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An Overview of Artificial Intelligence Applications
for Power Electronics

Shuai Zhao, Member, IEEE, Frede Blaabjerg, Fellow, IEEE, and Huai Wang, Senior Member, IEEE

Abstract—This paper gives an overview of the Artificial Intel-
ligence (AI) applications for power electronic systems. The three
distinctive life-cycle phases, design, control, and maintenance
are correlated with one or more tasks to be addressed by
AI, including optimization, classification, regression, and data
structure exploration. The applications of four categories of AI
are discussed, which are expert system, fuzzy logic, metaheuristic
method, and machine learning. More than 500 publications have
been reviewed to identify the common understandings, practical
implementation challenges, and research opportunities in the
application of AI for power electronics.

Index Terms—Artificial intelligence, design, intelligent con-
troller, predictive maintenance, power electronic systems, prog-
nostics and health management

I. INTRODUCTION

NOWADAYS artificial intelligence (AI) is expanding
rapidly and is one of the most salient research areas dur-

ing the last several decades [1, 2]. The aim of AI is to facilitate
systems with intelligence that is capable of human-like learn-
ing and reasoning. It possesses tremendous advantages and
has been successfully applied in numerous industrial areas in-
cluding image classification, speech recognition, autonomous
cars, computer vision, etc. With immense potentials, power
electronics benefit from the development of AI. There are
various applications, including design optimization of power
module heatsink [3], intelligent controller for multi-color light-
emitting diode (LED) [4], maximum power point tracking
(MPPT) control for wind energy conversion systems [5, 6],
anomaly detection for inverter [7], remaining useful life (RUL)
prediction for supercapacitors [8], etc. By implementing AI,
power electronic systems are embedded with capabilities of
self-learning and self-adaptation, and therefore the system
autonomy can be improved.

Meanwhile, the rapid development of data science, includ-
ing sensor technology, internet-of-things (IoT), edge comput-
ing, digital twin [9], and big data analytics [10, 11], provides a
wide variety of data for power electronic systems throughout
different phases of its life-cycle. The increasing volume of
data enables immense opportunities and lays a solid foundation
for the AI in power electronics. AI is able to exploit data to
improve product competitiveness by global design optimiza-
tion, intelligent control, system health status estimation, etc.
As a result, the research in power electronics can be conducted
from a data-driven perspective, which is beneficial especially
to complex and challenging cases.

Shuai Zhao, Frede Blaabjerg, and Huai Wang are with the Department
of Energy Technology, Aalborg University, Aalborg 9220, Denmark. (Email:
szh@et.aau.dk; fbl@et.aau.dk; hwa@et.aau.dk).

Due to the specific challenges and characteristics of power
electronic systems, e.g., high tuning speed in control, high
sensitivity in condition monitoring for aging detection, etc.,
the implementation of AI in power electronics has its own
features that are different from other engineering areas, e.g.,
image recognition. Therefore, there is a pressing need for
an overview of AI in power electronics to expedite synergy
research and interdisciplinary applications. Based on literature
review, in this paper the applications of AI for power electron-
ics are categorized into three aspects, i.e., design, control, and
maintenance.
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Fig. 1. Annual number of publications of AI in power electronics since
1990. The statistical data are based on searching the IEEE Xplore from
the journals IEEE Transactions on Power Electronics, IEEE Journal of
Emerging and Selected Topics in Power Electronics, IEEE Transactions on
Industrial Electronics, IEEE Transactions on Industrial Informatics, and IEEE
Transactions on Industry Applications. The data of 2020 are up to May 2020.
As a result, a total of 444 relevant journal papers are identified.

Fig. 1 shows the annual number of publications related
to AI for power electronics since 1990. It can be seen that
the implementations of AI in power electronics have been
drastically increased and experienced a spectacular dynamism
over the last few years. The number of publications for control
is continuously increasing and it is the most active research
area. Since 2007, there is an increase regarding the design and
maintenance applications, and such trends are more evident in
the last two years.

It is found that several existing reviews in the literature
are related to this topic. In [12], the metaheuristic methods
for stochastic optimization for power quality and waveform,
circuit design, and control tuning are reviewed. It focuses
on the optimization in power electronics only. The details of
neural network (NN) in industrial applications are presented
in [13] with the design of network structure, training methods,
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and application considerations. It covers a broad scope of
engineering applications beyond power electronics. In [14],
a comprehensive review is given on the applications of NN
in power electronics. Several specific examples of control
and system identification are detailed. Nevertheless, other AI
techniques, such as fuzzy logic, metaheuristic methods, etc.,
have not been discussed. Although these techniques are further
discussed in [15], it emphasizes on illustrative examples while
an in-depth analysis of AI algorithms is not provided. In [16],
an intensive discussion of metaheuristic methods for MPPT
in photovoltaic (PV) systems is presented. In [17], the AI
techniques applied to PV systems are reviewed, which focuses
on the specific PV applications only.

Maintenance [18] in power electronics is a topic that in-
cludes reliability, condition monitoring, remaining useful life
prediction, etc. Several review papers in the last decade can
be found in [19–22]. In [19], a state-of-the-art analysis of
the condition monitoring and the fault detection in power
electronics is presented. However, it only includes a very
limited AI-based fault detection methods. In [20], a review
in terms of condition monitoring techniques of capacitors
in power electronic converters is presented, which includes
only the AI-based parameter identification methods. In [21],
the methods in Prognostics and Health Management (PHM)
of information and electronics-rich systems are summarized.
This paper focuses on the category of AI algorithms in
PHM without any specific details. In [22], machine learning
methods applied in reliability management of energy systems
are summarized. It focuses on the machine learning methods
and the maintenance tasks only. A tutorial [23] regarding
“Artificial Intelligence Applications to Power Electronics” is
presented on the 2019 IEEE Energy Conversion Congress and
Exposition. It serves as an introductory level presentation. The
details of the AI algorithms and their comparisons are not
available.

As a result, it lacks a comprehensive review of the AI
algorithms and applications for power electronics. From a life-
cycle perspective, this paper aims to fill this gap and compre-
hensively review the published research in power electronics
using AI techniques, which needs a systematic consolidation.

The rest of this paper is organized as follows. Section II
presents the functions, methods, and milestones of AI in power
electronics. The applications of AI in design, control, and
maintenance are discussed in Section III, Section IV, and
Section V, respectively. The outlook on the AI applications
for power electronics is put forward in Section VI. Finally,
conclusions are given in Section VII.

II. FUNCTIONS AND METHODS OF ARTIFICIAL
INTELLIGENCE FOR POWER ELECTRONIC SYSTEMS

Fig. 2 gives a summary of the methods, functions, and
applications of AI for power electronics. It can be seen that AI
has been extensively applied to the three distinctive life-cycle
phases of power electronic systems, including design, control,
and maintenance.

As a functional layer between artificial intelligence and
power electronic applications, the essential functions of AI

are categorized as optimization, classification, regression, and
data structure exploration:

• Optimization: It refers to find an optimal solution max-
imizing or minimizing objective functions from a set
of available alternatives in the presence of constraints,
equalities, or inequalities that the solutions have to satisfy.
For example, for the design of power electronic systems,
optimization serves as a tool to explore an optimal set of
parameters that maximize or minimize design goals with
design constraints.

• Classification: It deals with assigning input information
or data with a label indicating one of the k discrete
classes. Specifically, anomaly detection and fault di-
agnosis in maintenance is a typical classification task
to determine fault labels in the presence of condition
monitoring information.

• Regression: By identifying the relationship between input
variables and target variables, the goal of regression is
to predict the value of one or more continuous target
variables given input variables. For example, an intelli-
gent controller can be facilitated with a regression model
between the input electrical signals and the output control
variables.

• Data structure exploration: It consists of data clustering
that discovers groups of similar data within a dataset,
density estimation that determines the distribution of
data within the input space, and data compression that
projects high-dimensional data down to low-dimensional
data for feature reduction. For example, in maintenance,
the degradation state clustering is within the data structure
exploration category.

According to the surveyed 444 relevant journal papers, Fig.
3 shows a Sankey diagram of application usage statistics of
AI methods in the life-cycle of power electronic systems.
Specifically, the percentages of application of AI in the de-
sign, control, and maintenance are 9.8%, 77.8%, and 12.4%,
respectively. Regarding the functions, the percentages of the
optimization, the classification, the regression, and the data
structure exploration are 33.3%, 6.6%, 58.4%, and 1.7%. It
shows that most of the tasks of AI in power electronics
are essentially regression and optimization. The AI meth-
ods can be generally categorized as expert system, fuzzy
logic, metaheuristic methods, and machine learning. Their
application percentages are 0.9%, 21.3%, 32.0%, and 45.8%,
respectively. It suggests that the largest portion of AI in power
electronics is with the machine learning. These methods will
be detailed subsequently. Note that a comprehensive but still
not exhaustive investigation is conducted. Only the relevant
AI methods that are widely applied to power electronics are
considered.

A. Expert System

Expert system is the earliest method in AI that is effectively
implemented in industrial applications [17]. The expert system
[24–27] is essentially a database that integrates the expert
knowledge in a Boolean logic catalog, based on which the
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Fig. 2. The application of artificial intelligence in the life-cycle of power electronic systems. Section II-A implies that the relevant discussions are presented
in part A of Section II.
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Fig. 3. Sankey diagram of AI methods and applications in each phase of the
life-cycle of power electronic systems. The statistical data of method usages
and percentages are calculated based on a total of 444 journal papers as
mentioned in Fig. 1.

IF-THEN rules in human brain reasoning are simulated. It
is an intelligent system simulating the inference process that
answers the why-and-how inquires based on the database. The
database can be either from field expert experience or from
simulation data, facts, and statements. It can be continuously
updated. The technical details of expert system are given
in [17], and several exemplary applications can be found in
[15, 28].

It is worth mentioning that the applications of expert system
are as low as 0.9% according to the usage statistics in Fig. 3.
It is because the expert system is generally based on system
principles and rules, which relates strongly to the system
of interest and lacks universality. It applies to well-defined
domains only with solid expert rules. Besides, due to the
rapid development of computational platforms, the functions

of expert system can be replaced with other advanced AI
methods (e.g., fuzzy logic and machine learning) with superior
capabilities in inference and approximation.

B. Fuzzy Logic

Similar to expert system, fuzzy logic is also a rule-based
method while it extends the Boolean logic into a multi-valued
case. Fuzzy logic is a tool to deal with system uncertainties
and noisy measurements [29–31]. Instead of using the precise
input crisp value directly, fuzzification is firstly performed with
the fuzzy sets consisting of several membership functions to
a range of 0 to 1. The fuzzy input signals are then aggre-
gated with fuzzy rules in inference step. Defuzzification is
subsequently performed on the inference result by considering
the degree of fulfillment and output a crisp value. As a
result, the crisp value is manipulated in a fuzzy space that
completes nonlinear mapping between the input and output
with elaborately designed principles.

In most applications, a fuzzy logic method mainly consists
of four parts [30]: fuzzification, rule inference, knowledge
base, and defuzzification. Firstly, fuzzification is performed on
the input of linguistic variables with membership functions,
including triangular, trapezoidal, Gaussian, bell-shaped, sin-
gleton, and other customized shapes. Secondly, the inference
module integrates the signals together according to IF-THEN
fuzzy rules in the knowledge base derived from expert expe-
rience. Thirdly, defuzzification is performed on the signal for
output. One example of the fuzzy rule is

Antecedent: IF X is Medium AND Y is Zero,
Consequent: Then Z is Positive.

For both the antecedent and consequent, the degree of ful-
fillment is determined by the membership functions. The
type of fuzzy inference scheme is categorized as Mamdani-
type [30, 32–35] and Takagi-Sugeno-Kang-type (TSK-type)
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[31, 36–38]. For the Mamdani-type fuzzy inference scheme,
the membership function of the antecedent and the consequent
are shape-based functions, e.g., triangular. For the TSK-type
fuzzy inference scheme, the membership function of the an-
tecedent part is identical to the Mamdani-type while that of the
consequent is singleton at several constant values. Typically,
more fuzzy sets are needed for the Mamdani-type scheme
compared to the TSK-type scheme for the same task. Com-
pared to the fuzzy terms in the Mamdani-type, the membership
function in the TSK-type scheme can be functional type as
either linear or constant, which is more powerful and accurate
in nonlinear approximation. More theoretical details of fuzzy
logic are discussed in [15, 39].

Note that expert experience plays a critical role in the design
of the membership function and the fuzzy rule, and such a
method is applicable to experts only in most cases. From this
perspective, the prior information and expert experience can
be coped with fuzzy logic and then incorporated with other
AI techniques as a hybrid method.

C. Metaheuristic Methods

Once the optimization task of specific applications is for-
mulated, the optimal solution can be obtained by either a
deterministic programming method (e.g., linear or quadratic
programming) or a non-deterministic programming method,
i.e., metaheuristic method. The deterministic programming
methods need to calculate the gradient and Hessian matrices
[40], which is challenging for most of the optimization tasks
in power electronics due to the complexity. Metaheuristic
methods serve as a general end-to-end tool that needs less
expert experience and is efficient and scalable for various
optimization tasks.

The metaheuristic methods [12] are generally developed
with inspirations of biological evolution, e.g., genetic algo-
rithm [41] by process of natural selection, ant colony opti-
mization algorithm (ACO) [42] by simulating ants in finding
an efficient path for foods. The exploration of optimal solution
is motivated by the trial-and-error process. The metaheuristic
methods can be categorized as trajectory-based methods (tabu
search method [43], simulated annealing method [44], etc.) and
population-based methods (genetic algorithm, particle swarm
optimization [45], ant colony optimization, differential evo-
lution [46], immune algorithm [47], etc.). For the trajectory-
based methods, each exploration stage includes only one can-
didate solution and it evolves into another solution according
to a certain rule. The performance of this method is mainly
based on the quality and efficiency of the rule. As a result, the
convergence speed of the trajectory-based methods is generally
slow and the final solution is prone to local rather than global
solution for non-convex optimization tasks. For the population-
based methods, multiple candidate solutions are randomly gen-
erated. At each iterative exploration, these candidate solutions
are diversified (e.g., crossover in the genetic algorithm) or
incorporated and replaced with new candidate solutions to
improve the quality of the population at the present generation.
As a result, the suitability of the population is iteratively
improved to approach the optimal solution. Compared to the

Genetic Algorithm 
(48%)

Particle Swarm 
Optimization

(43%)

Others (9%)

Fig. 4. Usage statistics of population-based metaheuristic methods in opti-
mization of power electronics. The statistical data of method usages and
percentages are calculated based on a total of 444 journal papers as mentioned
in Fig. 1.

trajectory-based methods, they are superior in the convergence
speed, the global searching capability, and especially useful for
large-scale optimization tasks. Nevertheless, the computational
burden of the population-based methods is more intensive.
This challenge needs to be considered for online application
cases where efficiency and speed are of most significance.
Table I shows a summary of the metaheuristic methods in the
area of power electronics with their advantages and limitations.
These metaheuristic methods are qualitatively compared in
terms of several critical features including implementation
simplicity, global convergence, convergence speed, and par-
allel capability.

Due to enormous advantages, most of the optimization tasks
in power electronics are solved with the population-based
methods. It can be seen from Table I that there are various
population-based methods with the improved variants for
optimization tasks in power electronics. They are developed
and improved with different biological inspirations. In addition
to the above widely applied metaheuristic methods, several
other emerging approaches have been applied in a limited
scale, e.g., biogeography-based optimization [72], crow search
algorithm [73], grey wolf optimization [74], firefly optimiza-
tion algorithm [16], bee algorithm [75], colonial competitive
algorithm [76], teaching-learning-based optimization [77], etc.
It is worth mentioning that the selection of the best method is
not a simple task, which is application-dependent [12]. Genetic
algorithm and particle swarm optimization are the two most
popular metaheuristic methods applied to power electronics, as
shown in Fig. 4. They are the fundamentals and representatives
for evolutionary algorithms and swarm intelligence algorithms,
respectively, based on which various variants are developed.
Practitioners can choose the method considering its superiority
according to Table I.

Note that there is no guarantee for a global optimum for
metaheuristic methods, but the solution is generally satisfac-
tory and acceptable for most practical applications. For more
theoretical details of the metaheuristic methods, readers can
refer to [16, 78].

D. Machine Learning

Machine learning is designed to automatically discover
principles and regularities with experience from either col-
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Table I: The applications of metaheuristic methods in power electronics. Superior: +++, intermediate: ++, inferior: +

Type Algorithms
Advantages and Limitations

Exemplary ApplicationsImplementation
Simplicity

Global
Convergence

Convergence
Speed

Parallel
Capability

Population-
based

method

Particle swarm
optimization (PSO) + +++ + Yes Design [45, 48, 49], Control

[50–56], Maintenance [57, 58].
Genetic algorithm
(GA) + +++ + Yes Design [3, 41, 59–63], Control

[64–68], Maintenance [69]
Ant colony
optimization (ACO) ++ ++ ++ Yes Design [70], Control [42]

Differential
evolutionary (DE) ++ +++ ++ Yes Control [46, 71]

Immune algorithm
(IA) ++ ++ ++ Yes Control [47]

Trajectory-
based

method

Tabu search method +++ + +++ No Design [43]
Simulated
annealing method +++ ++ +++ No Control [44]

lected data or interactions by trial-and-error. For applications
in power electronics, it is categorized as supervised learning,
unsupervised learning, and reinforcement learning.

1) Supervised Learning: With the training dataset consist-
ing of input-and-output pairs, the supervised learning aims
to establish the mapping and functional relationships between
the inputs and outputs implicitly. This feature is especially
useful for cases in power electronics where system models
are challenging to formulate. Generally, the tasks of the
supervised learning include classification and regression. For
classification, its output of the input-and-output pairs in the
training dataset deals with a finite number of discrete cat-
egories to be labeled. For example, the fault diagnosis for a
multilevel inverter [93] is a typical classification task where the
discrete fault label needs to be identified given the input fault
information. For a regression task, the output of the input-and-
output pairs consists of one or more continuous variables. An
example of regression is the remaining useful life prediction
of IGBTs [113] where the output, i.e., the residual useful
lifetime, is a continuous variable. Once the model is trained,
it is ready to evaluate new data points that differ from the
training dataset. The model capability in dealing with new
data points, i.e., the ones in the testing dataset, is termed as
the generalization. Since the training dataset comprises only
a limited amount of possible input-and-output pairs in most
cases, its generalization on new inputs is one of the most
critical performance factors of supervised learning methods.

Generally, supervised learning methods can be catego-
rized into connectionism-based methods (i.e., neural network
method), probabilistic graphical methods, and memory-based
methods (i.e., kernel method). For neural network methods,
knowledge learned from the training dataset is facilitated
and transferred as the connection weights and structures of
the network. Numerous research has been devoted to im-
proving the performance of neural network methods. These
improvements are from two aspects for applications in power
electronics. The first aspect deals with enabling the uncertainty
capability in handling the noisy signal of the neural network
to improve the method robustness. This feature is facilitated
by integrating the fuzzy logic into the neural network as the
fuzzy neural network or its variants (e.g., adaptive neuro-

fuzzy inference system (ANFIS) [100]). The second aspect is
for dynamic-performance improvement of the neural network
to tackle time-series dataset cases, e.g, intelligent controller,
remaining useful life prediction. Compared to the conventional
neural network where the network weights are independent,
the transient performance is facilitated by sharing weights
between different layers and network cells. The weight sharing
can be implemented either in a shallow scale with a convolu-
tional structure (e.g., 1-D convolutional neural network, Time-
delayed neural network (TDNN) [113]), or in full and deep
scale by using a recurrent unit as recurrent neural network
[104]. Generally, the modeling capability of recurrent unit
implementation is superior to the one with a convolutional
structure. More theoretical details of the neural network meth-
ods are discussed in Chapter 5 of [1] and [13, 14].

The probabilistic graphical methods obtain knowledge from
the data by using a diagrammatic representation of input-
and-output pairs. The diagrammatic representation implies
the conditional dependence relationship between the decision
variables. The underlying relationship in the model is formu-
lated in the Bayesian framework [1] and can be inferred in
a probabilistic way. Thus, the interpretability of the model is
much better compared to neural network methods. Besides,
the probabilistic graphical model is superior in dealing with
uncertainty and incomplete knowledge. One of the typical
probabilistic graphical methods is the Bayesian network [116].
More theoretical details of the probabilistic graphical methods
are given in Chapter 8 of [1].

For the neural network methods and the graphical methods,
the training dataset is discarded when the training is com-
pleted. While the training dataset in kernel methods is kept
and used in the testing stage, and the learned knowledge is
facilitated as the identification of critical data points (e.g.,
support vectors in support vector machine [125]) or subset
in the training dataset. One typical kernel method is Gaussian
processes, which has been applied to the remaining useful life
prediction of IGBTs in [118]. Note that the conventional kernel
methods (e.g., Gaussian processes) are computationally inten-
sive due to the whole training dataset is applied to the testing
stage. To avoid the excessive computational burden, sparse
solutions are proposed as support vector machine (SVM)
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Table II: Supervised learning methods and the applications to power electronics.

Type Method Variants Advantages and Limitations Exemplary Applications
N

eu
ra

l
ne

tw
or

k
(N

N
)

m
et

ho
d

Conventional
NN

Feed-forward neural
network (FFNN) N/A (Not applicable)

Design [79, 80], Control
[4, 51, 81–84], Maintenance
[85–96]

Radial basis function
network (RBFN)

Compared to FFNN:
– Simple network structure
– Higher speed of training

Control [50], Maintenance [97]

NN with
fuzzy logic

Fuzzy neural network
(FNN)

Compared to conventional NN:
– Capability of handling uncertainty
– Incorporation of expert experience
– Higher speed of training

Control [46, 71, 98, 99]

Adaptive neuro-fuzzy
inference system

(ANFIS)

Compared to FNN:
– Automatic fuzzy-rule generation with less expert
experience

Control [100], Maintenance
[101, 102]

NN with
recurrent unit

Recurrent neural
network (RNN) or
Elman NN (ENN)

Compared to conventional NN:
– Better transient and dynamic capability
– Better sensitivity
– Slow speed in training

Control
[52, 53, 71, 98, 103–106],
Maintenance [107]

Nonlinear
autoregressive
network with

exogenous inputs
(NARX)

Compared to RNN:
– Higher speed of training
– Better generalization capability
– Better capability in dealing with long-term
dependence

Design [108], Maintenance
[109]

Echo state network
(ESN)

Compared to RNN:
– Only hidden-to-output weights need to determine
– less severer issue of gradient explode and vanish

Maintenance [110, 111]

Long short-term
memory (LSTM)

Compared to RNN:
– Most effective structure for practical application
– No issue of gradient exploding and vanishing

Maintenance [112]

NN with
convolutional
structure

Time-delayed neural
network (TDNN)

(also termed as 1-D
convolutional NN

(CNN))

Compared to conventional NN:
– Partial weight sharing for transient performance
improvement for specific applications
Compared to RNN:
– Capability of time-series modeling is weaker

Control [14], Maintenance
[113, 114]

Pr
ob

ab
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st
ic

gr
ap
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ca

l
m

et
ho

d

N/A Bayesian Networks

Compared to NN methods:
– Better interpretability
– Computationally intensive
– Probabilistic output with uncertainty quantification

Maintenance [95, 115–117]

K
er

ne
l

m
et

ho
d

Conventional
kernel method Gaussian processes

Compared to NN methods:
– Probabilistic output with an uncertainty
quantification

Maintenance [118, 119]

Sparse kernel
method

Support vector
machine (SVM)

Compared to conventional kernel method:
– Better approximation capability with small dataset
– Better computational efficiency

Control [120, 121],
Maintenance
[7, 74, 95, 117, 122–125]

Relevance vector
machine (RVM)

Compared to SVM:
– Much sparser than SVM while maintaining
comparable generalization capability
– Probabilistic output with uncertainty quantification
– Training time is generally longer than SVM

Maintenance [126, 127]

and relevance vector machine (RVM), where the parameter
estimation is improved based on Bayesian methods. With the
sparse solution, only a subset of the training dataset is applied
to the testing stage and thus it is more efficient compared to
the conventional kernel methods. More theoretical details of
the kernel methods are discussed in Chapters 6 and 7 of [1].
Generally, the requirement of the training dataset for the kernel
methods is lower than the neural network methods. Therefore,
the kernel methods are more suitable for the cases with a small
dataset. While due to the training dataset is needed in the
testing stage, the memory requirement of the kernel methods
is higher than the neural network methods. The involvement
of the training dataset also limits the speed performance at the
testing stage. It should be considered for online applications
where the execution time is critical, e.g., control application.

As a result, Table II shows a summary of the supervised

learning methods and their variants in power electronics, in
terms of the advantages, limitations, and exemplary applica-
tions.

2) Unsupervised Learning: Compared to the supervised
learning where the dataset is input-and-output pairs, unsu-
pervised learning has no output data for the learning target
during the learning process. Generally, the tasks of unsuper-
vised learning in applications of power electronics can be
categorized as data clustering and data compression.

For the data clustering, it explores the regularities from
the smeared dataset and partitions the dataset into several
different groups or clusters according to their similarities.
In this way, the data characteristics within the same cluster
are similar to each other and different from the ones in
other clusters. One typical data clustering application is the
identification of the discrete health state from the continuous
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Table III: Unsupervised learning methods and the applications to power electronics.

Function Method Advantages and Limitations Exemplary Applications

Clustering

k-means – Simple implementation
– Sensitive to outliers

Control [128], Maintenance
[117, 129–131]

Self-organizing
maps (SOMs)

Compared to k-means
– Better interpretability
– Less sensitive to initial parameter selection
– Less sensitive to outliers

Maintenance [132], Control
[98]

Data compression
Principal

component analysis
(PCA)

– Flexible framework with various improvements,
e.g., kernel PCA, Bayesian PCA, etc

Control [133], Maintenance
[116, 126, 131, 134, 135]

degradation data [130] in the condition monitoring of power
electronic converters. The purpose of the data compression is
to eliminate excessive information in the dataset to reduce the
number of features of the dataset. For example, using principal
component analysis (PCA) [126], a reduced representation of
the dataset is obtained with a much fewer number of features,
which yet maintain the integrity of the dataset.

Generally, these unsupervised learning algorithms serve
as the data-preprocessing before it goes to the subsequent
analytics (e.g., fault diagnosis). Although this step is optional,
it is beneficial to reducing the computational burden and
improving the analytics accuracy. Table III gives a summary
of typical unsupervised learning methods for power electronic
applications. More unsupervised learning methods and theo-
retical details can be found in [136].

3) Reinforcement Learning : In contrast to the supervised
learning and the unsupervised learning, reinforcement learning
(RL) does not require a training dataset. Instead, it aims to
find a suitable action strategy that maximizing the reward for
a specific task, which is essentially a dynamic programming
or optimization task. This goal-oriented strategy is formulated
from interactions with systems or simulation models by a trial-
and-error process [137]. In this way, it accumulates experience
progressively and learns a specific strategy that maximizes
the predefined goal. Theoretically, RL is a Markov decision
process [138]. The training of RL aims to develop a Q-table
in terms of an action selection policy, which can maximize
the total expected rewards over the future. The Q-table is an
informative policy matrix that records the optimal action to be
taken given the particular condition variables. More theoretical
details of RL can be found in [138]. One application example
is the MPPT [5, 6, 139]. Note that RL obtains the experience
from the interactions between systems instead of existing
datasets. It is thus more favorable for the cases where the
system is with less knowledge or its model is challenging to
formulate.

As a summary, Fig. 5 presents the usage statistics of the
machine learning methods. Supervised learning is dominantly
applied to power electronics. The reason is that the supervised
learning is a versatile tool, which is typically the central part of
the majority of machine learning-related applications in power
electronic systems.

E. Timeline of Relevant AI methods and Applications in Power
Electronics

Fig. 6 summarizes the milestones of the relevant AI methods
and their applications in power electronics. It includes the year

Supervised
Learning

(91%)

Unsupervised Learning
(4%)

Reinforcement Learning (5%)

Fig. 5. Usage statistics of machine learning methods in power electronic
systems. The statistical data of method usages and percentages are calculated
based on a total of 444 journal papers as mentioned in Fig. 1.

when the algorithm is first proposed, the first application in
power electronics, the milestones of relevant AI algorithms,
and applications in terms of each method. It should be noted
that the information is to the best knowledge of the authors.
Also, the timeline is not extensive to include all of the existing
AI algorithms. Instead, only the ones that show great potentials
in power electronics are included. According to Fig. 6, it can
be noted that:

1) The application of both expert system and fuzzy logic
is moderate nowadays, especially for the expert system.
Before the 2000s, their practical implementations are
developed in the presence of the limited performance
of computing hardware, which has been significantly
improved to date. This rapid development of computing
hardware facilitates and accelerates the implementation
of other more powerful AI methods for replacing expert
system and fuzzy logic.

2) Metaheuristic methods are continuously evolving and
applied to power electronics. They are used for a com-
plete task or a key step jointly with other machine
learning methods.

3) Neural network methods are the most active area for
AI applications for power electronics. The reason is
twofold. Firstly, the significant development of comput-
ing hardware unleashes the potentials of neural network
methods in dealing with complex tasks in power elec-
tronic systems. Secondly, the structure of neural network
is quite flexible to incorporate other AI methods for
performance improvement, implying numerous method
variants.

4) There is an increasing trend of applications with kernel
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: Method Proposed : First Applied in Power Electronics : Relevant Variants & Applications

I0 I1 I2PCA (1930)

J0 J1 J2RL (1980s)

H0 H1 H2k-means (1957)

G0 G1 G2-3 G4 G5 G6KM (1964)

F0 F1 F2BN (1985)

D0 D1-2 D4D3 D5 D6 D7 D8PSO (1995)

C0 C1 C2 C3 C5 C6 C7C4GA (1960s)

B0

B1 B2 B3 B4 B5FL (1965)
A0

A1 A2-3ES (1965)

E0

E1 E2 E3 E4 E5 E6 E7-8 E9 E10 E11 E12-13 E14-15NN (1943)

Expert system (ES): C5. (Real-coded GA)-Maintenance-2018, [69] E4. Control-2004, [82] G1. (SVM)-Maintenance-2008, [125]
A0. Design-1988, [24] C6. Design-2019, [3] E5. (RBFN)-Control-2008, [50] G2. (RVM)-Maintenance-2013, [127]
A1. Design-1995, [25] C7. (Multi-objective)-Design-2020, [63] E6. Maintenance-2009, [92] G3. (SVM)-Maintenance-2013, [95]
A2. Design-2008, [26] Particle swarm optimization (PSO): E7. (RNN)-Maintenance-2010, [107] G4. (SVM)-Maintenance-2017, [74]
A3. Maintenance-2008, [28] D0. Control-2003, [140] E8. (RFNN)-Control-2010,[98] G5. (GPR)-Maintenance-2018, [118]
Fuzzy logic (FL): D1. Control-2008, [50] E9. (FNN)-Control-2015, [46] G6. (SVM)-Maintenance-2019,[124]
B0. Control-1990, [29] D2. Design-2008, [45] E10. (TDNN)-Maintenance-2016, [113] k-means:
B1. (Mamdani)-Control-1997, [30] D3. Control-2010, [56] E11. Maintenance-2017 [85] H0. Control-2007, [128]
B2. (TSK)-Mainenance-2008, [38] D4. Control-2012, [55] E12. (ANFIS)-Maintenance-2018, [102] H1. Maintenance-2008, [129]
B3. (Mamdani)-Control-2011, [35] D5. Design-2014, [48] E13. Design-2018, [80] H2. Maintenance-2019, [130]
B4. (TSK)-Control-2013, [37] D6. Maintenance-2016, [57] E14. (ESN)-Maintenance-2019, [111] Principal component analysis (PCA)
B5. (Mamdani)-Maintenance-2017, [33] D7. Control-2017, [58] E15. (CNN)-Maintenance-2019, [114] I0. Control-1995, [133]
Genetic algorithm (GA): D8. Design-2019, [49] Bayesian network (BN): I1. Maintenance-2015, [126]
C0. Control-1995, [65] Neural network (NN) method: F0. Maintenance-2008 [115] I2. Maintenance-2020, [135]
C1. Design-2001, [41] E0. Control-1989, [141] F1. Maintenance -2013 [95], 2011 Reinforcement learning (RL)
C2. Maintenance-2007 [142] E1. (RNN)-Control-1999, [104] F2. Maintenance-2017 [116], 2017 J0. Control-2008, [143]
C3. Design-2008, [61] E2. (ANFIS)-Control-2000, [100] Kernel method (KM): J1. Control-2016, [6]
C4. (Mixed-integer)-Control-2009, [68] E3. Control-2002, [83] G0. (SVM)-Control-2007, [120] J2. Control-2017, [139]

Fig. 6. Timeline of relevant AI methods and applications in power electronics. The milestones are identified considering the significant algorithm variants and
the relevant applications. It is organized as the form of (significant variants)-application-year. Significant variant is specifically indicated. Otherwise, it is a
standard algorithm.

methods and probabilistic graphical models. It is be-
cause most of these methods are formulated within the
Bayesian framework, which possesses better generaliza-
tion and interpretability. Moreover, their computational
burden can be well tackled with the platforms to date.

5) RL is the latest frontier of the machine learning methods
applied to power electronics, facilitated by the rapid
development of computing hardware.

The following three sections discuss the applications of the
above introduced AI methods in the design, control, and
maintenance phases of power electronic systems, respectively.

III. DESIGN

Design in power electronics encompassing topology selec-
tion, component sizing, circuit synthesis, reliability consid-
erations, etc., is essentially an optimization task [144]. A

typical procedure for the design of power electronic systems
comprises four steps:

1) Objective formulation: Objective functions are desirable
design goals to be maximized or minimized. Generally,
the design goals in power electronics include component
parameter [41], weight [145], volume [146], cost [145],
heatsink pattern [3], area [147], power loss [62], etc.
It is crucial for formulating the required or desired
design requirements to several explicit mathematical
expressions as a single objective as given in (1) or
multiple objectives as given in (2) [12, 144]:

max
x

f(x), (1)

max
x

wT f(x),max
x

f(x), (2)

s.t. g(x) ≤ 0, h(x) = 0,x ∈ [xl,xu].
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where g(x) and h(x) are inequalities and equalities,
respectively. xl,xu are the lower and the upper bound-
aries for decision variables x, respectively. Here the
maximization is the goal, which can simply be applied to
the minimization case. Note that for multiple objectives
in (2), it can be either solved by maximizing a scalar
function wT f(x) by weighting multiple objectives to-
gether or by optimizing objective vector f(x) directly,
where Pareto front [62] can be applied to determine the
optimal solution, e.g., the non-dominated sorting genetic
algorithm method for multiobjective design optimization
of power modules in [60].

2) Constraint space: The constraint space defines feasible
space, boundary, relationship, and limitation that the ob-
jective function is subjected to. These constraints include
either linear or nonlinear equalities and inequalities.
They are derived from the practical design requirements,
e.g., geometry, volume, lifetime characteristics, cost, etc.

3) Solution exploration: The defined optimization problem
is to maximize (or minimize) objective functions by
adjusting the decision variables in the constraint spaces.
AI methods, especially the metaheuristic methods, can
be applied to this step.

4) Performance evaluation: The candidate solution can be
tested against the predefined objectives by using simula-
tion, hardwire-in-the-loop testing, prototype experiment,
etc. The results can be returned to previous steps for
further performance improvement and optimization.

Instead of a sequential procedure, the design task is an
iterative trial-and-error process. Based on the evaluation at
each step, the task may be reformulated, e.g., adjusting the
objectives, modifying the constraint space, reconfiguring the
programming methods, etc. For conventional design in power
electronics, it is time-consuming and needs multiple iterative
steps. For example, the component alignment and the model
selection rely on expert experience and intuition without ample
quantitative reference. In this way, the design performance will
converge slowly to the required standards. This drawback can
be mitigated by AI methods. They can be applied to Step 1)
objective formulation for the design time reduction, and Step
3) solution exploration for the modeling and optimization.

A. Design Time Reduction
The formulation of design objective needs to be improved if

its evaluation is computationally intensive. One application of
AI methods is a surrogate model in the objective formulation to
reduce the computational effort. The surrogate model yields an
identical behavior to the system dynamics that are challenging
to formulate or need intensive computational efforts to char-
acterize. In the iterative design process, AI-based surrogate
model serves as a replacement that significantly reduces the
computational effort.

As an application of Design for Reliability (DfR), in [80],
two feed-forward neural networks are applied to the automated
reliability design of power electronic systems. The first feed-
forward neural network serves as a surrogate model emulating
thermal characteristics of power converters, by which the de-
sign parameters can be mapped to the information of junction

temperature variations. Subsequently, the second feed-forward
neural network is applied to map the annual mission profiles
(e.g., annual solar irradiation and ambient temperature) to
the annual lifetime consumption. In this way, the nonlinear
relationship between the designed parameters and the annual
lifetime consumption is quantitatively characterized, which can
accelerate the iterative design process.

Another example of AI for DfR of power electronic systems
is given in [108]. With superior capability in tackling time-
series data, a nonlinear autoregressive network with exogenous
inputs (NARX) is applied to the thermal modeling of power
electronic systems considering the thermal cross-coupling ef-
fects. The proposed NARX-based thermal model can be com-
pleted within around 109 s, which is a significant efficiency
improvement compared to the 1005 s of the conventional
model. The error between the temperature estimated by the
NARX-based thermal model and the actual measurement is
less than 1◦C. Experimental results indicate that the NARX-
based thermal model can replace the conventional model with
less testing efforts and much less computational burden.

In [79], considering the electrothermal interactions, a feed-
forward neural network is applied to construct the component
behavior model of MOSFETs without any in-depth knowledge
of the device structure. Under the static state, the complicated
nonlinear and temperature-dependent characteristics between
the variables including drain-to-source voltage VDS, gate-to-
source voltage VGS, junction temperature Tj , and the output
current ID are established by using the neural network. This
compact model can drastically accelerate the design simulation
process with a comparable accuracy.

B. Modeling and Optimization

The modeling and optimization of power electronic systems
is about specifying circuit topology, component model, com-
ponent parameter, etc, such that system dimension, weight,
operating frequency, etc., will result as optimal characteristics
(e.g., power loss, power density) in the presence of design
constraints [12]. Specifically, the optimization method is ap-
plied to the solution exploration to provide an overall optimal
configuration, where metaheuristic methods in AI can be
effectively exploited. As mentioned, the selection of a suitable
metaheuristic method depends on the specific application.
Several exemplary applications are given as follows.

In [3], genetic algorithm (GA) is combined with finite
element analysis for the automated heatsink design of a 50
kW three-phase inverter. As shown in Fig. 7, GA is applied
to optimize the combination of nine customized patterns to
formulate a complex cell pattern of heatsink, and the goal
is the minimization of the junction temperature of power
semiconductor devices. Compared to the conventional design
with a regular cell pattern, the proposed method formulates
a heatsink solution with 27% less in size and 6% lower in
junction temperature.

In [62], the design of a 500 kW solar power-based micro-
grid system is formulated as a multiobjective optimization
task, which maximizes the average power distribution and
minimizes the system weight simultaneously. It explores the
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Fig. 7. Nine different cell patterns for each blank cell [3]. A genetic algorithm
is applied to determine the optimal combination of nine cell patterns for the
heatsink design, in order to minimize the junction temperature.

optimal values of four microgrid parameters, including battery
voltage, PV maximum power, PV maximum power point
voltage, and number of panels per string. The GA combining
with the Pareto front is applied to solve the multiobjective
optimization task. Besides, there is a specifically improved
variant of GA for the multiobjective optimization task, i.e.,
non-dominated sorting genetic algorithm II (NSGA-II) [63].

In [45], the particle swarm optimization (PSO) is applied
to the circuit synthesis of a power electronic circuit, where
the optimal values of components are explored to fulfill the
design goals of better static and dynamic performance. For
this specific case, the simulation indicates that the PSO yields
a superior solution with less computational effort compared to
GA.

In [70], the ant colony optimization (ACO) is applied to
determine the optimal component values in a power electronic
circuit, where the conventional ACO is extended to facilitate
the optimization with continuous component values and ac-
celerate the optimization process. Moreover, the component
tolerance is incorporated into the optimization, which makes
the proposed method more beneficial to practical applications.

IV. CONTROL

Essentially, control applications with AI methods in power
electronic systems can be categorized as the optimization and
the regression. Similar to the optimization in the design phase,
the optimization-related tasks in control applications are also
dealing with metaheuristic methods. Several representative
applications are given below.

In [64], a GA is applied to the PID tuning of a programming
logic controller, where the optimization goal is to minimize
the error between the ideal step and ramp responses and
the ones initialized with proportional term Kp, integral term
KI , and derivative term KD found by GA. Experimental
analysis indicates that the output performance of the optimized
controller is very close to the ideal step and ramp responses.

In [42], to overcome the challenges of multiple maximum
power points in partially shaded situations for PV systems, an
ACO-based MPPT method is proposed. It is compared with
conventional methods including constant voltage tracking,
perturb & observe, particle swarm optimization. The exper-
imental results indicate that the ACO-based MPPT method
is superior in global convergence and robustness to various
shading patterns.

In [47], in a single-phase full bridge inverter, an IA is
applied to find the optimal sinusoidal pulse-width modulation
(PWM) control sequences of four switches minimizing the

total harmonic distortion (THD) of the output waveforms. The
experiment indicates that the THD by using IA is 0.79%,
which is superior to that of the conventional control method
of hysteresis current PWM with 1.23% and the GA solution
with 0.99%. Moreover, the IA is superior to the GA in
convergence speed. More examples of optimization-related
control applications can be found in [12].

The regression-related tasks in control applications are deal-
ing with the nonlinear mapping of system inputs and outputs
in a static or dynamic way. Specifically, it is concerned with
regulating systems to facilitate intended performance output
with system principles and dynamics. Several limitations of
conventional methods are identified:

1) The controller configuration requires control principles
and in-depth knowledge of the system, which is chal-
lenging and even infeasible for complex cases. It is
time-consuming for complex systems to consider the
time-varying and piecewise-linear characteristics, where
the controller is generally optimized at several critical
operational points rather than the full operational area,
resulting in a sub-optimal solution.

2) Once the controller is installed, it operates in a static
way with limited adaptability, suggesting that it is only
applicable to time-invariant systems. Nevertheless, when
environmental and operational conditions change, the
controller will be less robust to system parameter shifts
and the control performance is likely to deteriorate.

3) From the efficient control perspective, an ideal controller
must be able to cope with parameter tolerances with
a fast transient response to maintain system stability.
However, such a desired feature cannot be well fulfilled.

These limitations can be mitigated with AI methods. For the
regression-related task in control applications, it is organized
in terms of fuzzy logic, neural network, and reinforcement
learning, respectively.

A. Fuzzy Logic-based Controller

Fuzzy logic-based methods have been widely applied to
control of power electronic systems, e.g., speed control [30],
MPPT [35], energy management [148], to name a few.

In [30], a control strategy with three fuzzy logic controllers
is developed for a variable speed wind generation system. The
structure of the generator speed programming controller is
given in Fig. 8. The control variables include the increment of
the output power ∆Po and the last variation of speed L∆w∗

r .
The controller outputs the variation of speed ∆w∗

r to adjust
the generator speed for a maximum wind power output. The
Mamdani-type fuzzy logic is applied and the information is
aggregated according to the rule matrix table, e.g., “IF ∆Po is
PS AND L∆w∗

r is ZE, THEN ∆w∗
r is PM”. The membership

functions are iteratively tuned by the system simulation and
experiment. Similar Mamdani-type fuzzy logic controller for
the primary frequency regulation of a wind farm can be found
in [34].

In [36], a fuzzy controller is proposed for regulating the
speed of a switched reluctance motor based on TSK fuzzy
logic by approximating an ideal control law. The parameter
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Fig. 8. Fuzzy logic-based controller for a variable-speed wind generation system [30]. MFs: Membership functions. In the rule matrix table, P: positive, V:
very, B: big, M: medium, ZE: zero, N: negative.

is tuned by using the Lyapunov stability theorem to ensure
system stability. The experimental analysis demonstrates that
the developed adaptive TSK-type controller outperforms the
conventional fuzzy logic controllers and the PI controller.
A similar TSK-type controller can be found in [31] for
approximating the typical sliding mode control curve for
integrated LED drivers, which is computationally efficient and
implemented on a low-cost platform.

Although the fuzzy logic controller possesses the merit of
coping with the system uncertainty, similar to conventional
techniques such as PID methods, there is no internal updating
mechanism and thus the adaptability is limited [50]. Also,
it can be seen that the design of membership functions and
fuzzy rules require expert experience, which highly limits
the method practicality. Thus, such a method is applicable to
experts only in most cases. Nevertheless, from this perspective,
the expert experience can be coped with fuzzy logic and then
incorporated with other AI techniques as a hybrid method, as
discussed later.

B. Neural Network-based Controller

As a black-box technique, neural network can approximate
a wide range of nonlinear functions to arbitrary accuracy.
With less prior system knowledge, the NN-based controller
possesses several advantages such as robustness, model-free,
dynamic, adaptive, universal approximation, etc.

1) Conventional Neural Network: The most widely used
neural network in power electronics is the feed-forward neural
network (FFNN) (or backpropagation neural network) with a
feed-forward multilayer and a backpropagation topology [14].
The respective applications essentially exploit the property of
static nonlinear mapping of the FFNN.

In [82], an FFNN is applied to the waveform processing and
delayless filtering. With two cases of variable frequency and
variable magnitude, it indicates that the FFNN can convert m-
phase waveform with an arbitrary shape into the n-phase wave-
form with various characteristics of magnitude and frequency.
The FFNN-based waveform processing method provides a
simplification of the hardware implementation. Moreover, ad-
ditional single processing functions can be embedded easily
due to the structure flexibility.

In [83], the space vector PWM (SVPWM) for a three-
level voltage-fed inverter is implemented with an FFNN. The
input of the neural network is the sampled command phase
voltages and the output is the pulse width patterns of SVPWM.
The training data are generated by the simulation with an

..
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Input Layer Hidden Layer Output Layer

Direct connection 
without weights

∑

Fig. 9. Structure of a radial basis function network (RBFN) with three layers
[50]. x1

i is the input of the input layer node i and y1
i is its output. y2

j is the
output of the hidden layer node j. y3

k is the output of the output layer node
k. The input layer and the hidden layer are fully and directly connected with
no weights. Only the weights between the hidden layer and the output layer
need to learn in the training.

SVPWM algorithm. By comparing with a conventional DSP-
based SVPWM solution, the performance of the FFNN-based
SVPWM is verified and it can be flexibly implemented on a
dedicated IC chip.

In addition to FFNN, another conventional NN structure is
radial basis function network (RBFN). In FFNN, the weights
of input-to-hidden and hidden-to-output are simultaneously
determined. For RBFN, the input layer is directly and fully
connected to the hidden layer without weights. The hidden
layer is connected to the output layer by weights Wj , which are
the only weight parameters to be determined in the training,
as shown in Fig. 9. Typically, the generalization of RBFN
is better than FFNN and the training speed and the execution
speed are faster. An exemplary application of RBFN in a three-
phase induction generator to regulate the DC-link voltage and
the AC line voltage can be found in [50].

Regarding the number of neurons, there are few principles
to determine the optimal number. A generic method is to start
with a relatively small number of neurons and then gradually
increase it according to the training error. For the activation
function in the hidden layer, there are various options, includ-
ing sigmoid [4, 51, 52, 83], radial basis function [50, 149], hy-
perbolic tangent function [105, 150], wavelet [46, 53, 84, 151],
etc. It is worth mentioning that the wavelet activation function
possesses the superior capabilities of convergence speed and
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generalization.

(a) Block diagram of the FNN-based controller for a boost converter.
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(b) An FNN with a four-layer structure.

Fig. 10. A fuzzy neural network (FNN)-based controller for a boost converter
[99]. x1 is the sliding surface S(x) and x2 is its differentiation, n = 2. µji is
the jth membership function for input xi. w is the weight between layers. The
fuzzy inference is implemented by the rule layer as lk =

∏n
i=1 w

k
jiu

j
i (xi).

The network output is obtained as u = f(
∑Ny

k=1 wklk). The controller aims
to output a specific duty cycle u of PWM to minimize the tracking errors
of the average output voltage ev and inductor current ei, given the reference
voltage Vref and current iref .

2) Neural Network with Fuzzy Logic: In control applica-
tions, parameter uncertainty and external disturbance should
be well considered for system stability and robustness. As a
result, an improved variant of NN, i.e., fuzzy neural network
(FNN), or neuro-fuzzy system, which is a hybridization of NN
and fuzzy logic, is proposed. FNN possesses the merits from
both aspects [99], i.e., the human-like IF-THEN reasoning
rules of fuzzy logic facilitating the incorporation of expert
knowledge and cognitive uncertainty, and the strong capa-
bilities of approximation and generalization to any nonlinear
systems by the neural network. More theoretical details of
FNN can be found in [39].

In [99], an FNN is applied to simulate the sliding-mode con-
trol of a boost converter to alleviate the chattering phenomena.
The block diagram of the controller is given in Fig. 10(a) and
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Fig. 11. An adaptive neuro-fuzzy inference system (ANFIS)-based controller
for a PWM-inverter-fed induction motor drive [100]. It is a five-layer network
structure with the capability of automatic identification of fuzzy rules. The
layer 1 is the membership layer with the input weights wm and wΨ. The
layer 2 chooses the minimum from the inputs. Normalization is performed in
layer 3. In layer 4, the outputs oi is linearly combined with the network inputs
ud = (εm, εΨ). The layer 5 is the network output. ∆γi is the increment
angle and γs is the actual angle of the stator flux vector.

the FNN structure with four-layer is given in Fig. 10(b). The
inputs of the FNN include the sliding surface S(t) and its
differentiation Ṡ(t), which are obtained based on tracking the
errors of the average output voltage ev and inductor current ei.
The output control signal is the duty cycle u of PWM. For the
voltage control, the voltage tracking performance is evaluated
by the mean-square error (MSE) of the output voltage:

MSE =
1

T

T∑
d=1

e2
v(d), (3)

where T is the number of sampling instants. The network tun-
ing aims to reduce the MSE as much as possible to output an
accurate and stable voltage. The performance of the FNN can
be significantly improved if the membership function is well
designed. For example, in [46], an asymmetric membership
function (AMF) is applied to the controller of a six-phase
permanent magnet synchronous motor. It indicates that the
learning speed can be improved and the network structure can
be simplified compared to conventional membership functions,
e.g., Gaussian function [71, 98, 99].

One of the challenges of FNN is the design of the fuzzy
rule, where extensive expert experience is usually needed
[99]. To overcome this challenge, another typical and effective
framework incorporating fuzzy logic and neural network is an
adaptive neuro-fuzzy inference system (ANFIS), which can be
extended from the four-layer structure in Fig. 10 as a five-
layer topology [100], as shown in Fig. 11. In the ANFIS,
the IF-THEN fuzzy rules, which require the involvement
of experts, can be generated automatically in the training.
For example, in [100], a direct-torque neuro-fuzzy control
scheme is developed for a PWM-inverter-fed induction motor



13

Fig. 12. A recurrent fuzzy neural network (RFNN) controller for the high-
precision trajectory tracking control of a linear microstepping motor driver
[98]. A memory unit of time-delayed feedback connection Z−1 is added
to enable the dynamic capability of neural network controller. The Takagi-
Sugeno-Kang (TSK)-Type fuzzy logic is applied. Compared to the FNN in
Fig. 10(b), the key of the RFNN is the insertion of a recurrent layer, where
the delayed neuron output hi(k) is returned as the neuron input to facilitate
the network dynamics.

drive based on an ANFIS. The inputs of the ANFIS-based
controller include the flux error εm and the torque error εΨ,
and the outputs are the stator voltage command vectors in polar
coordinates Vc and ϕVc

, as shown in Fig. 11. In contrast to
the conventional training schemes, the parameter tuning of the
ANFIS is completed interactively with the backpropagation
algorithms (for membership functions) and the least square
method (for parameters in 4th layer). More theoretical details
of the training methods of the ANFIS can be found in [152].

3) Neural Network with Recurrent Units: The NN struc-
tures in Section IV-B1 and FNN in IV-B2, however, are only
applicable to the static relationship mapping and behavior
characterization. The dynamic performance of the controller
is critical for the transient response. To enable the dynamic
capability of the neural network controller, a memory unit of
time-delayed feedback connection Z−1 is usually inserted to
formulate recurrent neural network (RNN) [106], as shown in
Fig. 12. The outputs of the network not only depend on the
present inputs but also on the previous ones. As a result, the
network structure can tackle the time series data to facilitate
the better performance of dynamics and sensitivity.

In [105], a robust controller based on RNN is proposed
for single-phase grid-connected converters for better control
performance in the presence of system parameter changes. The
training of the RNN is completed by the Levenberg-Marquardt
(LM) method [13, 82, 105]. The harmonics can be significantly
reduced by using the proposed RNN-based controller, and the

requirements of the high sampling and switching frequency
and the damping policies for the conventional control methods
can be mitigated. A similar RNN structure, which is also
termed as Elman neural network (ENN), can be found in [52].

In addition to the performance of dynamics, fuzzy logic
is also incorporated into RNN in order to improve the per-
formance of robustness. For example, in [98], a controller
based on a TSK-type self-organizing recurrent fuzzy neural
network (RFNN) is proposed for a high-precision trajectory
tracking control of a linear microstepping motor driver. The
network structure is given in Fig. 12. The TSK-type self-
organizing RFNN is applied to model the inverse dynamics of
the driver. The network diagram and size are adjusted by the
self-organizing method, and the respective network parameters
are tuned with the method of recursive least square. As a result,
the network diagram and its parameters can be optimized
simultaneously.

4) Training Methods of Neural Network: Essentially, the
training of the neural network is an optimization task. Of
course, it can be completed with conventional optimization
methods, e.g. PSO [51], recursive least square [98], Kalman
filter [104], etc. Considering a large number of parame-
ters in the neural network, these conventional optimization
methods are generally inefficient. As a result, an elaborate
training scheme is developed, i.e., backpropagation algorithm
[4, 50, 52, 53, 71, 83, 84, 149]. More theoretical details of the
backpropagation algorithm can be found in Chapter 5 of [1].

The backpropagation algorithm is based on the idea of
steepest gradient descent. One of the key steps in the back-
propagation algorithm is the iteration of the weight learning:

wk+1 = wk − ηkgk, (4)

where wk is the current weight, gk is the current gradient, ηk is
the learning rate, and wk+1 is the weight of the next iteration.
To calculate the gradient gk and find the steepest direc-
tion of gradient descent efficiently, various improved variants
of the backpropagation algorithm have been proposed, e.g.,
Levenberg-Marquardt method [13, 82, 105], resilient back-
propagation algorithm, conjugate gradient algorithm, one-step
secant algorithm, etc. Note that it is challenging to determine
the most suitable training algorithm for a specific task. It
depends on multiple factors, including problem complexity,
dataset size, number of parameters, task types of classifica-
tion or regression, etc. A useful reference can be found in
Matlab Manual of Neural Network Toolbox [40], where the
theoretical details, advantages, limitations, and comparisons of
these training algorithms are thoroughly analyzed with several
benchmark examples. It is worth mentioning that Levenberg-
Marquardt method is one of the most widely used methods for
the applications in power electronics with a fast convergence
speed and a high accuracy.

Considering whether the training dataset is available in a
batch form or in a sequential form, the training scheme of
the neural network can be completed in either batch learning,
which is also termed as offline learning, or sequential learn-
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Fig. 13. Framework of reinforcement learning in the maximum power point
tracking (MPPT) controller of wind energy conversion systems [5, 137]. A Q-
table is formulated to save the information of the optimal generator rotor speed
w∗

r to be performed in the presence of the current system state st, including
the current electrical output power Pe and the generator rotor speed wr .

ing, which is also termed as online learning or incremental
learning.

For batch learning, the gradient gk in (4) is calculated based
on all the data points in the dataset for the parameter updates.
It generally applies to the case where the whole dataset
is available before the neural network is implemented for
field application, e.g., the waveform processing and delayless
filtering in [82].

For sequential learning, the gradient gk in (4) is calculated
based on every newly available data point or several newly
available data points forming a mini-batch. Therefore, the
learning process is incrementally completed. This feature is
especially useful for the case where the training data can only
be sequentially obtained in field application. The intelligent
controller [53] is a typical case of a sequential training
scheme since the input data of the neural network can only
be available sequentially by interacting with the output of the
control command and the system. With this adaptive capability,
the neural network can be re-parameterized and reconfigured
for tracking the system parameter shifts. One of the key
steps for the sequential learning is determining a suitable
learning rate ηk in (4), since a larger ηk will result in system
instability and a smaller ηk will lead to slow convergence.
The optimal learning rate ηk can be determined by using the
metaheuristic methods in the training, e.g., PSO in [50, 52, 53]
and differential evolutionary in [46]. As a result, the sequential
learning process can be stable and converge fast.

C. Reinforcement Learning-based Controller

With reinforcement learning, the controller learns a goal-
oriented control strategy by interacting with the physical
system or its simulation model [137]. It accumulates expe-
rience progressively and learns a specific control strategy that
maximizes predefined goals.

One of the relevant applications of RL-based controller is
the MPPT in renewable energy systems given in [5], as shown
in Fig. 13. Specifically, a real-time intelligent MPPT algorithm
based on RL is proposed for a wind energy conversion system.
With the online learning capability of RL by interacting with
the environment, an optimum control strategy is formulated in
the Q-table. The Q-table consists of elements of state transition
probability q(st, at), which can facilitate the maximized power

Table IV: The advantages and limitations of AI algorithms in control applica-
tions. FFNN – Feed-forward Neural network and its variants, FNN – Fuzzy
neural network and its variants, RNN – Recurrent neural network and its
variants, RFNN – Recurrent fuzzy neural network and its variants. Superior:
+++, intermediate: ++, inferior: +

Performance Fuzzy
logic

Machine learning Reinforcement
learningFFNN FNN RNN RFNN

Approximate
capability + ++ +++ +++ +++ +++

Robustness ++ + +++ ++ +++ +++
Computational
burden +++ +++ ++ + + +

Dataset
requirement ++ +++ ++ + + N/A

Dynamics No No No Yes Yes Yes
Expert
knowledge
embedded
capability

Yes No Yes No Yes No

output (or reward) if action at, i.e., the expected generator
rotor speed w∗

r , is performed in the presence of the current
system state st, including the current electrical output power
Pe and the generator rotor speed wr. As a highlight, the
information of the wind turbine parameter and the wind speed
are not required. This work is further extended by integrating
an NN into the development of Q-learning of RL [6]. In this
way, the challenges in the determination of the state space are
avoided. The online learning process can be reactivated once
the learned optimal relationship is destructed by the system
aging behaviors. It significantly improves the autonomous
capability of the wind energy conversion system. A similar
example can be found in [139], where RL is applied to the
MPPT control of a buck converter of photovoltaic arrays.

Compared with the neural network-based controller where
the learning process is completed from examples provided by
an external supervisor, the RL controller can learn the expe-
rience by directly interacting with the environment through
actions and rewards. It is worth mentioning that the training
of the RL controller is based on the interactions between
the controller and the system, and the offline dataset is
unnecessary in this case. As a result, the RL-based controller
is beneficial to new systems without existing datasets.

D. Discussions

A summary of the advantages and limitations of AI al-
gorithms in control applications is given in Table IV. It is
worth mentioning that the dynamic performance, robustness,
generalization, and convergence speed of AI algorithms are
critical in control applications. The algorithm complexity
and computational burden are the major challenges. Thus,
high-performance Digital Signal Processor (DSP) or Field
Programmable Gate Array (FPGA) is necessary for practical
implementations.

V. MAINTENANCE

Although reliability characteristics have been elaborately
considered in design and control, power electronic systems
still undertake various risks and even catastrophic failures due
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Fig. 14. Flowchart of maintenance in power electronic systems.

to complex and severe working environments [18, 153, 154].
The reliability and safety of power electronic components,
converters, and systems are of great importance for field
applications. In maintenance, preventive activities, including
condition monitoring, anomaly detection, fault diagnosis, RUL
prediction, etc., are effective approaches to ensure that in-
tended functions can be properly executed. These activities
are aligned with the IEEE standard framework of PHM for
electronic systems [155]. Fig. 14 presents a flowchart of
maintenance activities in power electronic systems. Generally,
it consists of three parts:

1) Offline training and knowledge learning: It integrates
various aspects of knowledge including historical mon-
itoring data, simulation data, accelerated aging test ex-
periment, failure mode and effects analysis (FMEA),
etc. Moreover, ensemble methods or fusion techniques
are typically applied to this part for performance im-
provement. As a result, physical system dynamics and
behaviors (e.g., degradation behavior) can be accurately
characterized as offline models based on the information
of the unit population.

2) Condition monitoring and health assessment: This part
deals with the health assessment of the unit in service
subjected to the online condition monitoring in field
applications. The offline model is tailored and individu-
alized to the unit in service through the model parameter
tuning layer by adapting to field operational environment
and workload. The functions of this part include the
noninvasive parameter identification, data preprocessing
(e.g., data cleaning), feature mining, anomaly detection,
fault diagnosis, and RUL prediction. In this way, sup-
portive knowledge for decision-making can be extracted
from the continuous condition monitoring information.

3) Management and decision-making: In this part, the sup-
portive knowledge of health assessment are returned for
optimal decision making. With this feedback, control

policies (e.g., power routing) can be adjusted to max-
imize the system performance including reliability and
availability by considering the real-time health status.
Moreover, economical maintenance policy can be made
to facilitate the condition-based and predictive mainte-
nance.

Subsequently, the relevant applications of AI in maintenance
in terms of these three parts are discussed in detail.

A. Condition Monitoring

Condition monitoring [20, 156, 157] in power electronics in-
cludes system parameter identification, data preprocessing, and
feature mining. The obtained condition monitoring information
is applied to uncover hidden and informative insights, which
serve as a basis for the subsequent PHM applications.

1) System Parameter Identification: The system parameter
identification [158] deals with data and information acquisition
for critical components. Developing specific hardware for
parameter identification (e.g., temperature-sensitive electrical
parameters of IGBTs [157]), however, is quite a challenging
task due to features of power electronic systems, e.g., very
tight space in a power module, very fast switching frequency,
relatively insignificant parameter changes in terms of aging
[156], etc. One of the promising solutions is noninvasive
methods without any extra hardware implementation, where
information of interest can be inferred or estimated indirectly
from available physical signals. As a result, the condition mon-
itoring can be implemented with a sensorless and cost-efficient
solution, which is favorable for industrial practitioners. Gen-
erally, the system parameter identification can be categorized
into model-free and model-based methods considering whether
the system dynamics and models are required.

For the model-free method, no prior knowledge of the
system dynamics is required. Essentially, it deals with the
regression capability of AI algorithms to construct a relation-
ship between the inputs and outputs, i.e., the information of
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Fig. 15. Examples of model-free methods of system parameter identification
with AI. (a) Capacitance identification of DC-link capacitor [87]; (b) a-
phase current estimation for calculating the impedance measurement of power
electronic system [107]; and (c) Equivalent series resistance (ESR) estimation
in future p steps for supercapacitors [102].

interest. For example, in a three-phase front-end diode bridge
motor drive, the current ia,out in a-phase and the DC-link ripple
voltage ∆vdc are considered as the inputs, and the capacitance
C is applied as the output for the training of an FFNN [85–
87]. In this way, the relationship between the input signals
and the capacitance is established and thus the capacitance
can be inferred indirectly. Similarly, it is demonstrated that the
capacitance can be estimated by the FFNN constructed by the
frequency domain information of DC-link voltage ripple. The
potentials of FFNN in the capacitance estimation are illustrated
in a hardware prototype [87].

In [107], considering the dynamic capability of RNN, an
impedance identification method is proposed based on RNN to
enable the stability analysis for power electronic systems over
a wide frequency range. The RNN is applied to build a model
that can produce identical outputs as the physical system
given the same inputs. The inputs of RNN include three-phase
voltages va, vb, vc and the output is the a-phase current ia. As
a result, the RNN-based model possesses the same frequency
characteristics as the physical one. It can be performed for
the impedance identification without interrupting the system
operation.

In [102], an improved ANFIS is applied to estimate the
capacitance and the equivalent series resistance (ESR) of the
supercapacitor. At condition monitoring time t, the inputs of
the ANFIS include the supply voltage Vt, the supercapacitor
temperature θt, and a time series ESRt−400:100:t consisting
of 5 previous ESR data points. The output of the ANFIS is
the ESR estimations in future p steps. Experimental analysis
indicates that ESR of supercapacitor can be accurately esti-
mated and the normalized root mean square error of the ESR
estimation is as small as 0.025 at condition monitoring time
of 2600 h.

A summary of the framework for model-free parameter
identification methods is given in Fig. 15. It can be seen that AI
methods serve as the regression tool f(·) between the available
input signals and the parameter to be monitored.

The model-free method is attractive for industrial appli-

Fig. 16. Dynamic model of a PV panel for parameter identification with
model-based method [69]. The model is explicitly formulated with the system
parameters, including the input current Iph, output current Io (i(t)), voltage
vsh across capacitor Csh, resistor Rsh, p-n junction capacitance Csh, and
resistor Rs, by using (5).

cations due to less hardware cost. However, it is typically
sensitive to external noise and disturbance due to the lack
of system model. Thus, its robustness should be carefully
considered. This issue is possibly mitigated with a large
amount of data in the training stage [158] to cover situations in
field applications as much as possible. Nevertheless, the data
collection is time-consuming and costly.

Another category of the system parameter identification is
the model-based method. As the name implies, for a model-
based method, system dynamics and models are partially
known in advance and the identification model is formulated
with unknown model parameters. In this way, the system
identification task is equivalent to the estimation of optimal
parameters in the model, which is essentially an optimization
task. In this case, AI, especially the metaheuristic methods,
is utilized as an optimizer to find the optimal solutions
heuristically. Numerous approaches such as PSO [57], crow
search algorithm [73], GA [69], etc, or their improved variants,
can be exploited.

In [69], a parameter identification method to facilitate the
health diagnostic of a PV panel is developed. The equivalent
circuit of the PV panel is given in Fig. 16, and its system
model is explicitly derived as


iCsh(vsh, v)= Iph − iD(vsh)− vsh

Rsh
− vsh − v

Rs
,

dvsh(vsh, v)

dt
=

1

Csh

[
Iph − iD(vsh)− vsh

Rsh
− vsh − v

Rs

]
,

(5)
where Iph is the input current, Io is the output current, vsh is
the voltage across the capacitor Csh, Rsh is the resistance,
and Csh is the p-n junction capacitance. As a result, the
parameter identification is equivalent to find a parameter set
G = {Iph, Io, vsh, Rsh, Csh, Rs} that ensures an identical
output as the physical system. By injecting large signal distur-
bances to the panel voltages in the testing stage, the dynamic
response of the current-voltage characteristics is sampled to
calculate the objective function as

fobj(G) =
1

N1 −N2 + 1

N2∑
k=N1

(ip[k]− i[k])
2
, (6)

where ip[k] and i[k] are the current output of the model and
the physical system, respectively, and N1 and N2 are the start
index and the end index for the sampling. Subsequently, an
improved GA method is used to explore an optimal solution
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Fig. 17. k-means clustering method for discretization of filtered degradation
paths of increment of drain-to-source on-state resistance ∆RDS(on) of different
power MOSFET devices #26, #29, #32, #35, #36, #37, #38 [130].

minimizing fobj(G) in (6). A similar investigation can be
found in [57], where a modified PSO algorithm is applied
to the internal parameter identification of a PV panel.

Due to the involvement of system dynamics and models, the
amount of data required for the estimation can be significantly
reduced for the model-based methods. Also, the overfitting risk
in the model-free methods can be mitigated. It exhibits better
dynamics to handle unexpected disturbance and switchable
working modes. However, due to the system complexity, the
system dynamics and models are challenging to formulate in
most cases.

For parameter identification methods in power electronics,
the accuracy and robustness in terms of the complex envi-
ronment should be considered. For example, for the condition
monitoring of power MOSFETs in [130], the device is consid-
ered as failed if there is an increase of 0.08 Ω for the degra-
dation indicator of drain-to-source on-state resistance RDS(on).
Such a tiny increment is challenging to be observed. Thus,
more research efforts are necessary to improve the sensitivity
of the AI-based parameter identification methods. Moreover, it
is worth mentioning that computational burden and embedded
capabilities of the parameter identification algorithm should
be considered for field applications.

2) Data Preprocessing and Feature Mining: Data prepro-
cessing and feature mining are concerned with refining the
raw data to better serve the applications, e.g., fault diagnosis.
By exploring dataset structure, it includes data cleaning to
reduce noise, data clustering to discover groups of similar data
points, density estimation to identify the distribution of data,
data compression that projects high-dimensional data down to
low-dimensional data to reduce the number of features, data
fusion to integrate multiple information sources, etc. Typically,
the performance of the subsequent PHM application, e.g., the
diagnostic accuracy, can be significantly improved if the data
preprocessing and feature mining are properly conducted.

In [130], a reliability assessment method for power MOS-
FETs based on a continuous-time Markov chain is proposed.
To discretize the continuous degradation path of power MOS-

FETs without breaking the inherent monotonicity, the k-means
method is applied to divide the evolution of drain-to-source
on-state resistance RDS(ON) into 11 discrete states, as shown
in Fig. 17.

In [132], a health state identification method for IGBTs
based on self-organizing maps (SOMs) is proposed. It is
essentially a clustering task, where the states of the device
are clustered as the healthy state, the partially degraded state,
the heavily degraded state, and the failure state considering the
distance between the input measurements (including collector
current Ic, collector-emitter voltage Vce, and case temperature
T ) and the best matching unit of the trained SOMs.

In [159], a composite failure precursor of SiC MOSFETs
is developed with a data fusion technique of genetic pro-
gramming, which is a variant of GA. It integrates multiple
degradation signals of a power semiconductor device in a
nonlinear way. Since the composite failure precursor is directly
optimized in terms of the RUL prediction model, the prediction
accuracy is improved by 35.3% and the prediction uncertainty
is reduced by 16.3%. It indicates that data fusion in condi-
tion monitoring is potentially useful especially for system-
level applications (e.g., converters), where multiple physical
degradation signals exist.

An integrated toolbox “Diagnostic Feature Designer” for
the feature identification is available in Matlab [160], which
can be applied to the data preprocessing and feature mining
as an automatic tool.

B. Anomaly Detection and Fault Diagnosis

The anomaly detection makes a binary decision and focuses
on the abnormal behavior identification. It provides an indica-
tion when the rated system characteristics or nominal param-
eters exceed the predefined safety range. Once the anomaly
behavior occurs, the fault diagnosis [19] identifies and locates
the detailed failure modes subsequently. Essentially, anomaly
detection and fault diagnosis are the classification, regression,
or clustering tasks. Based on the learned relationship from
the training stage, it is concerned with determining the fault
label when a new fault signature becomes available. Note
that the feasibility of AI-based anomaly detection and fault
diagnosis is based on two assumptions [33]: firstly, the fault
occurrence in any components has an impact on the fault
signature; secondly, the impact on these signatures varies with
different fault modes and fault locations. The methods of
anomaly detection and fault diagnosis can be categorized as
supervised learning methods and unsupervised methods.

1) Supervised Learning Methods: In [92], an FFNN is
applied to establish the nonlinear relationship of the inputs
and outputs of a full-bridge diode rectifier. The training of
the FFNN is completed at the normal operation mode of
the rectifier, as shown in Fig. 18. As a result, the principles
and mapping relationship between the inputs, including input
voltage vi(t), input current ii(t), and output current io(t), and
the output signal of output voltage vo(t) are characterized,
considered as a digital emulator indicating the normal oper-
ational mode of the rectifier. This digital emulator and the
physical rectifier are simultaneously operated and their outputs



18

Input Actual Output

Estimated
Output

  Full-bridge 
diode rectifier

+

-
Feed-forward

Neural Network

Fig. 18. Feed-forward neural network (FFNN) for anomaly detection of a full-
bridge diode rectifier. The FFNN serves as a digital emulator of the rectifier
commissioned in normal mode. Inputs of the FFNN include input voltage
vi(t), input current ii(t), and output current io(t); the output of the neural
network is output voltage vo(t) [92].

are compared in real-time. Once the monitored output voltage
of physical rectifier significantly deviates from the output of
FFNN, it suggests that the rectifier runs into an abnormal
mode, which facilitates the anomaly detection. In this case,
the FFNN essentially serves as the regression tool.

In [89], an open-circuit fault diagnosis algorithm is proposed
for the inverter in a microgrid system subjected to varying load
conditions. A signal processing method is proposed to reduce
the amount of information needed for the fault representation
and suppress the impact of the load change. An FFNN is used
as a diagnostic classifier. The computational burden of the
proposed method can be reduced to 10% of that of the existing
fault diagnosis algorithms. In this case, the FFNN serves as
the classification tool. Similar fault diagnosis ideas include the
ANFIS to determine the severity levels of a capacitor in the
DC-link filter [101].

In [111], a multi-switches fault diagnosis algorithm for
voltage-source inverters is proposed, and an echo state network
(ESN) is used as a diagnostic classifier in the presence of small
low-frequency data. Note that ESN is an improved variant of
RNN to avoid gradient exploding and vanishing in the training.
In this work, the diagnostic performance of ESN is compared
with the FFNN, the FFNN with a wavelet activation function,
and the RBFN. It indicates that the ESN is superior in the
sensitivity, design process, and training speed.

In [114], a classifier based on an 1-D convolutional neural
network (CNN) is proposed for the fault diagnosis of a
modular multilevel converter. One advantage of 1-D CNN is
that the feature extraction and diagnostic classification can
be integrated together, which enables the fault diagnostics
on the raw data directly. In this way, the feature extraction,
which is usually experience-intensive, can be avoided. The
experimental results indicate that the proposed method is
highly reliable and provides a detection accuracy of 98.9%
and a fault diagnostic accuracy of 99.7% within 100 ms.

In addition to the above neural network-based methods,
kernel methods, including the support vector machine and
the relevance vector machine, are also applied for anomaly
detection and fault diagnosis. One advantage of the kernel
methods is that the dataset size requirement is relatively lower
than the neural network-based methods.

In [7], based on the time-domain fault features, a support
vector machine-based fault diagnosis method is proposed for
incipient yet progressive faults of IGBTs in an inverter. The

training of SVM can be completed by metaheuristic methods
(e.g., PSO, GA, etc.). In the case study with a total of 41
classes of faults, it achieves an average accuracy of 94.82%
being robust to both load variations and motor parameter
shifts.

In [126], a relevance vector machine (RVM) is applied
for the fault diagnosis of a cascaded H-bridge multilevel
inverter. Principal component analysis (PCA) is applied to
extract the fault signal feature. Experimental analysis indi-
cates that the RVM outperforms the FFNN and the SVM,
with 100% diagnostic accuracy in this specific case study.
Compared to SVM with the direct fault label as its output,
RVM is formulated under the Bayesian framework. It makes
probabilistic outputs of the fault information, which possesses
good theoretical guidance and is favorable to the uncertainty
analysis on diagnostic results. Generally, for the same task,
the RVM is sparser than SVM, indicating faster speed for field
applications. However, the training time of RVM is generally
longer than SVM.

2) Unsupervised Learning Methods: In [135], principal
component analysis (PCA) is applied to the anomaly detec-
tion of SiC MOSFETs. Multiple statistical features, including
Kurtosis, Skewness, etc., are considered as the inputs of the
PCA algorithm. The output is compact with fewer features
and a transformation matrix. For field applications, the newly
available data is applied to the transformation matrix for the
calculation of an anomaly index. Abnormal behavior is notified
when the anomaly index exceeds a predefined threshold. The
method is verified by a processor-in-the-loop experiment. This
detection mechanism is similar to [92]. Other unsupervised
learning methods in anomaly detection and fault diagnosis,
including k-means and SOMs, can be found in [117].

3) Discussions: Note that each AI algorithm possesses
advantages and limitations. To fully exploit the advantages of
each algorithm, it is effective to combine multiple algorithms
for a decision-level fusion to improve the diagnostic accuracy
and robustness. An example of decision-level fusion for fault
diagnosis of IGBTs can be found in [95]. More ensemble
methods to combine multiple algorithms can be found in
Chapter 14 in [1]. From the AI perspective, there is a negligible
difference between power electronics and other engineering
areas (e.g., electromechanical applications) in terms of the
anomaly detection and fault diagnosis tasks. Two reviews of
AI methods in anomaly detection and fault diagnosis can be
found in [161, 162].

Note that various AI methods and their variants have been
successfully applied to anomaly detection and fault diagnosis.
There are differences in terms of how the data are collected and
types of available data in different applications, which is an
important aspect of practical applications of AI. An integrated
platform “Predictive Maintenance Toolbox” is available in
Matlab [163], which includes various algorithms of anomaly
detection and diagnostics. It is beneficial for the method de-
velopment and benchmark analysis. From the AI perspective,
most of the methods can be interchangeably applied with a
comparable performance in terms of the evaluation accuracy.
Although the accuracy can be further improved by advanced
AI algorithms (e.g., deep learning methods), the accuracy
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Fig. 19. Flowchart and procedures of AI methods for remaining useful life
(RUL) prediction of power electronic systems. The regression model can be
established based on historical dataset. The probability density function (PDF)
of degradation level at any specific condition monitoring time can be estimated
based on the regression model. The PDF of the RUL can be derived from the
PDF of the degradation level.

improvement after a high score, e.g., 90%, is relatively less
significant for applications compared with other practical
concerns. More considerations should be devoted to the gap
between theoretical algorithms and practical implementations,
where the practical considerations include

1) In addition to the single component fault, the failure
mode of multiple components failed simultaneously
should be considered. The dependence and coupling
effects among the component failures should be incor-
porated into the diagnostic algorithms.

2) Considering the challenges in the data acquisition of
power electronic systems, the training dataset for prac-
tical application is typically limited. This situation is
even worse for a dataset with unbalanced fault labels,
i.e., the ample data of the normal operation case and
the scarcity of data with fault labels due to catastrophic
failures. Thus, the algorithm applicability in the presence
of limited size of dataset and poor quality dataset should
be investigated.

3) The practicality including computational burden, adap-
tive capability, robustness, difficulty of algorithm design
and debugging [111], implementation cost, etc, should
also be comprehensively considered.

C. Remaining Useful Life Prediction

Lifetime prediction in the design phase is to support the
DfR, which refers to the feature of a population of units. As
one of the critical aspects of Prognostics and Health Manage-
ment [164], the RUL prediction is not to predict the lifetime
of a population of units. It predicts the residual lifetime of an
individual unit in service based on the condition monitoring
information. There are associated uncertainties in the lifetime
prediction, including model calibration errors, manufacturing
tolerances, variations of operational environments and work-
load, etc. These uncertainties result in inaccurate reliability

Fig. 20. Remaining useful life prediction of power MOSFETs based on echo
state network [110]. For the network training, the input weights W in and
the recurrent weights W are randomly generated. The output weights are
estimated by least-square methods. By using particle filter, the output weights
W out are further updated with newly available condition monitoring data of
device in service.

estimates for a specific unit in field operation [165]. RUL
prediction is applied as an additional tool to reduce the un-
certainties for reliability-critical, safety-critical, or availability-
critical applications.

The flowchart and procedures for RUL prediction are given
in Fig. 19. Given the fact that the system is properly function-
ing at condition monitoring time t, its RUL l is defined as the
residual lifetime when the degradation process D(t) exceeds
the failure threshold w, i.e.,

l = inf {l : D(t+ l) ≥ w | D(t) < w,D1:j} , (7)

where D1:j is the cumulative CM information up to time
t. Note that RUL l is a random variable. In addition to its
expected value, the uncertainty metrics including the lower
and upper confidence interval (llo, lup) are also of great impor-
tance. AI methods in RUL prediction is typically dealing with
a nonlinear regression between the degradation information
and the corresponding RUL based on the training dataset
[166]. In this way, degradation patterns can be characterized.
Once the degradation patterns have been learned, the degra-
dation trend can be directly projected based on the regression
model to facilitate the future degradation level prediction. As
a result, the RUL can be estimated.

In [110], an echo state network is applied to the RUL
prediction of power MOSFETs. The input of the echo state
network is the degradation indicator drain-to-source on-state
resistance RDS,(on) at times k − 1 and k, and the output
is the RDS,(on) at time k + 1. To facilitate the adaptation
of the echo state network, a particle filter is exploited to
recursively update the output weights when new condition
monitoring data of the in-situ device becomes available. In
this way, the degradation model is adaptive to varying external
environments and operational modes. Another neural network
method involving time-delayed neural network for remaining
useful life prediction of IGBTs can be found in [113].

In [118], Gaussian processes regression is applied to the
RUL prediction of IGBTs. For the degradation modeling,
the nonlinear relationship between the decrement of on-state
collector-emitter voltage ∆Vce,on and the condition monitoring
time is established by the Gaussian processes regression. Since
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Fig. 21. Gaussian processes regression for the remaining useful life prediction
of IGBTs [118]. The Gaussian process can intrinsically calculate the error bar
of the degradation evolution on state collector-emitter voltage ∆Vce,on, which
is essential for the confidence interval of the remaining useful life (RUL).

Gaussian process is formulated with the Bayesian framework,
it is able to predict the uncertainty of variation ∆Vce,on
intrinsically. It can be seen from Fig. 21 that the error bar of the
evolution of ∆Vce,on is explicitly derived, which can be further
utilized for the calculation of the confidence interval of RUL.
Another example of kernel method for RUL prediction can be
found in [74], where a support vector machine is applied to
the degradation modeling of a buck converter.

To make AI-based methods of the RUL prediction more
practical for field applications, more efforts should be devoted
to the following aspects including

1) Uncertainty quantification: Compared to other
regression-related tasks, e.g., control applications,
the capability of uncertainty quantification is more
critical for RUL prediction. As shown in Fig. 19, the
RUL is a random variable and thus quantification of the
confidence interval is essential for the optimal decision-
making. These uncertainties come from the population
heterogeneity, measurement noise, varying operational
settings, etc, which should be comprehensively
considered for a practical solution. AI methods are
rather challenging for the uncertainty quantification of
prediction results considering the black-box feature.
Several feasible approaches include the Monte-Carlo
methods [113], incorporating particle filter in the neural
network [110], and Bayesian-based AI methods (e.g.,
Gaussian process, relevance vector machine). Another
promising direction is the stochastic data-driven
methods [153, 159, 167], which can intrinsically provide
the probability density function (PDF) of the RUL for
calculating the confidence interval.

2) Adaptive capability: It is concerned with the the model
parameter tuning layer in Fig. 14 for connecting the
offline models and the online models, which is a key
step for practical applications. If a specific AI method
lacks an adaptive capability, its application is limited
since one prerequisite is that the training data and the
test data should be generated under similar situations
(e.g, external environments and operational modes) and

Table V: Application requirements of AI in design, control, and maintenance
of power electronic systems. High: +++, moderate: ++, low: +
hhhhhhhhhhhRequirements

Applications Design Control Maintenance

Computational Effort +++ ++ ++
Algorithm Speed + +++ ++

Algorithm Accuracy ++ +++ +++
Dataset requirement + + +++

share a high-level similarity [94]. It is challenging for
power electronics since operational settings of the in-
situ system (i.e., the test data) are quite different from
that of the training dataset, which is generally obtained
with accelerated testing experiments. The majority of
the research [74, 113, 118] assumes that the operational
settings of the in-situ system are identical to the training
dataset (e.g., accelerated aging experiments), which may
not be the case in field applications. Thus, the adaptive
capability of the AI-based RUL prediction method is
critical to bridge academic research and industrial appli-
cations. Other promising directions of model parameter
tuning include the explicit mapping relationship deriva-
tions [168] and transfer learning [169, 170] of degra-
dation characteristics under various operational settings
(temperature, voltage, humidity, etc.). This may, how-
ever, imply intensive investigations of system models.

VI. OUTLOOK ON AI FOR POWER ELECTRONIC SYSTEMS

From the algorithm perspective, it is necessary to investigate
the features of AI when it applies to different life-cycle phases.
A comparison of AI algorithms in each phase of the life-cycle
of power electronic systems is given in Table V. In design, due
to a large number of decision variables and the iterative trial-
and-error procedure in the optimization, the computational
effort is intensive compared to other applications. While there
is no specific requirement of the algorithm speed since it is
typically performed offline. Moreover, less training dataset is
required since metaheuristic methods are generally applied for
such tasks. In control, the requirement of algorithm speed
is the most critical. In addition, the accuracy, stability, and
dynamic performance are critical as well. For the cases where
the algorithm is tuned online, it is unnecessary to prepare
the dataset for the model training. For the maintenance, the
requirement of the algorithm speed is moderate since the
degradation of power electronic system is slow and the long
time span of decision making is acceptable for maintenance.
Nevertheless, for some specific applications, e.g., anomaly
detection and fault diagnosis of safety-critical systems, the
requirement of algorithm speed is still high. Most of the
algorithms in maintenance can be prepared in offline mode and
efficiently tuned in online mode, and the computational effort
in this application is moderate. Note that the model training
performance is highly dependent on dataset. Thus, the dataset
requirement, e.g., dataset quality, dataset size, label balance
(e.g., limited abnormal data in the training dataset), etc., is
the most critical.
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It is concluded that AI possesses immense potentialities in
power electronic systems. Many opportunities and issues are
yet to be explored as follows:

1) Motivations and Justifications of AI Applied to Power
Electronic Systems: Although there are numerous stud-
ies on AI for power electronics, the practical imple-
mentation in industry is still limited. It is necessary for
deeper investigations into specific problems in power
electronics where AI can do better than conventional
methods. The motivations and justifications of AI-based
solutions should be well identified by comparing to
existing methods especially from the industrial per-
spective, e.g., algorithm complexity, algorithm accuracy,
implementation reliability, computational energy con-
sumption, algorithm debugging, embedded capability,
extra hardware cost, etc.

2) Interwoven AI implementations through Life-cycle
Phases: Implementations of AI in each life-cycle phase
of design, control, and maintenance will facilitate flex-
ible interactions. This potential is beneficial to overall
performance optimization and procedure simplification.
It enables the system capability in managing data flow
between electrical and other disciplines (e.g., mechanical
area) [13] as well. For example, aging information
obtained by the AI-based system parameter identification
can be flexibly incorporated into the AI-based controller
for the reliability improvement. Therefore, more atten-
tion should be devoted to the interactions powered by AI
between life-cycle phases of power electronic systems.

3) Multilevel Information Fusion: For a specific task, var-
ious sources of information and models are generally
available. The task can be better fulfilled if these multi-
ple information sources and models are fully exploited.
Multilevel information fusion can be performed at the
data-level [159, 171], feature-level, decision-level [95],
and their combinations, in order to exploit the advan-
tages of each information sources. For example, with a
deep understanding of deterministic principles, the phys-
ical model of power electronic systems can be combined
with AI as a hybrid method, i.e., a decision-level fusion.
As a result, the model-driven advantages and the data-
driven advantages can be exploited simultaneously for
better accuracy and robustness.

4) Computation-light AI: The rapid development of IoT
and continuous data collection provides an increasing
amount of data, which may facilitate deep learning
[169] in power electronics. Although complex deep
learning techniques can provide superior performance,
it is computationally intensive and challenging for the
case of power electronic systems where no powerful
computational unit supports such an implementation in
most cases. A prospective direction is the computation-
light AI algorithms that can be implemented on cost-
effective units but provides comparable performance
with deep learning algorithms.

5) Data-light AI Application: One of the bottlenecks of
effective AI implementation in power electronics is the

dataset. The size of the dataset is generally small since
the experiments are costly and time-consuming. This
situation is severe especially for safety-critical systems.
Thus, developing AI algorithms with lower dataset re-
quirement, i.e., data-light AI solutions that can provide
acceptable performance in the presence of poor datasets,
is a prospective direction.

6) Explainable AI: Most of the AI algorithms in power
electronics suffer from the “black-box” feature. It makes
AI-based solutions opaque and less convincing for prac-
titioners to implement in industry applications, espe-
cially for safety-critical cases. There is a pressing need
to improve the algorithm transparency for explainable AI
with better interpretability. Understanding how models
come up the decisions is critical for model simplification
and safety, with which AI solutions can be implemented
with confidence.

7) Dataset Privacy: An increasing attention has been paid
to the data privacy, e.g., General Data Protection Reg-
ulation (GDPR) [172] in the European Union. With
these critical regulations, the training of standard AI
algorithms is challenging since a centralized data collec-
tion may be not feasible in the future. Thus, for power
electronics applications, it is promising to develop a
collaborative learning scheme for AI algorithms without
collectively aggregating data from different locations,
e.g., federated learning [173]. It is well aligned with the
trend of data privacy regulations for the implementation
of AI solutions.

8) Power Electronics Database: Due to the complexity
of system dynamics of power electronics, extensive
datasets are required for the model training, especially
for the maintenance applications. While the experi-
mental testing for data collection is generally time-
consuming and expensive. There is a compelling de-
mand for building up common power electronics data
and knowledge base. These public datasets are critical
to benchmark algorithm performance and accelerating
application development. It will benefit the global power
electronics communities in academia and industry.

VII. CONCLUSIONS

Existing AI methods in power electronic systems are
comprehensively reviewed in this paper. From a life-cycle
perspective, the applications of AI in power electronic sys-
tems are discussed for the design, control, and maintenance.
These applications are essentially dealing with the tasks of
the optimization, classification, regression, and data structure
exploration. The above tasks can be tacked with AI methods
with great potentials, including expert system, fuzzy logic,
metaheuristic methods, and machine learning. Relevant AI
methods with their improved variants are summarized and
discussed. Features and limitations of the existing research
in each life-cycle phase are identified. Moreover, the outlook
and future research opportunities of AI in power electronics
are put forward.
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