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Abstract

We propose a new family of echo hiding procedures designed to work with audio files with ternary watermarks. Most attention is

paid to the case when the image is used as a watermark. The possibility of using a melody for this purpose is also mentioned. A

human is supposed to be a detector to prove the presence of a watermark in the audio file. The approach employs infinite impulse

response (IIR) filters of a particular form that provides a capability insertion a few symbols into a fragment of the container.

The suggested method’s payload and resistance to various attacks exceed the parameters of the classical implementation of echo

hiding.
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Abstract—We propose a new family of echo hiding procedures
designed to work with audio files with ternary watermarks.
Most attention is paid to the case when the image is used as a
watermark. The possibility of using a melody for this purpose is
also mentioned. A human is supposed to be a detector to prove
the presence of a watermark in the audio file. The approach
employs infinite impulse response (IIR) filters of a particular
form that provides a capability insertion a few symbols into
a fragment of the container. The suggested method’s payload
and resistance to various attacks exceed the parameters of the
classical implementation of echo hiding.

Index Terms—audio files, echo hiding, ternary watermark

I. INTRODUCTION

Enforcing the author’s rights is still an ongoing problem
in multimedia. The author, who only starts the career, is
induced to upload the created composition in open access. To
protect the work from roguery, the creator employs watermarks
embedded in the product. The goal is to do this gently without
significantly distorting the host signal. Various methods for
inserting watermarks into audio files can be found in review
[1] as well as in the books [2], [3], [4]. It should be noted
that embedded data have not to be sensitive to attacks through
general transformations of the encoded audio signal, such as
filtering, resampling, or lossy data compression.

Echo hiding is a well-known method for embedding data
into an audio signal [5]. The method has various uses, in-
cluding providing copyright protection and info integrity. The
echo hiding watermarking is getting popular last time [6],
[7], [8]. The reason for this is the simplicity of the insertion
watermark and the lack of a clean file for the extraction of the
watermark. Single echo hiding, bipolar echo hiding, backward-
forward echo hiding, bipolar backward-forward echo hiding,
and time-spread echo hiding methods were developed recently.
In echo hiding audio watermarking method, data are embedded
into cover audio by adding up delayed versions of the audio
signal back to itself. In digital signal processing terms, this
process corresponds to finite impulse response (FIR) filtering
with an impulse response that consists of a delta impulse at
time zero and a time-shifted and weighted delta impulse. To
embed multiple echoes, one can use more than one delayed
delta impulses.

The work is performed according to the Russian Government Program of
Competitive Growth of Kazan Federal University.

Typically, before embedding a watermark, the watermark
signal is converted to a binary sequence [1]. In [9], [10] it is
shown, that the ternary form of the watermark is a practical
and natural choice in certain cases. These are watermarks that
can be recognized by the Human Auditory and Visual Systems
since watermarks are music and images fragments converted
into ternary sequences. The conversion of a music file into a
ternary form is rather simple. Let Music[k], k = 0, 1, . . . , L−
1 be a fragment of musical file written in wav format. Let us
choose a threshold Thr and convert Music into a ternary
sequence

TMusic[k] =

{
0, |Music[k]| < Thr,

sign(Music[k]), otherwise
(1)

When playing a new sequence, we receive poor quality, but
the main tune of the original music can be recognized. There
is a problem with optimal setting the value of Thr in (1).
This issue is investigated in [9]. It should be pointed out
that (1) is not the only method of converting a music file
into a ternary form. Another natural example is the image
used to construct the watermark. The transformation of the
grayscale image into a binary form is standard procedure. The
development of an algorithm that converts grayscale pictures
into ternary images is the subject of the paper [10]. The idea of
the method is as follows. There are two threshold Thr0, Thr1.
Let Pict[u, v], u = 0, 1, . . . , L− 1, v = 0, 1, . . . ,M − 1 be
the matrix presentation of a picture, 0 ≤ Pict[u, v] ≤ 255.
The first step is calculation Thr0, Thr1 providing a kind of
suboptimal approximation of the picture by means (2).

TPict[u, v] =


0, P ict[u, v] < Thr0,

Thr0, Thr0 ≤ Pict[u, v] < Thr1,

Thr1, P ict[u, v] ≥ Thr1.
(2)

But the matrix TPict[u, v] does not fit ternary presentation of
a picture as a watermark since the values Thr0, Thr1 depend
on picture. Instead, we implement standard representation of
picture by means of the matrix SPict[u, v] defined by (3) :

SPict[u, v] =


0, TP ict[u, v] = 0

127, TP ict[u, v] = Thr0

255, P ict[u, v] = Thr1.

(3)

While embedding a picture as a watermark, we convert the pic-
ture into standard form and then change the values 0, 127, 255



for −1, 0, 1, respectively. An example of an image and its
standard form is shown in Fig 1. One can see that there
are more than three levels of brightness of the pixels in the
standard form of the picture in Fig. 1. That is the result of
the work of the viewer exploited for insertion pictures into
documents.

In our paper, we present a new kind of echo hiding in audio
files that fits the ternary form of watermarks. Recall the basic
ideas realized in the echo hiding procedure [5]. Let

Fragm = s0, s1, . . . , sN−1 (4)

be a fragment of the audio file where the watermark is
embedded. With the introduction of the echo, some element
sk changes to s̄k = sk+a ·sk+p where p is an integer number,
and a is a small value. Position p in the modified fragment
can be revealed through cepstral analysis or autocorrelation of
the fragment. That method can be generalized by the leverage
of an arbitrary finite impulse response (FIR) filter

s̄k =
∑
i∈S

bi · sk−i. (5)

Here bi are small values. S is a set of indices that are used
for coding a watermark. In our paper, we suggest expanding
this approach by replacing the FIR filter in (5) with a special-
shape infinite impulse response (IIR) filter. In what follows,
we think of trit and symbol in ternary sequence as synonyms.
Throughout, we use the following notation: if A is an array,
then FA is a result of discrete Fourier transforming (DFT) of
A.

(a) Original picture

(b) Picture in standard form

Fig. 1: Example of the original picture and its standard form

II. IIR FILTER IN ECHO HIDING PROCEDURE

Let us suppose that a watermark is represented as a ternary
sequence Watr = 〈a0, a1, . . . , aM 〉 where ai ∈ {−1, 0, 1}.
Our goal is embedding of one or more symbols of the
watermark into the Fragm (4) of the host file. We start with the
case where only one symbol of the watermark is embedded
into the fragment.

A. Simple IIR filter in echo hiding procedure

Let modified sequence item

s̄k = a · s̄k−p + sk − b · sk−q, (6)

where p, q are natural numbers. This is a difference equation
that defines how the output signal of the IIR filter is related
to the input signal. To find the transfer function of the filter,
we first take DFT of each part of (6), we get

Tr(n) =
1− b · exp(−w · q · n/N)

1− a · exp(−w · p · n/N)
, n = 0, 1, . . . N−1. (7)

In the arising formula w = 2 · π · j. Let FFragm(n), n =
0, 1, . . . , N−1 be the result of DFT of the whole fragment (4).
Then the output of FFragm filtering is the modified fragment
MFragm that has the form

MFragm = IDFT (Tr · FFragm). (8)

Here, the operator · denotes the elementwise product of two
sequences of the same length, and IDFT means the inverse
transform for DFT. The fragment MFragm replaces Fragm
in the host file. While extracting the watermark, we use the
cepstral transform. The standard cepstral transform applied to
the modified fragment MFragm produces

Cepstr = IDFT (log |FMFragm)|) =

IDFT (log |1− b · exp(−w · q · n/N)|)−
IDFT (log |1− a · exp(−w · p · n/N)|)+
IDFT (log |FFragm|).

(9)

For small values of c the meaning log(1 + c · exp(j · t)) ≈
c ·exp(j · t). Since log |Z|2 = log(Z)+ log(Z̄) and exp(w ·k ·
n/N) = exp(−w · (N−k) ·n/N), the cepstrum of MFragm
has four splashes at the points p,N − p, q,N − q. Assuming
p = q and b = −a in (9), we denote the resulting cepstral
function as Cepstr. We have

Splash = Cepstr(p) ≈ 2 · Cepstr(p), (10)

and the sign of Splash coincides with the sign of the parame-
ter a under a small value of |IDFFT (log |FFragm|)| at this
point. The value of Splash is two times more than one in the
cepstrum corresponding to the hiding procedure according to
(5). A special case of (10) is the situation where p = q = N/2
and b = −a. In this case, Splash ≈ 4 ∗ Cepstr(N/2) and is
four times more than the splash in cepstrum related to (5).
If Symbol ∈ {−1, 0, 1} then the embedding of the Symbol
into a fragment is realized by the IIR filter (6) with p = q,
a = c · Symbol, and b = −a. The coefficient c influences the
transparency of the embedding procedure.



All these assertions are demonstrated in Fig. 2. All the
symbols are embedded into the same fragment of the host.

100 105 110 115 120 125 130 135 140
Sample

0.2

0.1

0.0

0.1

0.2

Ce
ps

tru
m

(a)

100 105 110 115 120 125 130 135 140
Sample

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ce
ps

tru
m

(b)

100 105 110 115 120 125 130 135 140
Sample

0.10

0.05

0.00

0.05

0.10

Ce
ps

tru
m

(c)

100 105 110 115 120 125 130 135 140
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Ce
ps

tru
m

(d)

Fig. 2: Cepstrum. Length of the fragment N = 240; (a) p =
118, q = 114, a = b = 0.5. (b) p = q = 114, a = 0.5, b =
−0.5. (c) p = q = 114, a = b = 0. (d) p = q = 120, a =
0.5, b = −0.5

B. Embedding a few symbols of the watermark into a single
fragment

At this point, we display an extension of the method for
embedding a few symbols into a single fragment of the
host. Suppose that among M symbols of a watermark, which
must be inserted into the same fragment, only K symbols
are nonzero. For ease, suppose these are K first symbols
of the watermark. Let Positions = 〈p0, p1, . . . , pK−1〉 be
the positions in the fragment spectrum where the nonzero
symbols will be placed in and 〈pK , pK+1, . . . , pM−1〉 be the
positions assigned to zero symbols. These data, corresponding
to nonzero items, are used in the development of the IIR.
The insertion procedure is presented in Algorithm 1. Here the
transfer function is

Tr(n, p, c,N) =
1 + c · exp(−w · p · n/N)

1− c · exp(−w · p · n/N)
. (11)

It follows from (11) that Tr(n, p, c,N) = 1/Tr(n, p,−c,N).
The IIR filter used to embed nonzero Symbols is a series of
connected simple IIR filters described in the previous section.
An example of embedding four symbols 1, 1, 0,−1 in the
positions 106, 108, 110, 112 of a fragment of length 240 is
shown in Fig. 3.

III. TRANSPARENCY OF EMBEDDING

Let us check the distortion of the original fragment after
inserting K watermark characters according to Algorithm 1.
To do this, use SNR in form (12)

SNR = 10 · log10

(
σ2(|FFragm|)

σ2(|FMFragm− FFragm|)

)
. (12)

Algorithm 1 Embedding M Symbols of Watermark into
Single Fragment

Input: Fragm;C;Symbols;Positions
Output: MFragm {Modified fragment}

1: N ← Fragm {Length of fragment}
2: M ← Symbols {Number of symbols}
3: FFragm← Fragm {Implement DFT}
4: for I = 0 to M do
5: S ← Symbols[I]
6: P ← Positions[I]
7: if S = 0 then
8: continue
9: else if S = 1 then

10: for n = 0 to N − 1 do
11: FFragm[n]← FFragm[n] · Tr(n, P,C,N)
12: end for
13: else
14: for n = 0 to N − 1 do
15: FFragm[n]← FFragm[n]/Tr(n, P,C,N)
16: end for
17: end if
18: end for
19: MFragm← FFragm {Inverse DFT}

A. Simple IIR filter

If p = q and b = −a then the transfer function has the form
(11).We have

FMFragm(n)− FFragm(n) = Fragm(n)(Tr(n)− 1) =

FFragm(n)

(
2 · c · exp(−w · p · n/N)

1− c · exp(−w · p · n/N)

)
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Fig. 3: Example of cepstrum. Length of the fragment
N = 240; four symbols 1,1,0,-1 are embedded in positions
106,108,110,112. L1 - modified fragment, L2 – original frag-
ment



TABLE I: Compare of Real SNR with Theoretical One in the
Case of Single filter

Dependence on parameter c
Parameter c Real SNR (dB) Estimate of SNR (13) (dB)

0.2 8 7.8
0.15 11 10.5
0.1 14 13.9
0.05 20 20

and

|FMFragm(n)− FFragm(n)| =

|FFragm(n)|
(

2 · c
|1− c · exp(−w · p · n/N)|

)
≈

2 · |c||FFragm(n)|.
Hence

SNR ≈ −20 · log10(2|c|). (13)

An example of comparing the real value of SNR with the
theoretical one is presented in Table I.

From Table I, it follows that the estimate (13) is very close
to the real value.

B. Series of simple IIR filters

It can be expected that transparency depends on the type
of the embedded symbols. We can not present a simple
formula for evaluating SNR for the full file since the symbols
inserted in various fragments differ, and the SNR varies.
To demonstrate the situation, we present some experimental
results, which are collected in Table II. Here M = 4 and
we use short notations for SNR after embedding symbols:
I → [1, 1,−1,−1], II → [1, 1, 1, 1], III → [1, 0, 0, 1]. One
can see that there is a significant difference in the distortion
of a fragment, depending on inserted symbols.

IV. EXTRACTION OF WATERMARK

Let a be a symbol that is inserted at the position p of the
spectrum. From (10) we obtain |Cepstr(p) − Cepstr(p)| ≈
2 · c, where Cepstr(p), Cepstr(p) denote the cepstra as-
sociated with a 6= 0 and a = 0 respectively. Since the
positions p0, p1, . . . pK−1 are arbitrary, we select them with
step 2. We assume that Cepstr(p − 1) and Cepstr(p + 1)
are close to Cepstr(p). That is the basic idea realized in
Algorithm 2. The values of cepstrum are randomly distributed,
and the choice c/2 as Bound value provides better results.
Using Algorithm 2, one can extract only a single symbol

TABLE II: SNR Calculated in the Case Insertion Four Sym-
bols in Fragment

Dependence on parameter c
Parameter c I SNR (dB) II SNR (dB) III SNR (dB)

0.2 12 -5 2
0.15 14 -2 5
0.1 18 2 8.5

0.05 24 8 14

Algorithm 2 Extraction of Watermark Symbol at the Given
Position from the Modified Fragment

Input: MFragm; c; p.
Output: a {Symbol of watermark in position p}

1: Cepstr ←MFragm {Cepstrum}
2: Bound← c/2
3: Diff ← Cepstr[p]−0.5·(Cepstr[p+1]+Cepstr[p−1])
4: if |Diff | < Bound then
5: a = 0
6: else
7: a = sign(Diff)
8: end if

from the fragment at a given position of the spectrum. This
algorithm can be extended to the case where a few trits are
inserted into fragment, the algorithm must be implemented
for each position. An alternative approach to the problem is
implemented in Algorithm 3 where the value of c is excluded
from calculation. Here AllMFragms is the list containing all
modified fragments of the container and Pos – the positions
in spectrum utilized for insertion M symbols. We use notation

Algorithm 3 Extraction of Watermark Symbols by Means of
K-means Procedure
Input: AllMFragms;Pos
Output: Watermark

1: M ← Pos {Number trits inserted in MFragm}
2: Collect← 0{Empty list}
3: for MFragm in AllMFragms do
4: Cepstr ←MFragm {Cepstrum}
5: Block ←M {Zero block of size M}
6: for I = 1 to M do
7: P ← Pos[I]
8: Block[I] ← Cepstr[P ] − 0.5 ∗ (Cepstr[P − 1] +

Cepstr[P + 1])
9: end for

10: Collect← Block{Append to Collect Block}
11: end for
12: Centroids ← kmeans(Collect, 3) {kmeans creates

centroids for 3 clusters}
13: Watermark ← vq(Centroids, Collect){vq distributes

all collected values among 3 clusters}

kmeans and vq for the function from [11], which realize the
mentioned procedures. Since all hiding procedures are based
on the modification of random spectrum values, one can not
hope that all watermarks are restored accurately. We have to
have a criterion for evaluating the quality of the algorithm
intended to extract the watermark. The most natural digital
value for evaluating an extraction procedure is the trit error
rate (TER). That is the ratio of the number of incorrectly
extracted trits to the total symbols in the watermark. Let us
measure the quality of the two presented above algorithms. To
this end, we leverage the image in standard form in Fig. 1.
Length of fragment = 300, the number of trits embedded in



Fig. 4: Extracted watermark with TER=27%

fragment M = 3, container – a song written with sample
frequency 44100Hz. The results of the experiment are placed
in Table III. One can see that both algorithms have the same
quality.

V. ATTACKS

The advantage of applying the picture as a watermark is
shown in Fig. 4. Although TER is 27% (more than the quarter
of the trits is restored incorrectly), the image is recognized
without problems. We continue our experiments with the same
container, figure, M = 3, c = 0.1, and length of fragment
equals 300.

A. Filtering attack

Since the filtering of containers significantly changes the
spectrum of the signal, the inserted watermark can not be
recognized because TER > 55% in this case.

B. Additional noise attack

The random noise with uniform distribution, produced by
the random function from [11], is added to the watermarked
container. The extraction of the watermark is performed
through Algorithm 2 and Algorithm 3. The results are assem-
bled in Table IV.

C. Compression of container attack

That is the most straightforward attack. The container
written in wav format is converted to mp3 with various bitrates
and converted to wav format again. The initial bitrate of the
container is 705 kilobit per second (kbps). We use package
PyDub for manipulation with a container [12]. The results are
placed in Table V. That is the first case where Algorithm 3
shows its advantage against Algorithm 2.

TABLE III: Compare of Quality of Algorithm 2 and Algo-
rithm 3

TER depending on parameter c
Parameter c Alg2, TER (%) Alg3, TER (%)

0.2 8 7
0.15 3 4
0.1 4 4
0.05 17 16

TABLE IV: TER after Additional Noise Attack

Dependence on the level of noise
SNR (dB) Alg2, TER (%) Alg3, TER (%)

42 6.1 6.2
35 8.5 8.4
32 10.7 10.6
29 12.8 12.9

TABLE V: TER after Compression

Dependence on bitrate
Bitrate (kbps) Alg2, TER (%) Alg3, TER (%)

500 35 24
400 36 25
200 38 27
100 60 49

CONCLUSION

Implementation ternary picture as watermark has perspec-
tives for hiding watermark in audio files because the payload is
more than one compared with binary watermarks implemented
with the same length of fragments. Utilizing human as a
detector for recognition of the watermark is very effective
since the watermark can be recognized even for a high level
of TER. Usage of IIR filters for embedding increases splash
of cepstrum at chosen points and provides better resistance to
attacks compared to standard echo hiding.
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