
P
os
te
d
on

4
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
24
23
70
1.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Design and Implementation of an SD-WAN VPN System to

Support Multipath and Multi-WAN-Hop Routing in the Public

Internet

Steven Lee 1, Kwan-Yee Chan 2, and Ting-Yun Chen 2

1National Chung Cheng University
2Affiliation not available

October 30, 2023

Abstract

We present the design of a multipath multi-WAN-hop SD-WAN (MMS) system to realize an overlay network on top of the

public internet. The MMS includes an SD-WAN system controller (SSC) and MMS gateways (MMSGs), one for each branch.

The SSC is responsible for configuring the routing paths for the whole system. The MMSG uses low-cost access networks such

as PON, xDSL, PLC, cable modems, and even LTE/5G to access the public internet. We propose an IP address swapping

technique to realize multihop routing in the public internet. In addition, we implement IP over MPTCP (IPoMP) in MMSGs,

in which a flow between a pair of branches is mapped into multiple MPTCP subflows to exploit multipath routing.

1

Design and Implementation of an SD-WAN VPN System
to Support Multipath and Multi-WAN-Hop Routing in the

Public Internet

Steven S. W. Lee, Kwan-Yee Chan, and Ting-Yun Chen

Abstract—The software-defined wide area network (SD-WAN)
is a new virtual private network (VPN) technology that enables an
enterprise to interconnect all of its geographically distributed
branch campuses through a low-cost public internet.
Conventionally expensive leased lines are deployed to fulfill the
requirement for communication in a multicampus enterprise. The
SD-WAN VPN takes advantage of the flexible programmability of
software-defined networking (SDN) to provision routing paths and
perform traffic control to reduce network costs by offloading
traffic from expensive leased lines to the public internet. In this
paper, we present the design of a multipath multi-WAN-hop SD-
WAN (MMS) system to realize an overlay network on top of the
public internet. The MMS includes an SD-WAN system controller
(SSC) and MMS gateways (MMSGs), one for each branch. The
SSC is responsible for configuring the routing paths for the whole
system. The MMSG uses low-cost access networks such as PON,
xDSL, PLC, cable modems, and even LTE/5G to access the public
internet. We propose an IP address swapping technique to realize
multihop routing in the public internet. In addition, we implement
IP over MPTCP (IPoMP) in MMSGs, in which a flow between a
pair of branches is mapped into multiple MPTCP subflows to
exploit multipath routing. To evaluate our MMS system, we
implement an experimental network. Compared to the
conventional IP-based VPN that uses IP-in-IP tunneling, the
proposed IPoMP-based MMS system can significantly enhance
network throughput for a multicampus enterprise.

Index Terms — Software-Defined Networking (SDN); Software-
Defined WAN (SD-WAN); Virtual Private Network (VPN); IP
over MPTCP (IPoMP); Multipath Routing; Overlay Network; IP
Address Swapping

I. INTRODUCTION

HE software-defined wide area network (SD-WAN)
applies software-defined networking (SDN) technology to

reduce network building costs and enhance flexibility in
controlling the network. The SD-WAN can be classified into
two categories. One directly employs SDN switches to
construct a WAN. The other applies SDN to realize gateways
and edge routers to facilitate efficient traffic control between
enterprise branches or datacenters. The former is usually
deployed and operated by large organizations or
telecommunication network operators who own their WANs.
They take full advantage of the flexibility of SDN to provide
network services to their customers. The latter does not change
the existing WAN. Instead, the focus is on establishing a virtual

private network (VPN) on top of the public internet by using
low-cost, commercially available internet access technologies.

The major cloud service providers have their own dedicated
WANs. Google [1], Microsoft [2], and Facebook [3] have
applied SDN technology to their networks. SWAN [4], B4 [5],
and BwE [6] implement SDN-based traffic engineering to
improve the performance of the inter-data center WAN. Grace
[7] introduces APIs for customers by abstracting WAN
connections based on the connection types, bandwidth, latency
sensitivity, and policy-related information. Grace also develops
an effective conflict detection algorithm considering both
resource reservation and safety guarantees.

Telecommunication network operators can use SDN
technology to provide VPNs for their customers. The SDxVPN
[8] is an SDN-based VPN solution that enables a network
service provider to provide VPN services. The core network for
SDxVPN is an MPLS network owned by the service provider.
The system applies SDN in provider edge devices. With the
help of SDN, SDxVPN achieves flexible control, enabling
efficient use of the MPLS network resources. Another example
of using SDN to manage an MPLS-based VPN can be found in
[9]. In [10], SDN is used to enhance policy-based routing and
load balancing for Ethernet VPN (EVPN)-based data centers.

In addition to applying the SDN-based control paradigm to
manage a WAN, another kind of SD-WAN technology focuses
on the design of gateways or edge routers [11][12] . The targets
of these kinds of products use common low-cost access
networks such as xDSL, cable modems, PLC, and PON to
provide low-cost VPN services among branches of an
enterprise or an organization. The article in [13] lists the
definition of the SD-WAN provided by the research firm
Gartner. An SD-WAN must be able to support multiple
connection types. It needs to be able to perform dynamic path
selection for load sharing and resiliency purposes. In addition,
the controller should be able to configure and manage the whole
system.

In this paper, our goal is to design an SD-WAN VPN system
that can enable an enterprise to interconnect all of its
geographically distributed branches through a low-cost public
internet. Figure 1 depicts the system architecture. The whole
system includes an SD-WAN system controller (SSC) and
multiple multipath multi-WAN-hop SD-WAN gateways
(MMSGs), one for each branch. The controller performs path
planning and provisioning, assigns traffic classification and
prioritization, and collects statistical data for the whole SD-
WAN VPN through configuring and controlling the MMSGs.

In the example shown in Fig. 1, the enterprise consists of

T

All the authors are with the Department of Communications Engineering,
National Chung Cheng University, Chiayi, Taiwan (e-mail:
ieeswl@ccu.edu.tw; kwanyee86@gmail.com; tingyun0313@gmail.com).

three branches, each of which is equipped with an MMSG. The
gateway connects to the public internet through standard low-
cost access networks such as xDSL, PON, PLC, cable modems,
and even LTE/5G. If a leased line is available for the branch,
the leased line is by default used to deliver high-priority
interbranch traffic. To increase the bandwidth utilization of the
expensive leased line, an MMSG could transmit low-priority
traffic through the leased line if some bandwidth remains. The
SDN switch inside the MMSG guarantees traffic delivery based
on strict priority; hence, the low-priority traffic will not block
the transmission of high-priority traffic at any time.

Fig. 1. System architecture

Our system can be viewed as an overlay network that is

running on top of the public internet. In the overlay network,
we realize multi-WAN-hop routing. A packet leaving its source
branch can either be directly sent to the destination branch or
take another intermediate branch as a transit node. To facilitate
routing over the public internet, we set up IP tunnels between
branches. In our system, each port that connects to the public
internet is assigned a public IP address. The MMSG delivers a
packet from one branch to another by attaching each outgoing
IP packet to another outer IP header in which the destination
address is the public IP address of the remote branch. By
performing IP address swapping on the outer header at a transit
MMSG, multi-WAN-hop routing can be achieved.

In addition to using multi-WAN-hop routing, we also employ
multiple paths in parallel to enhance throughput. We apply the
multipath TCP (MPTCP) [14] to carry a flow between a pair of
end hosts that are in different branches over multiple paths in
the overlay network. The MPTCP provides a sublayer beneath
the TCP to divide a TCP connection into subflows. In the
MPTCP, each subflow can take a different path in the network.
A subflow has its own congestion and error controls. Our
system implements IP over MPTCP (IPoMP) tunneling. As a
result, an end-to-end connection can use the UDP, TCP, or any
other protocol as their transport protocol. The MMSG at the
source branch encapsulates an outgoing IP packet as an MPTCP
payload, and the MMSG at the destination branch decapsulates
the IP packet. The MPTCP is able to reorder the receiving
packets at the destination MMSG to prevent out-of-order
delivery when multipath routing is applied.

The MPTCP has been applied in data centers to improve the
TCP throughput. The studies in [15][16] show that the MPTCP
always outperforms the single-path TCP. Since the MPTCP is
a layer-four protocol, in the internet, the routing for the
subflows is provided by the underlying IP network that employs
equal-cost multipath (ECMP)-based shortest path routing.
Provisioning multipaths to support the MPTCP has been carried
out in SDN networks [17][18][19].

In [17], an OpenFlow testbed is implemented to provide
multiple paths to support the MPTCP. The controller of the
system monitors the throughput of the network to determine the
configuration of the routing paths. When a network failure is
detected, the controller can reconfigure the network to
maximize its throughput. In [18], the MPTCP is used to
enhance network throughput in a hybrid SDN and Ethernet-
based data center network. The experimental results show that
the MPTCP outperforms the existing ECMP-based and VLB-
based routing in an SDN network. In [19], the authors evaluate
the performance of the MPTCP on top of the GÉANT and
PlanetLab Europe testbed networks. The authors conclude that
the version of the MPTCP implementation was considerably
good in 2014, when the paper was published. In this paper, we
use the most up-to-date MPTCP implementation in our system.

In these works [17][18][19], SDN is used to provide
multipaths to enhance the throughput of connections. End hosts
must perform the MPTCP to enjoy the benefit of using multiple
paths. However, in our work, the end hosts can perform any
layer-four protocols. The operations for the encapsulation and
decapsulation of IP packets at MMSGs are transparent to the
end hosts. We take advantage of SDN and the MPTCP to
enhance the network throughput and reliability of the SD-WAN
VPN.

In summary, our major contributions are as follows:
 We propose an MMS system that applies multipaths to

enhance network throughput and reliability for
interbranch communications inside an organization. The
proposed MMSGs are able to handle congestion control
and packet out-of-order issues for every interbranch end-
to-end flow.

 Through IP address swapping, the proposed system can
employ multi-WAN-hop routing in the overlay network
on top of the public internet.

 The proposed system handles traffic prioritization to
enhance the QoS of the network.

 We present the detailed design of the proposed MMSGs
and the system controller.

 A network testbed is implemented to demonstrate the
feasibility and performance of the proposed system.

The remainder of this paper is organized as follows. Section
II presents the detailed design of the proposed MMSG. In
Section III, we introduce the control and management functions
used in the proposed MMS system. In Section IV, we report the
experimental results and make performance comparisons
between networks with and without the proposed system.
Finally, concluding remarks are presented in Section V.

II. MULTIPATH MULTI-WAN-HOP SDN GATEWAY

The modules inside an MMSG are shown in Fig. 2. The
gateway is an edge device that is used to connect a branch of an
organization to the public internet. The interfaces between the
MMSG and the public internet depend on the local ISPs to
which the branch subscribes. The possible access networks
include xDSL, cable modems, PON, PLC, and even LTE/5G.
In addition to the ports that connect the MMSG to the public
internet, ports to leased lines are available if the branch has
them. An MMSG uses the standard Ethernet to connect the
internal local area networks.

An MMSG consists of three modules: a traffic classifier (TC),
a multipath agent (MPA), and an OpenFlow switch (OFS). The
details of these modules are presented below.

Fig. 2. Modules inside an MMSG

Fig. 3. An example of multipath multi-WAN-hop routing

A. Traffic classifier (TC)
The TC is responsible for classifying the outgoing traffic into

three priorities in descending order. Type I and Type II are
internal interbranch traffic. Their source and destination hosts
are in the same organization but not in the same branch. Type
III is used for external traffic. The MMSG assigns Type I traffic
the highest priority for packet scheduling to minimize the
transmission delay and packet loss probability. If the
organization has subscribed a leased line service, Type I traffic
will be carried by the leased lines; otherwise, Type I traffic will
use the public internet for packet delivery. Type II traffic is
fundamentally transmitted through the public internet. It will be
carried by a leased line only if there is unused bandwidth
remaining after serving the Type I traffic.

To enhance throughput, we use multipath routing for Type I
and Type II traffic to exploit more than one path for packet
delivery. The multipath function is realized by the MPA module.
The MPA performs packet scheduling on the multipaths at the
sender side and resolves the packet out-of-order problem at the
receiver side.

Type III traffic has the lowest priority. The destinations of
Type III traffic are outside of the organization. They are sent to
the public internet directly without any additional processing by
the MMSG.

The TC can be implemented by a server. It can also be
implemented by using an OFS. If an OFS is used, the controller
needs only to configure the matching rule in the flow table to
determine how to classify the outgoing traffic into the three
types of classes.

B. Multipath agent (MPA)
In the system, if a flow takes multipath routing, it is mapped

into an MPTCP connection. In the example shown in Fig. 3, a
TCP connection from a source host in branch 1 toward a
destination server in branch 2 exists. The packets of this TCP
connection are carried by four MPTCP subflows that take paths
1-2, 1-3-2, 1-4-2, and 1-5-2 to the destination.

Our MMS realizes IPoMP on top of the public internet. The
encapsulation and decapsulation processes are performed at the
MPAs of the MMSGs in the source and destination branches.
Our MPAs work as middle boxes, and the end hosts are not
involved in the multipath routing. The two end hosts can use
any transport protocol (e.g., UDP, TCP, or SCTP) to
communicate with each other. They are unaware of the
presence of the MPTCP. The SSC determines the routing on the
overlay network so that an MPTCP subflow can either take a
one-WAN-hop path or a multiple-WAN-hops path to reach the
destination.

An MPTCP connection is maintained only by the two end
MPAs at the source and destination MMSGs. For transit traffic,
packets are not delivered to the MPA at a transit node. They are
directly handled by the OFS at the transit MMSG.

Assuming the MPA at a source branch has n ports and the
MPA at the destination branch has m ports, there are n×m
MPTCP subflows that support the MPTCP connection. The
number of physical ports connecting the MPA to the OFS can
be different from the number of physical ports connecting the
MMSG to the public internet. For simplicity, in our current
implementation, the number of MPA ports is the same as the
number of ports connecting the MMSG to the internet.

Because the MPTCP is connection-oriented, mapping an
incoming flow into an MPTCP connection will introduce
additional setup delay. To eliminate the delay, a set of MPTCP
connections between any pair of MMSGs is set up in advance.
Thus, as a new traffic flow arrives at a gateway, it is
immediately mapped to an existing MPTCP connection for
packet delivery. By using this technique, the MPTCP
introduces no extra delay in setting up a connection for an
outgoing flow.

C. OpenFlow switch (OFS)
The OFS is responsible for realizing multi-WAN-hop routing

for MPTCP subflows. Its functionalities include IP address
swapping, routing path ID insertion, priority queueing, and
statistical data collection.

The whole network uses IP tunnels to realize an overlay
network on top of the public internet. A packet can traverse
through a transit branch before reaching its final destination.

For this case, the destination IP address in the outer header is
assigned to be the public IP address of the MMSG at the transit
branch. The OFS at the transit branch performs IP address
swapping to replace the source and the destination IP addresses
in the outer header with a pair of new source and destination IP
addresses. More specifically, the source IP address is replaced
with the IP address of the port through which the packet leaves
the MMSG, and the destination IP address is assigned to be the
IP address of the port through which the packet is received at
the next hop node.

To facilitate routing at a transit node, we include the source
branch ID, destination branch ID, path group ID, and member
path ID in the TCP destination port of the outer header. We use
the term “path group” to indicate a set of member paths to
support an MPTCP connection. The routing of an MPTCP
connection between a pair of branches follows the path group
assigned at the source MPA. Each MPTCP subflow takes one
member path for routing. Through a combination of the path
group ID and member path ID for a pair of branches, the
specific routing paths for MPTCP subflows in the overlay
network can be identified.

By examining the TCP destination port in the outer header,
the OFS at a transit node resolves how to perform IP address
swapping and how to determine the outgoing link through
which the packet can be forwarded. By examining the TCP
destination port in the outer header, the OFS at the destination
branch determines how to recover the IP addresses back to their
original values as they are generated by the MPA at the source
branch. As a result, the MPA at the destination branch can
successfully perform MPTCP flow identification and packet
reordering.

The OFS also determines packet scheduling based on its
priority. Priority queueing is applied such that packets with high
priority will not be blocked by low-priority packets for network
resource usage. The detailed routing and traffic prioritization
are presented in the next section.

III. ROUTING CONFIGURATION AND TRAFFIC PRIORITIZATION

In this section, we introduce the detailed encoding of the
outer header and the setting of flow entries in OFSs for IP
address swapping. We show the detailed operations performed
in the source, transit, and destination MMSGs. Finally, we
illustrate the operations with an example.

A. Operations at the source MMSG
For each outgoing flow, the MPA at the source MMSG

determines the routing and maps the outgoing packets into
multiple MPTCP subflows. According to the MPTCP, the
number of subflows that can be set up between two end nodes
is the product of the number of interfaces (ports) of these two
nodes. Assuming the MPA in the source branch has n ports and
the MPA in the destination branch has m ports, there are n×m
MPTCP subflows that support each MPTCP connection
between these two branches. We denote xi and yj, where 1≤i≤n
and 1≤j≤m, as the IP addresses of the i-th and j-th ports of the
MPAs in the source branch and destination branch, respectively.
At the destination branch, the MPA can identify an MPTCP

subflow by examining the TCP source and destination ports and
the pair of source IP and destination IP addresses (xi, yj) in the
outer header.

To perform routing in the overlay network, in the MMS, each
source branch and destination branch pair is preassigned a set
of path groups. Figure 3 shows an example in which a path
group exists between branch 1 and branch 2. This path group
includes four member paths, one for each subflow. When a new
MPTCP connection setup is used, the MPA at the source
MMSG selects one path group for routing the MPTCP
connection. The selection can be based on a round robin or
depend on the average throughput of a path group.

To facilitate a transit node to perform multi-WAN-hop
routing, we encode the source branch ID, destination branch ID,
path group ID, and member path ID in the outer header. This
quaternary information is carried by the TCP destination port.
Each of these four fields occupies 4 bits.

The destination branch ID and path group ID are assigned by
the MPA at the source branch. The destination branch ID and
path group ID occupy the first nibble and the last nibble of the
TCP destination port. Because the path group ID is 4 bits long,
each pair of branches has 16 path groups at maximum. This
number is large enough for the application of the SD-WAN
VPN. For an MPA, the second nibble and the third nibble of the
TCP destination port are fixed at 0x00. Therefore, for a branch
with ID b, its MPA has to listen to TCP destination ports
ranging from 0xb000 to 0xb00k, where k≤15 is the maximum
path group ID configured in this MMSG. As a result, when the
MPA in branch a wants to use path group g to send an MPTCP
packet to branch b, the destination TCP port is assigned as
0xb00g.

In addition to the destination branch ID and path group ID,
to facilitate MMSGs at the transit branch to perform IP address
swapping, the source branch also includes the source branch ID
and member path ID in the TCP destination port of the outer
header. Both the source branch ID and member path ID are
included in the second nibble and the third nibble of the TCP
destination port by the OFS at the source MMSG. As a result,
if a subflow between source branch a and destination branch b
follows the routing identified by member path s in path group
g, the destination port of the packet’s outer header becomes
0xbasg when it leaves the source branch.

B. Operations at the transit MMSG
At the transit branch, the transit traffic is handled only by the

OFS. The system controller sets up the routing paths by
downloading flow entries to the OFS. By matching the
quaternary information carried by the TCP destination port of
the outer header, the OFS retrieves the actions to perform IP
address swapping and determines the outgoing link for packet
forwarding.

C. Operations at the destination MMSG
By examining the branch ID in the destination port of the

outer header, the OFS at the destination MMSG knows it is the
final stop for this incoming packet. The OFS is responsible for
restoring the source IP and destination IP addresses back to the
values assigned by the MPA at the source MMSG. In addition,

the destination TCP port is recovered to its original values by
resetting the second nibble and the third nibble to zeros.

If an incoming packet does not match any flow entry in the
flow table of the OFS, then the packet does not belong to an
MPTCP connection inside the organization. In that case, the
OFS bypasses the MPA and directly forwards the packet to the
device behind the MMSG.

D. Example
Here, we give an example following the case shown in Fig.

3. The ports used in the example are depicted in Fig. 4(a). Each
branch has two physical ports. In this example, the source host
is inside branch 1, and the destination host is inside branch 2.
The MPTCP connection that supports the communication has
four subflows.

We assume that this pair of end hosts uses a TCP connection
to communicate. As a result, the SD-WAN will encapsulate a
TCP/IP packet in an MPTCP payload. Here, we assume that the
MPA at the branch selects path group 4 for routing. The detailed
routings for these four subflows are as follows:

Subflow 1:

Subflow 2:

Subflow 3:

Subflow 4:

Hop 1: MMSG 1 (port 1)MMSG 3 (port 1)

Hop 2: MMSG 3 (port 1)MMSG 2 (port 1)

Hop 1: MMSG 1 (port 2)MMSG 4 (port 1)

Hop 2: MMSG 4 (port 2)MMSG 2 (port 1)

Hop 1: MMSG 1 (port 1)MMSG 5 (port 1)

Hop 2: MMSG 5 (port 1)MMSG 2 (port 2)

Hop 1: MMSG 1 (port 2)MMSG 2 (port 2)

Figure 4(b) shows the detailed operations and the setting of

the flow entries at each OFS involved to support the example
MPTCP between branch 1 and branch 2. We denote as 𝑝 the
i-th WAN port of the MMSG at branch n. As shown in the
figure, the MPA at branch 1 spreads the packets of the
connection into four subflows, in which the source and
destination IP pairs in the outer headers are
(𝑝 , 𝑝), (𝑝 , 𝑝), (𝑝 , 𝑝), and (𝑝 , 𝑝) , respectively. As a
result, the MPA assigns 0x2004 to the TCP destination port to
indicate that branch 2 is the final destination and that the routing
paths follow path group 4.

After leaving the MPA, these subflow packets are then sent
to the OFS at MMSG 1. By matching the destination port, the
source IP address, and the destination IP address, the OFS at
MMSG 1 determines the next hop node for the packet and
accordingly updates the source IP and the destination addresses
and the destination port. To accomplish the routing and IP
swapping for subflow 1, the match and actions in the flow table
of the OFS at MMSG 1 are as listed below. Similarly, the match
and actions for the other 2-hop paths, i.e., subflows 2 and 3, can
be found in the figure.

Match: “Src IP =𝑝 , Dest IP =𝑝 , and TCP port=”0x2004”
Action: Write “Src IP = 𝑝 , Dest IP = 𝑝 , and Dest

port=”0x2114”, output the packet to WAN port 1

Subflow 4 follows a direct hop in the public internet, and the
next hop node for this subflow is branch 2. The match and
actions for subflow 4 at the OFS of MMSG 1 are as follows.

Match: “Src IP =𝑝 , Dest IP =𝑝 , and Dest port=”0x2004”
Action: Write “Src IP = 𝑝 , Dest IP = 𝑝 , and Dest

port=”0x2144”, output the packet to WAN port 2

Let us examine the operations at a transit MMSG. For

subflow 1, branch 3 is a transit branch. The OFS inside MMSG
3 is configured to accept the MPTCP packet from branch 1 and
then forwards the packet to branch 2 after performing IP
swapping. The flow entry in branch 3 for subflow 1 is as follows.

Match: “Src IP =𝑝 , Dest IP =𝑝 , and Dest port=”0x2114”
Action: Write “Src IP = 𝑝 , Dest IP = 𝑝 , and Dest

port=”0x2114”, output the packet to WAN port 1

Finally, at the destination node, i.e., branch 2, the OFS

converts the source IP, destination IP, and TCP port of all
incoming MPTCP packets back to the same values as those
when they left from the source MPA at branch 1. For example,
the original MPTCP packet of subflow 1 had a source IP=𝑝 ,
destination IP=𝑝 , and TCP port number 0x2004. The flow
entry at the OFS inside MMSG 2 is configured as follows for
TCP port number recovery.

Match: “Src IP =𝑝 , Dest IP =𝑝 , and Dest port=”0x2114”
Action: Write “Src IP = 𝑝 , Dest IP = 𝑝 , and Dest

port=”0x2004”, output the packet to the port connected to
the MPA

Finally, after receiving an in-sequence packet, the MPA at the
destination branch, i.e., branch 2, removes the MPTCP outer
header. The native packet is then delivered to the local area
network of branch 2.

(a) Path group with four paths to support the example MPTCP connection

(b) Outer header and flow entry assignment in the source, transit, and destination MMSGs

Fig. 4. Example of detailed routing configuration in the MMS system

IV. SD-WAN SYSTEM CONTROLLER

In this section, we present the design of the SSC. As shown
in Fig. 5, the modules inside the SSC include the user interface
(UI), path configuration (PC), statistical data collection (SDC),
OpenFlow controller (OFC), and priority management (PM).
The functions provided by each module are described below in
detail.
 User Interface (UI): Through the UI, a user can add,

remove, and modify branch information, including
branch IDs, number of access ports, and public IP
addresses. A user also specifies the type of ports for
leased line services and regular public internet services.
Statistical data for each branch and the traffic amount
between a pair of branches, which are collected by the
SDC module, are provided to the user through the UI.

 Path Configuration (PC): This module is responsible
for determining the routing on top of the SD-WAN
overlay network. PC module can accept a manual
configuration by the operator and/or an automatic
configuration. To realize autoconfiguration, this module
periodically measures the paths on the overlay network.
Based on the measured results, the path groups and their
member paths are determined. The path group IDs are
sent to the corresponding MPAs to indicate the routing
paths between a pair of branches. The PC module also
provides the path group IDs and member path IDs to the
OpenFlow controller. Accordingly, the OpenFlow
controller configures the flow tables in the OFSs. For
each pair of branches, we configure 16 path groups.
These 16 path groups and the routing of the member
paths for each path group are semipermanent. The PC
changes the routing of the paths only when it finds a
better routing between the pair of branches.

 Statistical Data Collection (SDC): This module collects
statistical data through periodically polling MMSGs. The
SDC module includes a timer. When the timer expires, it

triggers the OpenFlow controller module to perform a
multipart request to obtain the byte count on the OFSs
inside the MMSGs. The statistical data are provided to
the PC module for path configuration. The data are also
provided to the user through the UI on demand.

 OpenFlow Controller (OFC): The UI, SDC, and PC are
the applications on top of the OFC. The OFC is used to
control OpenFlow switches inside the MMSGs through
the standard OpenFlow protocol. It receives the path
configurations from the PC module, and the routing paths
are downloaded to the OFSs. In addition, the OFC
collects the statistical data for the SDC. Our OFC is
currently implemented based on the Ryu controller [20].

 Priority Management (PM): In an SD-WAN, multiple
MPTCP connections work on the overlay network.
Multi-WAN-hop routing sometimes consumes more
bandwidth than single-hop routing. Fig. 6 presents an
example, in which each pair of branches has two routing
paths: one is a direct WAN-hop path, and the other goes
through a two-WAN-hop path by taking the other branch
as a transit node. For instance, the two paths from source
branch A to destination branch C are A→C and A→B→C.
Assuming the physical port speed is c Mbps and the
internet can support a bandwidth larger than c Mbps
between each pair of branches, if only one-hop routing is
applied, the throughput for each connection is close to c
Mbps. However, if multipath routing is applied and
traffic is equally split between the two paths, the
throughput for each subflow becomes c/3 Mbps, and the
total throughput for each pair of branches becomes 2c/3.
To resolve this problem, we fully take advantage of
priority queues provided by the OFS at each MMSG to
realize the hop-count-based priority. By assigning higher
priority to traffic with shorter WAN hops, this system
simultaneously maintains the benefit of multipath routing
and prevents bandwidth waste caused by using longer
WAN-hop paths. The MPTCP flows can efficiently

utilize the network capacity without causing unnecessary
traffic blocking.

Fig. 5. Functional blocks inside the SD-WAN system controller

(a) Using only single-hop paths

(b) Using both single-hop and two-hop paths

Fig. 6. An example to demonstrate the requirement for using priority

management

V. EXPERIMENTAL RESULTS

We conducted four sets of experiments to evaluate the
performance of the proposed MMS system. In the first set of
experiments, we evaluate the goodput of a pair of end hosts in
two different branches when they are communicating with the
UDP and TCP. In our MMSG, each end-to-end connection is
mapped to an MPTCP connection to employ multipath routing.
To evaluate the overhead introduced by our IPoMP approach,
we make performance comparisons with the end-to-end
MPTCP, in which the two end hosts directly use the MPTCP to
communicate with each other without going through our
MMSGs in the middle.

We also evaluate the goodput of end-to-end connections
under various scenarios on the bottleneck links. In the second
set of experiments, we consider the cases where the available
bandwidth on the bottleneck link is constant. In the third set of
experiments, we evaluate the goodput of end-to-end
connections when the SD-WAN traffic shares the bottleneck
link with TCP flows. In the final set of experiments, we
examine the goodput by assigning various ratios of available
bandwidths to the subflows.

A. Overhead generated by IPoMP
To connect two hosts, the MPTCP usually outperforms the

TCP. However, in our application, an outgoing IP packet is
encapsulated as an MPTCP payload at our source MMSG. It
introduces an outer header for each packet. In addition to the
overhead caused by the outer header, IPoMP introduces some
redundant controls that might reduce the throughput of an end-
to-end connection. Because the TCPs at the end hosts have their
own congestion control, flow control, and error control, if a pair
of end-to-end hosts uses the TCP as their transport protocol, the
MPAs in our MMSGs duplicate the control functions. To
ensure no interference between the two control mechanisms
between the end-to-end TCP and the MPTCP in our MMSGs,
in this set of experiments, we make performance comparisons
between the cases when the MPTCP is applied and those in
which it is not applied in the middle between a pair of end hosts.

Fig. 7. Experimental network for overhead and goodput evaluation

We used an HP 5900 OpenFlow switch to set up the

experiment shown in Fig. 7. Host 1 uses the standard TCP and
UDP to transmit data to host 2. Because two physical ports exist
at each MMSG, four MPTCP subflows are generated. The four
subflows follow separate routes inside the HP 5900 switch. We
use the meter function provided by the HP 5900 switch to
generate different available bandwidths for the subflows. Table
I includes the detailed rate limitation for each subflow and the
experimental results. In each test case, the total capacity was set
to 40 Mbps. The first column of Table I is the available
bandwidths for the four subflows. The second column provides
the ratios of the available bandwidth among the subflows. The
third and fourth columns are the goodputs when the TCP and
UCP are used for data transmission between the pair of hosts.
To make performance comparisons, the results shown in the last
column come from directly applying the MPTCP at the two end
hosts without using MMSGs in the middle.

Table I. Goodput (Mbps) when employing the UDP and TCP at the end hosts
Subflow

Rates
Subflow

Ratio
TCP over
MPTCP

UDP over
MPTCP

End-to-end
MPTCP

10:10:10:10 1:1:1:1 36.5 37.3 38.4
4:8:12:16 1:2:3:4 34.0 34.7 35.7
2:4:8:26 1:2:4:13 25.9 26.3 26.9
1:2:4:33 1:2:4:33 16.4 16.9 17.3

We observed that the goodputs between the TCP over the
MPTCP and UDP over the MPTCP are similar. Because the
UDP does not have congestion, flow, and error controls, the
results indicate that the control overhead generated by the
MMSGs is insignificant when two end hosts use the TCP as
their transport protocol. Although both end hosts and MMSGs
have their own traffic controls, their control overhead can be
ignored.

The gaps between the TCP over the MPTCP and the end-to-
end MPTCP are also acceptable. The differences in goodput
mainly come from the outer header introduced by the MMSG
when IPoMP is applied. Part of the overhead comes from
acknowledging a TCP acknowledgment packet. For example,
when host 1 sends a TCP packet to host 2, host 2 has to return
a pure acknowledgment packet to host 1 if no opportunity for
piggybacking exists. However, the acknowledgment packet is
encapsulated in an MPTCP packet at MMSG 2, and this packet
is sent to MMSG 1 by an MPTCP subflow. Because MMSG 1
does not know that the packet is a TCP acknowledgment, it has
to respond with an additional acknowledgment to MMSG 2 to
indicate successful receipt of this packet. This process
introduces additional overhead and consumes some bandwidth
in the system.

Although the total available bandwidth of these four
subflows is fixed at 40 Mbps, different distributions of the
available bandwidths among the subflows have different
goodputs. The results show that the larger the difference in
available bandwidth among the subflows is, the smaller the total
goodput. This phenomenon comes from the scheduling of the
MPTCP. Similar results were also discovered in [21].

B. Bottleneck link with fixed available bandwidth
The bandwidth obtained for an MPTCP subflow is

determined by the bottleneck link on the routing path. Three
cases occur in the bottleneck link. As shown in Fig. 8(a), the
bottleneck link of the MPTCP subflows contains background UDP
traffic. Assume that k MPTCP subflows pass through the
bottleneck link and the total throughput of these k subflows is r.
Because UDP traffic does not have congestion control, when
another new MPTCP subflow arrives at this link, the total
available bandwidth for these k+1 subflows is still r.

Figure 8(b) gives another case of the bottleneck link when the
background traffic comes from TCP flows. Assume again that the total
available bandwidth for the k MPTCP subflows in the link is r.
Due to the congestion control of the background TCP flows,
when another new MPTCP subflow is included in this link, the
background TCP flows reduce their congestion windows. As a
result, the total throughput for these k+1 MPTCP subflows
becomes larger than r.

In the third case shown in Fig. 8(c), the MPTCP subflows
share the bottleneck link with some background TCP traffic.

However, unlike Case B, this link is not the bottleneck link for
these background TCP traffic. As a result, the background
traffic will not compete with the link bandwidth and leave a
constant amount of bandwidth for MPTCP traffic.
Consequently, when k+1 MPTCP subflows go through this link,
the available bandwidth remains r, similar to Case A. However,
if we introduce an increasing number of MPTCP subflows in
this link, this link will eventually become the bottleneck for the
background TCP traffic. The situation then becomes the same
as in Case B shown in Fig. 8(b).

Because Case C can be decomposed into either Case A or
Case B, in the following, we consider only Case A and Case B
in our experiments.

(a) Case A scenario: The MPTCP shares the same bottleneck link as that of

the background UDP

(b) Case B scenario: The MPTCP and background TCP have the same

bottleneck link

(c) Case C Scenario: The MPTCP and background TCP have different

bottleneck links
Fig. 8. Three cases of bandwidth sharing in the bottleneck link

The experimental network is the same as in Fig. 4(a). The

enterprise consists of five branches. When the proposed system
is applied, each branch has one MMSG that has two interfaces
with which to connect to the public internet. The TC inside the
MMSG is an EdgeCore AS4600-54T switch. The MPA is
implemented in a Linux-based PC, in which we integrate our
MPA program and the up-to-date open-source MPTCP program
[22]. The OFS inside the MMSG is an OpenvSwitch 0. Because
there are two physical ports in each MMSG, each end-to-end
connection between a pair of hosts is supported by four MPTCP
subflows.

Fig. 9. Experimental network: only the routing paths of path group 1 are shown

The link rate between the OFS and the MPA is 1 Gbps. The

port rate for accessing the public internet is limited to 40 Mbps.
The SSC is another Linux PC running the Ryu 0 program to
control all of the OFSs inside the network.

By using the transit branches, the overlay network provides
multiple routing paths. Table II shows the routing paths on the
overlay network between branch 1 and branch 2. A path group
consists of four member paths, one for each subflow. For
example, if an end-to-end flow is carried by path group 1, the
routing paths for these four subflows are 1a>2a, 1a>4a>4b>2a,
1a>5b>5a->2b, 1b>2a, and 1b>3b>3a>2b. The first number in
this notation denotes the branch ID, and the second character
represents the port ID. For instance, 1a>4a>4b>2a means that
the path consists of two WAN hops. In the first WAN hop, the
subflow leaves from port a of branch 1 and arrives at port a of
branch 4. In the second WAN hop, the flow leaves from port b
of branch 4 and ends at port a of branch 2.

Table II. Configured routing paths

Mbr
path

PG 1 PG 2 PG 3 PG 4

1 1a>2a 1a>2b 1b>2a 1b>2b
2 1b>3b>3a>2a 1b>3a>3b>2b 1a>3a>3b>2a 1a>3b>3a>2b
3 1b>4a>4b>2b 1b>4b>4a>2a 1a>4b>4a>2b 1a>4a>4b>2a
4 1a>5a>5b>2b 1a>5b>5a>2a 1b>5b>5a>2b 1b>5a>5b>2a

To emulate the bandwidth of the public internet, we use an
OpenFlow network to interconnect the five branches. Figure 9

demonstrates the detailed configuration for the routing paths
used by path group 1. We use an additional 16 hosts to introduce
background traffic to the network. We emulate the Case A
scenario of Fig. 8 by injecting UDP flows to remove the desired
amount of bandwidth from the bottleneck link. For the Case B
scenario of Fig. 8, we introduce various numbers of TCP flows
to share the bottleneck link with the MPTCP subflows. Because
Case C can be decomposed into either Case A or Case B, we do
not take this case into consideration.

In this subsection, we examine the results of Case A and leave Case
B for the next subsection. The physical link capacity on the bottleneck
link is 100 Mbps. We consider four path groups, two path groups, and
one path group between branch 1 and branch 2 in this set of
experiments. Each path group includes four member paths, one per
MPTCP subflow. The detailed routing for each path group is shown
in Table II. To make performance comparisons, we also perform IP-
in-IP tunneling between MMSGs in this set of experiments. When IP-
in-IP tunneling is applied, only direct WAN-hop routing is used. For
example, when path group 2 is selected for an end-to-end connection,
the routings of the four subflows of the MPTCP are 1a>2b,
1b>3a>3b>2b, 1b>4b>4a>2a, and 1a>5b>5a>2a, while only the
direct hop routing 1a>2b is used for IP-in-IP tunneling.

In this set of experiments, we consider the Case A scenario shown
in Fig. 8(a). Each member path in a path group has the same available
bandwidth. Table III shows the available bandwidth on the bottleneck
links. Figure 10(a) presents the experimental results when four end-to-
end TCP connections are generated from a host in branch 1 toward a

host in branch 2. The MMSG at branch 1 uses a round robin to map
each end-to-end connection to a path group. As a result, each end-to-
end connection takes a different path group.

Table III. Available bandwidth (Mbps) on the bottleneck link

(a) Test cases for Fig. 10(a) and (b)
Test
Case

PG
1

PG
2

PG
3

PG
4

Test
Case

PG
1

PG
2

PG
3

PG
4

1 8 8 8 8 17 8 6 4 2
2 8 8 8 6 18 6 6 6 2
3 8 8 8 4 19 6 6 4 4
4 8 8 6 6 20 6 6 4 2
5 8 8 8 2 21 6 4 4 4
6 8 8 6 4 22 6 6 2 2
7 8 6 6 6 23 6 4 4 2
8 8 8 6 2 24 4 4 4 4
9 8 8 4 4 25 8 2 2 2
10 8 6 6 4 26 6 4 2 2
11 6 6 6 6 27 4 4 4 2
12 8 8 4 2 28 6 2 2 2
13 8 6 6 2 29 4 4 2 2
14 8 6 4 4 30 4 2 2 2
15 6 6 6 4 31 2 2 2 2
16 8 8 2 2

(b) Test cases for Fig. 10(c) and (d)

Test Case PG 1 PG 2
1 8 8
2 8 6
3 8 4
4 6 6
5 6 4
6 8 2
7 4 4
8 6 2
9 4 2
10 2 2

(c) Test cases for Fig. 10(e)
Test
Case

PG
1

No. end-to-end
TCP

connections
1 8 4
2 6 4
3 4 4
4 2 4
5 8 8
6 6 8
7 4 8
8 2 8

We first observe that the goodput provided by the IPoMP tunnels is

larger than that provided by the IP-in-IP tunnels. Please note that
multiple cases exist in which the goodput is larger than 70 Mbps.
Because the rate of each physical port is set to 40 Mbps, the maximum
throughput between branch 1 and branch 2 is limited to 80 Mbps. A
goodput larger than 70 Mbps representing the transmission rate
reaches the port rate limitation. If we focus on the cases in which the
goodputs are limited by the bottleneck links but not the physical
capacity of the MMSG ports, the goodputs provided by the IPoMP
tunnels are approximately four times that provided by the IP-in-IP
tunnels.

Figure 10(b) displays the results when 8 end-to-end TCP
connections are applied. The round robin assignment results in each
path group contain two end-to-end TCP connections. Comparing Fig.
10(a) with Fig. 10(b), we find that increasing the number of end-to-end
TCP connections does not generate much difference in the total
goodput.

We further examine the goodputs by using two path groups. The
detailed settings are included in Table III(b). Reducing the number of
path groups from four to two makes the physical port rate no longer
the constraint for these test cases. Figure 10(c) and Fig. 10(d) display
the results when two path groups are used. Comparing these two
figures, we confirm again that increasing the number of end-to-end
connections for the Case A scenario does not change the total goodputs.

Figure 10(e) displays the results when only one path group is used.

The setting of the experiments follows that of Table III(c). The first
four test cases and the last four cases in Fig. 10(e) come from the results
when four and eight end-to-end TCP connections are employed,
respectively. Comparing Fig. 10(c) with the first four cases in Fig.
10(e), we find that the increase in goodput is approximately
proportional to the increase in the number of routing paths. Similar
results are also confirmed by comparing Fig. 10(d) with the last four
test cases in Fig. 10(e).

(a) Four end-to-end connections over 4 path groups

(b) Eight end-to-end connections over 4 path groups

(c) Four end-to-end connections over 2 path groups

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

(d) Eight end-to-end connections over 2 path groups

(e) Four end-to-end connections and 8 end-to-end connections over 1 path

group
Fig. 10. Experimental results under Case A scenarios: SD-WAN traffic and

background UDP traffic share bandwidth in the bottleneck link

C. SD-WAN traffic and background TCP flows sharing the same
bottleneck link

In this set of experiments, we consider the Case B scenario

shown in Fig. 8(b). We evaluate the goodput when the
bottleneck link is shared between the SD-WAN traffic and
background TCP traffic. Due to the congestion control of the
TCP and MPTCP, the goodput of an end-to-end connection is
different from those cases in the previous subsection.

We used the same network shown in Fig. 9 for this set of
experiments. The bandwidth of the bottleneck link is 100 Mbps.
We use the path groups shown in Table II for this set of
experiments. They are the same as those used in the previous
subsection. Table IV shows the number of background TCP
connections on the bottleneck links. The number of background
TCP connections is the same for each member path in a path
group. These background TCP flows are generated from Iperf
[24].

We first consider four path groups. Figure 11(a) displays the
goodputs when four end-to-end TCP connections are set up
between branch 1 and branch 2. The results reveal that the
IPoMP tunnel outperforms the IP-in-IP tunnel in all 31 test
cases.

Table IV. Number of background TCP connections on the bottleneck link
(a) Test cases for Fig. 11(a) and (b)

Test
Case

PG
1

PG
2

PG
3

PG
4

Test
Case

PG
1

PG
2

PG
3

PG
4

1 10 10 10 10 17 10 20 30 40
2 10 10 10 20 18 20 20 20 40
3 10 10 10 30 19 20 20 30 30
4 10 10 20 20 20 20 20 30 40
5 10 10 10 40 21 20 30 30 30
6 10 10 20 30 22 20 20 40 40
7 10 20 20 20 23 20 30 30 40
8 10 10 20 40 24 30 30 30 30
9 10 10 30 30 25 10 40 40 40

10 10 20 20 30 26 20 30 40 40
11 20 20 20 20 27 30 30 30 40
12 10 10 30 40 28 20 40 40 40
13 10 20 20 40 29 30 30 40 40
14 10 20 30 30 30 30 40 40 40
15 20 20 20 30 31 40 40 40 40
16 10 10 40 40

(b) Test cases for Fig. 11(c) and (d)

Test Case PG 1 PG 2
1 10 10
2 10 20
3 10 30
4 20 20
5 20 30
6 10 40
7 30 30
8 20 40
9 30 40

10 40 40

(c) Test cases for Fig. 11(e)
Test
Case

PG
1

No. end-to-end
TCP

connections
1 10 4
2 20 4
3 30 4
4 40 4
5 10 8
6 20 8
7 30 8
8 40 8

(a) Four end-to-end connections over 4 path groups

(b) Eight end-to-end connections over 4 path groups

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

(c) Four end-to-end connections over 2 path groups

(d) Eight end-to-end connections over 2 path groups

(e) Four end-to-end connections and 8 end-to-end connections over 1 path

group

Fig. 11. Experimental results under Case B scenarios: SD-WAN traffic and
background TCP traffic share bandwidth in the bottleneck link

We further increase the end-to-end connections from four to

eight. The results are shown in Fig. 11(b). Comparing Fig. 11(a)
with Fig. 11(b), we find that the total goodput in Fig. 11(b) is
larger than the goodput shown in Fig. 11(a). The results meet
our expectation that the congestion control of each individual
background TCP flow reduces its bandwidth usage when the
number of SD-WAN flows increases. Unlike the Case A
scenarios shown in the previous subsection, where the total
goodput remains constant regardless of how many MPTCP
flows pass through the bottleneck link, in the Case B scenario,

increasing the number of active SD-WAN flows on the
bottleneck link can yield a larger total goodput.

Fig. 11(c) and Fig. 11(d) present the results when two path
groups are applied, and Fig. 11(e) presents the results when
only one path group is applied. We observed that the IPoMP
tunnel outperforms the IP-in-IP tunnel in all of these test cases.
When more path groups are used, the SD-WAN traffic can
obtain more bandwidth under the same setting on the bottleneck
links.

D. Different member paths in a path group have different available
bandwidths

Table V. Available bandwidth (Mbps) on the bottleneck link
Test Case Path 1 Path 2 Path 3 Path 4 Number of PGs

1 8 6 4 2 4
2 6 4 2 8 4
3 4 2 8 6 4
4 2 8 6 4 4
5 8 6 4 2 2
6 6 4 2 8 2
7 4 2 8 6 2
8 2 8 6 4 2
9 8 6 4 2 1
10 6 4 2 8 1
11 4 2 8 6 1
12 2 8 6 4 1

Table VI. Number of background TCP flows on the bottleneck link
Test Case Path 1 Path 2 Path 3 Path 4 Number of PGs

1 10 20 30 40 4
2 20 30 40 10 4
3 30 40 10 20 4
4 40 10 20 30 4
5 10 20 30 40 2
6 20 30 40 10 2
7 30 40 10 20 2
8 40 10 20 30 2
9 10 20 30 40 1
10 20 30 40 10 1
11 30 40 10 20 1
12 40 10 20 30 1

In the previous two subsections, the bottleneck link

bandwidth is the same for every member path in a path group.
In the final set of experiments, we evaluate the goodputs when
the available bandwidth of each member path is different. The
settings for the experiments are depicted in Table V and Table
VI. The values in Table V are the available bandwidth in the
bottleneck link when the background traffic is the UDP, and
those in Table VI are the number of background TCP flows in
the bottleneck link. For example, four path groups are used in
test case 1 in Table V. The available bandwidths for the 1st, 2nd,
3rd, and 4th member paths in each of these four path groups are
8, 6, 4, and 2 Mbps, respectively. The detailed routing of each
member path for each path group follows the configuration
shown in Table II.

Four TCP end-to-end connections exist between the two
hosts: one in branch 1 and the other in branch 2. MMSG 1 uses
a round robin to map one end-to-end connection to one of the
four path groups. For IPoMP, MMSG 1 uses four member paths
in the selected path group to deliver its traffic. When the IP-in-
IP tunnel is applied, only the member path that uses the direct

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

WAN hop in the path group is used.

(a) Background traffic is UDP

(b) Background traffic is TCP

Fig. 12. Experimental results when member paths in a path group have

different available bandwidths

The settings that follow the Case A scenario are shown in

Table V. Figure 12(a) shows the results. Because an MPTCP
connection simultaneously distributes their packets on all four
member paths of its assigned path group, it is not sensitive to
the unequal available bandwidths among their member paths.
On the other hand, IP-in-IP tunneling is very sensitive to the
available bandwidth of the routing path. For example, in test
cases 4, 8, and 12, the one-WAN-hop path has the least
bandwidth in their path groups. This results in a very low
goodput for IP-in-IP tunnels.

We further consider the Case B scenario. The bottleneck
links are shared with other background TCP flows. The
experimental results are shown in Fig. 12(b). Similar to the
results shown in Fig. 12(a), the goodput of the IP-in-IP tunnels
strongly depends on the routing path. The MPTCP counterparts
have more stable goodputs. Jointly examining Fig. 12(a) and
Fig. 12(b), we find that the goodput of IPoMP tunneling
outperforms that of IP-in-IP tunneling in all test cases even
when the available bandwidths on the bottleneck links of the
routing paths are different.

VI. CONCLUSIONS

In this paper, we presented an architectural design and

system implementation to realize the MMS system. To increase
the throughput of the end-to-end connections, we developed
multiple techniques to enable the MMS to perform multipath
and multi-WAN-hop routing on top of the public internet. To
eliminate the issue of out-of-order packet delivery in employing
multipath routing, we design an MPTCP agent in the MMSG to
realize IPoMP between end-to-end branches. In addition, by
taking advantage of SDN technology, we design an IP address
swapping technique in our MMSG that enables our MMS
system to realize multi-WAN-hop routing. We also introduce
prioritization in the MMSG to prevent the issue of traffic
blocking.

We presented the detailed design and implementation of the
MMSG and system controller. We examine the performance of
the system in an experimental network. The experimental
results show that the proposed IPoMP-based MMS VPN
outperforms the conventional IP-in-IP tunneling-based VPN in
all of our experimental cases. In many cases, the MMS can
provide up to four times the end-to-end goodput of that
provided by IP-in-IP tunneling.

In this work, we demonstrated the benefits of applying
multipath and multi-WAN-hop routing for SD-WAN VPNs.
The experimental results shown in this paper are based on static
routing paths, and the scheduling for path group selection is
based on a round robin. In fact, the throughput can be further
improved if the paths are dynamically configured. In addition
to polling the statistical data from the working paths that are
already available in our SSC, to further enhance the network
throughput of the SD-WAN, we need a tool to measure the
available bandwidth of the public internet to explore a new path
that has no working SD-WAN traffic on it yet.

We are currently developing a lightweight bandwidth
monitoring and estimation module in the system controller. The
bandwidth of a path can be measured by employing a tool such
as PathLoad [25]. The output of this module will be used to
reconfigure the routing paths. One more future work is to
include IP security in the MMSG to facilitate enterprise
transmission of sensitive commercial data through the public
internet.

REFERENCES
[1] “Google Compute Engine – IaaS,” https://cloud.google.com/compute/.
[2] “Microsoft Azure Cloud Computing Platform & Services,

“ http://azure.microsoft.com/.
[3] “Facebook’s new long-haul network,” https://engineering.fb.com/data-

center-engineering/building-express-backbone-facebook-s-new-long-
haul-network/

[4] C.-Y. Hong et al., ``Achieving High Utilization with Software-
drivenWAN,'' in Proc. ACM SIGCOMM, 2013, pp. 15-26.

[5] S. Jain et al., ``B4: Experience with a Globally-deployed Software
Defined WAN,'' in Proc. ACM SIGCOMM, 2013, pp. 3-14.

[6] A. Kumar et al., ``BwE: Flexible, hierarchical bandwidth allocation for
WAN distributed computing,'' in Proc. ACM SIGCOMM, 2015, pp. 1-14.

[7] H. Yan, Y. Li, W. Dong, and D. Jin, “Software-Defined WAN via Open
APIs,” IEEE Access, vol. 6, 2018, pp. 33752-33765.

[8] Behzad Mirkhanzadeh, Naeim Taheri, and Siavash Khorsandi, “SDxVPN:
A Software-Defined Solution for VPN Service Providers,” in Proc.
IEEE/IFIP NOMS, 2016.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

G
oo

dp
ut

 (M
bp

s)

Test Case

IPoMP tunnel IP-in-IP tunnel

[9] Mohammad Mousa, Ayman M. Bahaa-Eldin, and Mohamed Ali Sobh,
“Autonomic management of MPLS backbone networks using SDNs,” in
Proc. IEEE ICCES, 2017.

[10] C. H. Benet et al., “Policy-based Routing and Load Balancing for EVPN-
based Data Center Interconnections,” in Proc. IEEE NFV/SDN, 2017.

[11] “List of SD-WAN Vendors,” https://packetpushers.net/virtual-
toolbox/list-sd-wan-vendors/.

[12] “Cisco – SD-WAN,”
https://www.cisco.com/c/en_sg/solutions/enterprise-networks/sd-
wan/index.html.

[13] "SD-WAN: What it is and why you'll use it one day". networkworld.com,
https://www.networkworld.com/article/3031279/sd-wan-what-it-is-and-
why-you-ll-use-it-one-day.html.

[14] A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses,” IETF RFC 6824.

[15] L. Chaufournier, A. Ali-Eldin, P. Sharma, P. Shenoy, and D. Towsley,
“Performance Evaluation of Multi-Path TCP for Data Center and Cloud
Workloads,” in Proc. ICPE '19.

[16] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M.
Handley,” Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. ACM SIGCOMM, 2011.

[17] R. v. d. Pol et al., “Multipathing with MPTCP and OpenFlow,” in Proc.
High Perform. Comput., Netw., Storage Anal. (SCC), Nov. 2012, pp.
1617-1624.

[18] S. S. W. Lee, K.Y.Li, K.Y.Chan, J. H. YwiChi, T.-W. Lee, W.-K. Liu, and
Y.-J. Lin, “Design of SDN based Large Multi-tenant Data Center
Networks,” in Proc. IEEE CloudNet, Oct. 2015.

[19] B. Sonkoly, F. Németh, L. Csikor, L. Gulyás, and A. Gulyás, “SDN based
Testbeds for Evaluating and Promoting Multipath TCP,” in Proc. IEEE
ICC, 2014, pp. 3044–3050.

[20] Ryu SDN Framwork. [Online]. Available: https://osrg.github.io/ryu/.
[21] Soonghwan Ro and Dien Nguyen Van, “Performance Evaluation of

MPTCP over a Shared Bottleneck Link,” International Journal of
Computer and Communication Engineering, vol. 5, no. 3, 2016.

[22] MultiPath TCP - Linux Kernel implementation. [Online]. Available:
https://www.multipath-tcp.org/

[23] Open vSwitch. [Online]. Available: http://openvswitch.org/
[24] Iperf. [Online]. Available: https://iperf.fr
[25] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement

methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Transacations on Networking, vol. 11, no. 4, 2003.

