largest. However, γ̌k̇ is only for selection, the

post-processing SNR for performance evaluation should be the

actual SNR γk̇, whose CDF can be calculated by

Fγ
k̇
(y) =

L
∑

k̇=1

P(γk̇ 6 y|Ak̇)P
(

Ak̇

)

, (20)

where P(Ak̇) denotes the occurrence probability of Ak̇, e-

qualing to 1
L since each relay has the same chance to be

selected under i.i.d channel assumption. P(γk̇ 6 y|Ak̇) notates

the probability that the actual SNR is below a threshold y
conditioned on Ak̇, which can be computed by:

P(γk̇ 6 y|Ak̇) =

∫ y

0

∫ ∞

0

fγ
k̇
|γ̌

k̇
(γ|γ̌)fγ̌

k̇
|A

k̇
(γ̌)dγdγ̌, (21)

where fγ
k̇
|γ̌

k̇
(γ|γ̌) stands for the PDF of γk̇ conditioned on its

predicted version γ̌k̇, which is already given in (7). fγ̌
k̇
|A

k̇
(γ̌)

denotes the PDF of the largest predicted SNR conditioned

on Ak̇, analogue to multi-user selection with a max-SNR

scheduler [18], we can write it as:

fγ̌
k̇
|A

k̇
(γ̌) =

Le
− γ̌

γ̄k,d

γ̄k,d

(

1− e
− γ̌

γ̄k,d

)L−1

(22)

Substituting (7), (21), and (22) into (20), yields

Fγ
k̇
(y) = L

L−1
∑

l=0

(

L− 1

l

)

(−1)l

l + 1

(

1− e
−

y(l+1)(1+σ2
e)

γ̄k,d(1+σ2
e(1+l))

)

.

(23)

Thus, the conditional outage probability at L > 1 is

P(R||DS| = L) = Fγ
k̇
(γo). (24)

If setting L=1 in (24), we can get a result equaling to (18),

thus, (24) can be extended to cover the case of L=1.

Now, the closed-form expression for the first term in (14) is

available. Substituting (16), (17), and (24) into (14), the overall

outage probability of PRS in the presence of aged CSI can be

computed as

Pprs(γo)=
(

1− e
− γo

γ̄s,k

)K

+

K
∑

L=1

L

L−1
∑

l=0

(

L− 1

l

)

(−1)l

l + 1

(

1− e
−

γo(l+1)(1+σ2
e)

γ̄k,d(1+σ2
e(1+l))

)

·

(

K

L

)

(

e
− γo

γ̄s,k

)L (

1− e
− γo

γ̄s,k

)K−L

. (25)

V. NUMERICAL RESULTS

In this section, we make use of Monte-Carlo simulations

to validate the correctness of analytical analyses and evaluate

performance. Given i.i.d. Rayleigh channels with a normalized

gain σ2
h = 1, outage probabilities of PRS, ORS, and OSTC

in the presence of aged CSI are provided. The maximal

Doppler frequency is set to fd=100Hz, emulating fast fading

environment, and an end-to-end target rate of R=1bps/Hz is

applied for outage calculations. Training data sets are built

by sampling a series of 7500 consecutive channel response

{h[t] |t=1, 2, . . . , 7500}, with and without considering the

impact of noise in channel estimation. The cooperative net-

work has K=4 DF relays and equal power allocation among

nodes is used. Assuming the end-to-end power is P , the

source transmits with Ps=0.5P , resulting in an average SNR

γ̄s,k=0.5P/σ2
n for source-relay channels, while γ̄k,d=0.5P/σ2

n

for relay-destination channels. Detailed simulation parameters

are summarized in Table I.

As illustrated in Fig.4, the markers indicating the numerical

results fall into their corresponding curves that are the analyti-

cal results, corroborating our theoretical analyses in this paper.

As the benchmark, the curve of ORS when the knowledge of

TABLE I
SIMULATION CONFIGURATION

Parameters Values

Frame length 2ms

Max. Doppler shift fd = 100Hz

Channel model Rayleigh (Jakes’s model)

Training length 7500 samples

Deep learning L=2 LSTM netwok

Hidden neurons 20/10

Training algorithm Adam optimizer

Batch size 256

Cost function MSE

Prediction length 2ms

Actuation function tanh
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Fig. 4. Outage probabilities of PRS, ORS, and OSTC as a function of the
end-to-end average SNR γ̄ = P/σ2

n with K=4. Analytical results of ORS
and OSTC are derived from (20) in [12], and that of PRS is from (25).

CSI is prefect, i.e., ρo=1, is plotted as the optimal performance

that achieves the diversity of d=4 and its outage probability

decays at a rate of 1/γ̄4 in high SNR. Given the frame length

of 2ms and fd = 100Hz, we can use (2) to figure out the

correlation coefficient of aged CSI ρo = J0(0.4π) ≈ 0.6425.

As we can see, channel aging substantially deteriorates the

performance, where the diversity of ORS falls into 1, i.e.,

no diversity, and the curve decays slowly at a rate of 1/γ̄
in high SNR. Although OSTC can redeem some loss with

diversity of 2 by using a pair of relays, its gap to the optimal

performance is still large, amounting to around 3dB at the level

of 10−2. For PRS, we observe two different types of data for

training the predictor: the ideal case adopts perfect CSI, and a

practical case where data is estimated CSI at the SNR of 30dB.

The former achieves sub-optimal performance with NMSE of

σ2
e = 0.012, corresponding to ρp = 0.994 in terms of (5),

which is obviously better than aged CSI with ρo = 0.6425.

The noise degrades the performance slightly with σ2
e = 0.05

and ρp = 0.9754, but it still clearly outperforms ORS and

OSTC.

Last but not least, the complexity of the predictor is in-

vestigated. The applied neural network has two hidden layers

with n1
c=20 and n2

c=10 LSTM cells, respectively, an input

and output layer with a single neuron ni=no=1, amounting

to NDL = 2811 in terms of (12). It is meaningful to make

clear how many computing resources are required. Given 500
times prediction per second due to the frame length of 2ms,
it needs approximately 6× 106 Floating Point Operations Per

Second (FLOPS). In comparison with the capability of current

digital signal processor, e.g., TI 66AK2x, which provides more

than 104 Million Instructions executed Per Second (MIPS), the

required computing resource is negligible (< 0.001).

VI. CONCLUSIONS

In this paper, we proposed a deep learning-based relaying

method to achieve cooperative diversity. Taking advantage

of time-series prediction of deep recurrent neural network,

a channel predictor was built as a new degree of freedom

for realizing predictive relay selection. The proposed scheme

opportunistically selects a single relay with the largest pre-

dicted CSI to retransmit, which alleviates the effect of aged

CSI while avoiding the problem of multi-relay synchronization.

Analytical and numerical results on outage probabilities proved

that it clearly outperforms opportunistic relay selection and

opportunistic space-time coding under channel aging. Also,

computational complexity was analyzed, revealing that its

required computing resource is negligible in comparison with

off-the-shelf hardware. From the perspective of both perfor-

mance and complexity, it is a good candidate for practical

implementation.
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