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Abstract

Objective: Short-term cardiovascular compensatory responses to perturbations in the circulatory system caused by haemodial-
ysis can be investigated by spectral analysis of heart rate variability. This could provide an important variable for categorising
individual patients response to haemodialysis leading to a more personalised treatment. However, data obtained over a four-hour
haemodialysis treatment is significant in volume and subject to artefacts that can compromise its analysis.

Methods: The Lomb-Scargle Periodogram can provide a robust method of generating power spectral density estimates for large,
irregularly sampled and noisy data sets obtained in clinical settings, provided that careful attention is given to frequency limits.
The effect of different pre-processing methods on the resulting power spectrum is explored with simulated and real heart rate
variability data.

Results: Common pre-processing methods for correcting individual artefacts in heart rate records, such as interpolation, are
unreliable as they act as non-linear low-pass filters and distort the resulting spectral analysis. These distortions are present,
but less apparent within patient data and can mislead clinical interpretations.

Conclusion: It is more appropriate to exclude suspect data points than to edit them prior to spectral analysis via the Lomb-
Scargle periodogram, and where required, de-noise the entire heart rate signal by empirical mode decomposition. The use of a
False Alarm Probability metric can help establish whether spectral estimates are valid

Significance: Methods established to pre-process time-invariant data prior to power spectral density estimation fail when used

in conjunction with the Lomb-Scargle method.
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Abstract— Objective: Short-term cardiovascular compensatory 

responses to perturbations in the circulatory system caused by 
haemodialysis can be investigated by spectral analysis of heart rate 
variability. This could provide an important variable for 
categorising individual patients response to haemodialysis leading 
to a more personalised treatment. However, data obtained over a 
four-hour haemodialysis treatment is significant in volume and 
subject to artefacts that can compromise its analysis.  

Methods: The Lomb-Scargle Periodogram can provide a robust 
method of generating power spectral density estimates for large, 
irregularly sampled and noisy data sets obtained in clinical 
settings, provided that careful attention is given to frequency 
limits. The effect of different pre-processing methods on the 
resulting power spectrum is explored with simulated and real 
heart rate variability data.   

Results: Common pre-processing methods for correcting 
individual artefacts in heart rate records, such as interpolation, 
are unreliable as they act as non-linear low-pass filters and distort 
the resulting spectral analysis. These distortions are present, but 
less apparent within patient data and can mislead clinical 
interpretations. 

Conclusion: It is more appropriate to exclude suspect data 
points than to edit them prior to spectral analysis via the Lomb-
Scargle periodogram, and where required, de-noise the entire 
heart rate signal by empirical mode decomposition. The use of a 
False Alarm Probability metric can help establish whether 
spectral estimates are valid 

Significance: Methods established to pre-process time-invariant 
data prior to power spectral density estimation fail when used in 
conjunction with the Lomb-Scargle method.  

This work has been submitted to the IEEE for possible 
publication. Copyright may be transferred without notice, after 
which this version may no longer be accessible.  
 

Index Terms—Biomedical engineering, biomedical signal 
processing, hemodialysis, time-variant systems, spectral analysis, 
heart rate variability. 

I. INTRODUCTION 
atients receiving chronic haemodialysis (HD) as a result of 
End-Stage Kidney Disease (ESKD) are at a much higher 
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risk of morbidity and mortality, which is in part due to the 
prevalence of cardiac complications in this population [1]. In 
part, this is because HD causes circulatory stress leading to 
abnormal haemodynamic and cardiovascular function [2]. 
While not fully explored, it appears that cardiovascular 
regulatory mechanisms are unable to adequately compensate 
for fluid removal from the vascular compartment during HD[2]. 
These mechanisms can be investigated via the analysis of heart-
rate variability (HRV) in order to provide valuable insight into 
physiological and pathological conditions, and to enhance risk 
stratification [3][4]. 

Cardiac activity is controlled by the sympathetic 
(accelerating) and parasympathetic (decelerating) arms of the 
autonomic nervous system (ANS) which induce oscillations 
between successive sinus beats at different rhythms.  These can 
be quantified on the electrocardiograph (ECG) as the interval 
between the peak of one ‘QRS’ complex to the peak of the next, 
referred to as the ‘RR’ interval. Analysis of HRV rests upon 
different mathematical (time-domain) and spectral (frequency-
domain) measures that have identified significant physiological 
rhythms hidden in RR interval fluctuations, oscillating at 
specific frequencies [3]. These rhythms can be characterised by 
the signal energy (power) found in a low frequency (LF) band 
(0.04<LF<0.15Hz) and a high frequency (HF) band 
(0.15<HF<0.4Hz). The power component in the HF band is 
correlated with parasympathetic activity [5] and corresponds to 
the HR variations related to the respiratory cycle.  Power in the 
LF band involves contributions from both sympathetic and 
parasympathetic activity, and it has been suggested that a better 
approach to understanding sympathetic activity relies on 
analysing the LF/HF ratio [3][5]. 

The iTrend (Intelligent Technologies for Renal Dialysis) 
programme is a long-term collaborative project conducted by a 
multidisciplinary research team from the Universities of Derby 
and Nottingham, and the Royal Derby Hospital Renal Unit in 
the UK.  The primary goal of the programme is to develop 
supporting technologies to enable personalised treatment in 
ESKD [6]. Adult participants were recruited from the Renal 
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Unit’s prevalent dialysis population and received continuous 
non-invasive monitoring of haemodynamic parameters using 
pulse wave analysis (Finapres NOVA) and heart rate via ECG 
during dialysis treatments. The protocol was approved by the 
West Midlands Research Ethics Committee and participants 
gave written informed consent.  

As shown in previous studies [5], the spectral parameters of 
HRV can describe and categorise patients response to HD and 
could eventually predict morbidities, for example, intradialytic 
hypotension. It is recommended [3], to visually inspect ECG 
data and, if necessary, correct it prior to HRV analysis to 
minimize any interference that may compromise results [7]. 
This is highly impractical for large data sets obtained in clinical 
studies (such as iTrend) which are;   

• significant in volume per patient treatment, involving 
3 recordings of 4 hours in duration from 50 patients), 

• suffers from artefacts due to patient movement or 
occasionally the influence of electromagnetic 
interference [8],  

• missing data due to a loss of signal (for example, if a 
patient became unwell or otherwise took a break from 
monitoring during treatment),  

• and, in common with other HD patients, the iTrend 
population experience a significant number of ectopic 
beats. Cardiac dysrhythmia during dialysis is also 
common [9] which further complicates the analysis. 

The purpose of this work is to demonstrate and evaluate a 
number of techniques commonly used in the spectral analysis 
of HRV in order to establish which combination of technologies 
is the most reliable and most practical for use with data obtained 
during medical treatments. The first part of this paper will 
describe the method for generating a power spectral density 
(PSD) estimation suitable for HRV analysis, the second part 
will evaluate the effects of RR interval correction on a well-
defined synthetic data series and on sample patient data. This 
work addresses a need to understand the effects of signal 
processing on the interpretation of spectral parameters in order 
to better discriminate between those influenced by the patient 
state, and those generated by the algorithm.   

II. METHODS 

A. Power Spectral Density Estimation 
The power content of the LF and HF frequency bands is 

computed via the PSD estimate of the RR tachogram, most 
commonly using a Fast Fourier Transform (FFT).  While 
straightforward and fast, FFT requires artificial interpolation of 
the time-varying heart rate to satisfy the axiomatic requirement 
of a time-invariant sampling rate. Resampling, in effect a non-
linear lowpass filter, also makes an implicit assumption about 
the form of underlying variation in the data series.  
Autoregressive (AR) based periodograms have also been 
employed as they can use shorter segments of data without 
losing spectral resolution [10]. However, in addition to 
requiring an evenly sampled data series, AR techniques are 
complex to implement and highly dependent on the choice of 
model or model order [4].  

An alternative is the Lomb-Scargle (LS) periodogram [11] 
where time-varying data are weighted on a point-by-point basis, 
rather than on a per-time basis thus avoiding the requirement to 
resample data. This method is equivalent to AR and FFT in the 
case of equally-spaced observations [10][12], but the LS 
periodogram is less likely to introduce spurious frequencies [4] 
[13][14] and ‘jitter’ [10] to the power spectrum when noise is 
added to the signal. For these reasons, the LS periodogram was 
selected for use in the iTrend study. 

For the time series x[tn] which is pre-centred around the 
mean, the normalised LS periodogram is defined as; 

𝑃!!(𝑓) =
"
#$!

&%∑ (![)"]+!̅)./0(#12[)"+3])#
"$% 4

!

∑ ./0!(#12[)"+3])#
"$%

+

																																										%∑ (![)"]+!̅)./0(#12[)"+3])#
"$% 4

!

∑ 056!(#12[)"+3])#
"$%

)    (1) 

Where 𝑥̅ and s2 are the mean and variance of the time series. 
The sine and cosine coefficients are normalised separately by a 
frequency-dependent time-delay, t, in order to make the 
transformation insensitive to time shifts in the data. 

𝜏 = tan(4𝜋𝑓𝜏) = ∑ 056(712)")#
"$%

∑ ./0(712)")#
"$%

          (2) 

There are some practical considerations that should be made 
when analysing unevenly-sampled data relating to the choice of 
frequency limits and the grid spacing. The lower limit is well-
defined as the fundamental frequency 𝑓8 = 1

𝑇4  of a sine wave 
of period equal to the whole interval T and so it is set by the 
sampling duration. The shortest period over which HRV 
metrics should be assessed is 5 minutes [3] so the lowest 
frequency that can be resolved is 1/300=0.003Hz.  

The highest frequency that can be coded at a given sampling 
rate, the Nyquist frequency, is defined as 𝑓. = 1

2∆𝑇4 , but the 
sampling interval ∆𝑇 = 𝑇

𝑁4  might not exist for unevenly-
sampled data, and if it does, it tends to be far larger than any 
limits on the time-invariant case [15]. It is more appropriate to 
set a pseudo-Nyquist frequency based on the precision of the 
time measurements as 𝑓.9 = 1

2𝑝4  where p is the largest value 

such that each spacing Dti is exactly an integer multiple of this 
factor. 

A different type of frequency limit exists where observations 
are not instantaneous, but rather consist of short-duration 
integrations of a continuous signal (such as the RR tachogram).  
Each observation is effectively a convolution of the underlying 
ECG signal with a rectangular function of dt. This leads to a 
‘window’ limit of 𝑓:;! ∝

"
#<)

 , beyond which signals are 
attenuated to zero. The constant of proportionality depends on 
the shape of the window describing individual observations and 
for the RR tachogram, the windowing function is a series of 
very narrow spikes (reminiscent of the Dirac comb)[15]. By 
analogy, this gives a maximum frequency of 𝑓:;! =

"
=

"
#<)

.  As 
the upper frequency limit of the HF band is specified as 0.4Hz 
[3], this leads to a constraint of >

#=
≥ 0.4 on the N number of 

points within the 5-minute segment.  This corresponds to a 
minimum of 240 points and 𝑓:;! =

2&
#=

. 
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Data observed through a rectangular window of length T will 
have sinc-shaped peaks of width 1/T, so in order to ensure the 
grid sufficiently samples each peak, it is prudent to oversample 
by some factor. VanderPlas [15] recommends a grid size of 
∆𝑓 = 1

5𝑇4   

B. Synthetic data series 
In order to separate the effect of signal processing techniques 

from underlying data, a synthetic signal with well-defined 
properties was generated. An artificial tachogram was 
generated by mixing two sine waves with frequencies at the 
centre of the LF and HF bands (wl=0.095Hz, wh=0.275Hz) [13]. 
The LF component was given an amplitude of Al = 2 bpm, and 
the HF band is given a larger amplitude Ah = 2.5 bpm (it will 
be seen later than RR correction can filter the HF components, 
so it was emphasised in the synthetic data series. The average 
heart rate was set at HR0=60bpm.   
𝐻𝑅(𝑡) = 𝐻𝑅8 + 𝐴?𝑠𝑖𝑛(𝜔?𝑡) + 𝐴@𝑠𝑖𝑛(𝜔@𝑡)     (3) 
𝑅𝑅(𝑡) = A8

BC())
                 (4) 

The first result in the RR tachogram is defined as the first RR 
interval (RR1 at t1).  The next RR interval is defined where the 
RR value equals the time difference between tn and t1 [13].  This 
is generalised as (5) and the result is shown in Fig. 1. 
𝑅𝑅6 ≥ 𝑡5 − 𝑡6+"                 (5) 
The synthetic signal was then distorted by adding uniformly 

distributed white noise to (3), and then discarding a number of 
data points at random from the resulting tachogram (5). Fig. 2 
shows the limits of the LS periodogram as the amount of data 
that is randomly discarded is increased from 1% until failure at 
64% where there are insufficient data points to perform the 
computation. The maximum level of data that can be discarded 
from a 5-minute window is 20%, which is the point at which 
Fmax=0.4Hz. This agrees with findings that the PSD for time-
invariant data series becomes distorted when more than 20% of 
the data is in error or corrected [16]. The LS periodogram was 
more robust to increasing amplitudes of noise and was able to 
successfully locate the LF and HF peak even when the noise 
was scaled to have four times the amplitude of the RR 
tachogram signal, confirming the choice of LS for clinical 
settings. In combination, the maximum level of distortion that 
can be applied on the fewest number of points corresponds to a 
signal-to-noise ratio of 13.4dB with 20% of data discarded at 
random. 

The distorted signal and its power spectrum are shown in Fig. 
3, which also demonstrates the calculation of False Alarm 
Probability (FAP).  This important but often neglected 
evaluation step is used to express uncertainty terms of the 
heights of the peaks in comparison with the spurious 
background peaks.  FAP is estimated as; 
𝐹𝐴𝑃(𝑧) ≈ 1 − J𝑃056D?E(𝑧)K

>'((          (6) 
If the expected peak width is 𝛿𝑓 = 1

𝑇4 , then the number of 
independent frequencies (peaks) in a range 0 ≤ 𝑓 ≤ 𝑓:;! is 
assumed to be 𝑁E22 = 𝑓:;!𝑇 [15].  

The synthetic and distorted signals are compared in Table I . 
The addition of noise has increased the total power of the signal 

by an average of 63% leading to a similar increase of power in 
both the LF (69%) and HF (65%) bands. Calculation of the 3dB 
widths show that both peaks are less narrowly defined in the 
distorted signal. The calculation of LF/HF is via relative power 
in normalised units, which divides the absolute power for each 
frequency band by the total power from 0 to 0.4 Hz [13]. The 
theoretical value of the LF/HF ratio calculated from the 

amplitude of the sine waves is NF)
F*
O
#
≈ 0.64, which value is 

closely approximated in the original, but not the distorted 
signal. The LS periodogram accurately locates both peaks 
within a very noisy signal but is better able to locate the HF 
peak corresponding to the sine wave with the larger (2.5 bpm) 
amplitude. This is consistent with the lower mean-average RR 
interval where (5) has selected a greater number of shorter RR 
intervals (~326) leading to a greater emphasis of the HF band.  

Given that the RR tachogram is an unusual signal with time 
represented on both axes, it is surprising that the frequency is 
reliably identified but that amplitude is not, but this seems to be 
affected by the choice of units. As a simple example, a 
calculation of LF/HF ratio on the basis of linear units (ms2/Hz), 
decibels, and percentage results in values of 0.52±0.09, 
1.146±1.2 and 1.15±0.03 repsectively. The most consistent 
approach seems to be to express LF and HF as percentages of 
total power between the limits of 0.003 and 0.4 Hz. 

FFT and AR methods are known to suffer distortion to the 
resulting spectrum by leakage due to the implicit rectangular 
window [17]. The fraction of power in the main lobe (within ± 
0.01Hz) of each peak shows some evidence that the LS 
periodogram has a lower degree of spectral leakage which 
occurs in the LF band.   

C. The effects of RR editing on HRV analysis 
Other than noise, artefacts in real data would include 

abnormal heart beats with unusual timing. For example, 
unusually short RR intervals (ectopic beats) will introduce 
higher than normal frequency components, causing an 
overestimation of HF power. Missing data would emphasise 
longer RR intervals and cause a bias towards LF power. The 
implication is that any clinical signal would require some form 
of pre-processing so that doubtful points can be corrected [3].  

Considerable methodological diversity is seen in the 
processing of the data prior to analysis. Aberrant RR intervals 
are most commonly identified in comparison to a predefined 
range of expected values based on previous RR intervals 
[18][19][20][21] or by comparison with a statistical measure of 
the whole RR tachogram [7][22]. In this work, false beats are 
detected where a high (+32.5%) or low (-24.5%) threshold for 
the relative variation in successive RR intervals is exceeded 
[18][19]. 

The guidance regarding which techniques are most suitable 
for correcting aberrant RR intervals is less clear. Methods that 
exclude outlier values can lead to a systemic loss of information 
in time-invariant data [23]. Methods to replace outlier values 
with average values[24][25] or interpolation [26] can change 
the power of the frequency components in spectral analysis by 
introducing false shapes and trends [16]. The effect of any of 
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these approaches when used in conjunction with time-varying 
PSD estimation is missing from literature. To understand the 
role of RR editing with the LS periodogram more fully, 
comparisons were made between 5 different correction 
methods. 

Method 1 – LS periodogram with omitted data. Rather than 
discarding data at random, only those intervals flagged as in 
error [19] (on average 15% of the RR intervals over 100 runs) 
are excluded from the LS estimation. This method will provide 
a baseline against which other methods are compared, and 
would be the preferred method as no pre-processing of the 
signal is required thus limiting the potential for the PSD 
estimate to be distorted. 

Method 2 - Rules Based. An interval that is identified as 
incorrect will be further analysed in combination with its 
neighbours and retained if it can be identified as forming part 
of a physiologically plausible pattern [27]. Otherwise, the 
aberrant RR interval can be corrected by: 

i) summing with two or more neighbouring intervals, which 
would apply in the case of an ectopic beat occurring between 
normal beats,  

ii) dividing one large interval into two or more intervals of 
acceptable size, which would apply in the case of missed heart 
beats,  

ii) or adding two or more intervals and dividing the sum into 
two or more acceptable values.  This would occur (or example) 
when an ectopic beat occurs in the place of a normal (sinus) 
beat.   

The selected correction would be the one that brings the new 
RR interval closest to the mean average of RR intervals from 
the previous minute of data.  

Method 3 Ornstein-Uhlenbeck third-order Gaussian process 
filtering (OUGP). The OUGP filter is a reduced form of a 
Wiener filter, where a one-dimensional series of measurements 
as a function of time can be solved more efficiently as its 
inverse matrix via a tridiagonal system of equations. Full details 
and derivation can be found in [28], but is summarised for a 
series of measurements xj and time tj, j=1,…n, as;  

∑ 𝑇5G𝑢G =G 	

⎩
⎪
⎨

⎪
⎧

(!%+!!)
#H%

𝑖 = 1
(!++!+,%)

#H+
+ (!++!+-%)

#H+
𝑖 = 2,… , 𝑛 − 1

(!"+!"-%)
#H"-%

𝑖 = 𝑛

				  (7) 

Where ∑ 𝑇5G𝑢GG  is the sparse tridiagonal system convolving 
the matrix T and the output of a filtered sequence u. The input 
w is complex, but the filter is taken to be the real part of the 
result as  
𝐻𝑦 = ℜ(𝑢),			𝐿𝑦 = 𝑦 − ℜ(𝑢)           (8) 
The OUGP method is implemented here as a bandpass filter, 

passing frequencies in the range 0.04 – 0.4 Hz. When applied 
to an unevenly sampled RR tachogram, the OUGP filter 
exhibits a predictable and stable third-order zero-phase 
frequency response with explicit -3dB points [29], leading to a 
recommendation that that it would be suitable for 
implementation in conjunction with LS periodogram (which 
motivated its inclusion here). 

Method 4 – Denoising by Empirical Mode Decomposition. 

EMD is a data-driven method to denoise non-linear and non-
stationary multi-component time series, x(t) by decomposing it 
into a finite number of signal-dependent semi-orthogonal zero-
mean basis functions called intrinsic mode functions (IMFs), by 
an iterative process called sifting. IMFs must satisfy two 
criteria: First, the number of the extrema points (local minima 
and maxima) and the number of zero crossings must be equal, 
or differ by one at most; Second, the mean of the envelopes 
determined by local extrema points should be zero. The sifting 
algorithm is executed as; 

(i) Identify all extrema of x(t) and interpolate 
between the minima em(t), and maxima eM(t), to 
find envelope of the signal  

(ii) Compute mean of the envelope, 𝑚(𝑡) = [𝑒6(𝑡) +
𝑒I(𝑡)]/2 

(iii) If m(t) satisfies the requirements, extract the first 
‘mode’ as 𝑥(𝑡) = 𝑥(𝑡) − 𝜑5(𝑡)  

(iv) iterate on the residual r(t) until it is constant or a 
trend. 

Hence the original signal can be reconstructed by the sum of 
the IMDs [30] as described by 
𝑥(𝑡) = ∑ 𝜑5(𝑡) + 𝑟(𝑛)J

5K"             (9) 
Where L is the number of IMFs. Some methods (in signal 

processing applications) have proposed the Hurst coefficient as 
the decision base for which IMF to include in a reconstructed 
signal [30][31], but this has specific meaning in the context of 
HRV analysis [32] and could compromise the meaning of long-
range correlations that are used to predict pathological states.  
Souza-Neto et. al. [33] demonstrated that the first three IMFs 
are sufficient to denoise and recompose the HRV signal in order 
to analyse LF,HF and LF/HF content. Following this approach 
the RR tachogram is reassembled by summing values from the 
original time location for the first three IMFs [33], then 
reconstructing the new time series from the changed heights of 
the RR intervals to maintain synchronicity (Fig. 4).  

Method 5 – Replacement. All intervals identified as being in 
error were removed from the HRV tachogram and replaced by 
a (linear or cubic spline) interpolated value using 3 previous and 
1 following neighbour [8], or replaced by the mean average of 
the previous 60 seconds of RR intervals [27].   

D. Experiments and Simulation  
Data from a single ‘HD patient’ from the iTrend study are 

used to illustrate how a different interpretation of the PSD may 
arise from different pre-processing techniques (clinically 
relevant findings from the iTrend population are presented 
elsewhere). Data from ECG lead II [18] was sampled at 300Hz 
to avoid issues with QRS detection [4] and then further 
processed offline [34]. The mean was removed from the RR 
tachogram prior to application of one of the above methods, and 
the time series was recalculated to preserve synchronicity 
where required.  

All computer codes were implemented in Matlab version 
2020b, but it should be noted that built-in functions for the LS 
Periodogram, EMD and band-power integrations could not be 
used (due to the need to specify and test aspects of the 
algorithms differently, discussed in section II A).   
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III. RESULTS 

A. Synthetic Data 
A comparison of data obtained from 100 simulations is 

presented in Table II. On average, 15% of the RR intervals were 
classified as in error (5% too long, 10% too short). It was not 
possible to fully recover the statistical properties of the original 
signal, but all methods (except replacement) were consistently 
able to locate both peaks (Fig. 5). 

Method 1 involves the exclusion of suspect RR intervals 
from the periodogram estimate but doesn’t lead to a greatly 
improved estimation of spectral parameters (Table I). The al/ah 
ratio is much higher which is a consequence of the 
asymmetrical basis for excluding RR intervals [19]. The smaller 
tolerance on the lower bound biases the identification of 
aberrant RR intervals, excluding more HF components from the 
PSD estimate. This may also explain why the HF peak tends to 
have a lower amplitude. This method does have the best 
performance of the five methods, which is a significantly 
different outcome to previous work based on time-invariant 
methods where exclusion of RR intervals lead to a systematic 
loss of information [16].  

Although the method 2 was consistently able to locate the 
two peaks (Table II) it is surprising how poorly it performed 
given that the rules are based on sound physiological principles. 
The HF peak exceeds a FAP of 10% in only 88% of the 
simulations. Method 2 emphasised noise peaks which merged 
with the true peaks resulting in an inconsistent prediction of 
power in the LF and HF bands. The PSD estimate of method 2 
had the lowest total power, suggesting that it removed a 
significant amount of all data without discriminating well 
between noise and signal. Closer inspection of the corrected RR 
interval tachogram shows that method 2 offers no improvement 
over interpolation whenever errors occur in clusters. 

Method 3 (OUGP) suffered a similar loss of information 
from the HF band, although it outperformed the method 2 in 
terms of accurate location of the peaks, and both LF and HF 
peaks exceeded FAP of 10% in 99% and 96% of simulations 
respectively. Method 3 has the ‘smoothest’ PSD with the least 
variation in RR intervals, which is unsurprising in that it applies 
to all data points and not just suspicious ones, but offered no 
improvement in estimation of spectral parameters over method 
1.   

EMD (method 4) out-performs all others in terms of 
preserving the statistical features of the underlying signal, 
providing an accurate estimation of both LF/HF and al/ah, and 
was the only method able to consistently locate the HF peak in 
all 100 simulations. The noise peaks never exceed the FAP 
threshold of 50% suggesting that this might be the most robust 
method for pre-processing clinical data. However, the resulting 
PSD does have the highest power content which suggests that 
some noise is decomposed into the IMFs. It is the subject of 
future work to establish means by which this could be refined. 
The challenge of understanding the physiological basis of each 
IMF (and therefore applying more elaborate denoising 
approaches [35]) also remains. 

The smoothing effect seen in methods 2 and 3 are better 

understood with reference to Fig. 6. Without question, 
replacement of aberrant RR intervals leads to the poorest 
estimation of PSD; power in the HF band is attenuated with the 
replacement methods acting (in effect) as low pass filters that 
emphasise different local trends. All replacement methods are 
particularly poor where aberrant RR intervals occur in clusters 
as the correction becomes arbitrary. None of these approaches 
can be recommended in conjunction with the LS periodogram. 

B. Patient Data 
Fig. 7 which shows the PSD estimate for a five-minute period 

occurring approximately 3 minutes after the start of dialysis.  
The ‘HD patient’ had been sitting at rest for a period of 8 
minutes prior to beginning their treatment. Five different 
methods of editing RR intervals are compared (Table III), but 
the error selection which is now symmetric and includes RR 
intervals that deviate by ± 10% from the previous RR interval 
[7]. This identifies 8% of RR intervals as being in error (with 
7% being too short and 1% too long). EMD and OUGP methods 
were applied to the whole RR interval tachogram, and no 
further editing of aberrant RR intervals was made. 

Given that the original RR tachogram is the same and that the 
total power is very close, the spectral parameters derived from 
the PSD estimate should be close, but the different RR editing 
methods attribute different proportions of power between the 
LF and HF bands.  Multiple peaks exceeding a FAP probability 
of 50% can be seen in the LF band (Fig. 7); these being LF 
peaks associated with rhythmic changes in vascular tone, 
baroreceptor response and respiratory sinus arrythmia [14][16].  
LF peaks are distorted and delayed by cubic spline 
interpolation, which has also introduced and a number of 
spurious peaks into the PSD estimate.  Method 2 (rules) also 
performs poorly as it is unable to locate any peaks above a FAP 
of 10%. In a clinical study, lower LF power has been associated 
with intradialytic hypotension [36], and method 2 would 
characterise this patient as being hemodynamically unstable 
(which they are not).    

Distortions to the HF band are more striking. The 
characteristic respiration peak occurs just after 0.15 Hz in all 
examples, except (again) for cubic spline interpolation.  
Although present in method 2, the respiration peak falls well 
below a FAP of 50% and both methods 2 and 5 have attenuated 
nearly all of the power in the HF band.  Only EMD and OUGP 
were able to locate the respiration peak above a FAP of 50%.  
This would also be a serious failing in clinical studies, where 
reduced HF band power is associated with worse patient 
outcomes [1] [21]. Methods 2 and 5 are also the most commonly 
used replacement methods reported in literature. 

IV. DISCUSSION 
The calculation and analysis of PSD for HRV studies is not 

trivial. Two distinct but overlapping processes generate highly 
dynamic short-term responses; these being the complex 
relationship between the sympathetic and parasympathetic 
nervous system, and the regulatory mechanisms of heart rate, 
blood pressure and baroreflex in response [23]. As the RR 
interval tachogram represents time on both axes, it cannot 
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discriminate between the control and actuation effects, and 
magnitude is not available in HRV analysis.   

Nevertheless, studies of HRV can reveal significant and 
important diagnostic and prognostic information, both about the 
patient as an individual [36] and as part of a population [1].  
Abnormal HRV primarily reflects the dysregulation between 
sympathetic and parasympathetic nervous system and has been 
associated with an increased risk of morbidity [1].  Within 
populations receiving HD treatment, a low degree of HRV 
indicates impaired autonomic function and a reducing HRV has 
been associated with adverse cardiovascular outcomes [37]. 
Comparisons of HRV taken before and after HD have also 
proved to be a useful clinical marker in predicting overall 
mortality[2]. 

Given the significance of these findings, it is surprising that 
HRV does not have greater diagnostic use.  There may be two 
reasons for this; the first would relate to the time involved in 
manually inspecting ECG traces and RR interval tachogram 
prior to analysis, and the second is in the variability of results 
[16] which has been shown here to arise from the method of 
processing in addition to any underlying physiological basis. 

This work attempts to address both aspects by demonstrating 
that the LS periodogram provides a reliable and robust estimate 
of PSD even in real (as opposed to laboratory) conditions, 
provided that proper attention is given to the frequency limits, 
and sampling grid’s role in supressing or exaggerating spurious 
peaks in the PSD. In summary; 

• The window limit (Fmax) provides a hard upper-limit 
and is a function of the sampling frequency.  It is more 
important than pseudo-Nyquist frequency when 
unevenly sampled data are analysed. 

• Violation of the lower-limit condition leads to an 
attempt to analyse power below the fundamental 
frequency limit of the signal. For this reason, total 
power should be calculated between 0.03Hz and 0.4Hz 
to avoid boundary effects when integrating the PSD 
from 0. The effect cannot be assumed to be small. 

• The choice of grid spacing is a function of heart rate 
and should be refined as heart rate increases. This may 
address criticisms regarding the overly spiky 
appearance of the LS PSD estimate [14] 

• The least number of points that can be analysed in a 5-
minute segment is 240, leading to a lower limit of 
48bpm on heart rate [13]. 

A consistent recommendation in literature is that five-
minutes segments of data containing more than 20% of suspect 
or edited RR intervals should not be used for HRV analysis [3] 
[23], which holds true for the LS method.  However, a four-
hour HD treatment could generate 48 PSD estimates per patient 
and so the use of FAP provides an important and additional 
criterion to understand whether a 5-minute segment is valid for 
analysis. Its use here has demonstrated that methods employed 
to edit the RR tachogram via smoothing techniques are 
unsuitable in conjunction with the LS periodogram. Smoothing 
methods (in general) act as a low pass filters, emphasising local 
trends, and filtering high frequencies components of the signal.  
The different use of RR editing method could explain some of 

the contradictory results that appear in literature (for example, 
[5] and [36]).   

The investigation performed here also contradicts previous 
findings that the method of RR interval selection has a greater 
effect on PSD than the method of RR editing [7]. The real issue 
seems to be one of bias caused when the method of RR interval 
selection is asymmetric. The results here suggest that selection 
criteria should always be symmetrical when used with the LS 
periodogram, whether a mean average or previous RR interval 
provides the basis of comparison.  

Attempts to edit RR intervals using rules based on 
physiological plausibility is futile. In reality any RR interval is 
equally as likely to be in error as its comparator.  If editing is 
required, it should be applied to the whole time-series (such as 
EMD or OUGP). The recommendation from this work is that 
EMD is the preferred technique for de-noising and suspicious 
RR intervals should always be excluded from the LS PSD 
estimate. It can be argued that EMD also suffers from an 
implicit assumption that the underlying data can be modelled 
by cubic splines, and whether the RR intervals can be better 
linked by a different approach is the subject of future work. 

Other criticisms of HRV analysis note that spectral 
parameters derived from five-minute intervals do not have the 
prognostic power of time domain measurement derived from 24 
hours of data [23], and yet spectral parameters are used 
(sometimes successfully [2]) to predict long-range outcomes. It 
is possible that a more deliberate approach to PSD estimation 
could lead to better correlation between the two time-periods. 

V. CONCLUSIONS 
When using the LS periodogram to estimate spectral 

parameters of heart rate variability, it is more appropriate to 
exclude data points than to edit them. The basis for the 
identification of suspicious RR intervals will lead to 
identification of a greater or fewer number, and has no further 
effect provided the method is symmetrical.  Should further pre-
processing be necessary, EMD is the preferred method for de-
noising. 

The LS periodogram estimates can only be made when 
maximum and minimum frequency limits are observed and 
where the grid spacing is derived from sampling frequency for 
each 5-minute interval. These could be dynamic within a single 
time series. 

Finally, calculation of FAP should always be performed in 
deciding whether to accept the PSD estimate of five-minute 
segment as valid. This decision point can enable greater 
automation and therefore greater clinical use of the analysis. 
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Fig. 1. Synthetic data series with mean frequency of 1 Hz and 

zero phase, realized from the sum of two sinusoids via (4) 
with RR intervals (shown as circles) generated from (5) [13]. 

The resulting LS periodogram accurately locates peaks at 
wl=0.095Hz and wh =0.275Hz 

 
Fig. 2. Illustration of the effect of reducing the number of 

points in the LS periodogram estimate.  The lower pane shows 
that the LF/HF ratio is relatively well estimated using only 
62% of the available data, but the window limit is reached 

when 20% of the data is discarded, shown in the upper pane. 
 

 
Fig. 3. Signal masked by noise (solid line in upper graph) and 
with 20% of RR intervals discarded at random (the remaining 
RR intervals are circles in upper graph).  The frequencies of 

the original sinusoid are both accurately located at 
wl=0.095Hz and wh =0.275Hz and are the only peaks to 

exceed a FAP of 1% in the resulting periodogram. 
 

 
Fig. 4. Coarse to fine IMFs obtained from the distorted 

synthetic signal shown in Fig. 3.  Only the first 3 IMFs are 
used to reconstruct the RR interval tachogram prior to PSD 

estimation. 
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Fig. 5. PSD estimation via the LS periodogram using the same 
original data series, but with four different methods of editing 

dubious RR intervals.  These four methods are considered 
successful as they were able to identify the LF and HF peaks 

corresponding to the sine waves in (3). 
 

 
Fig. 6. Example of PSD estimation via the LS periodogram 
where dubious RR intervals were replaced by cubic spline 

interpolation, linear interpolation, or by the mean average of 
one minute of data. These methods are considered 

unsuccessful as background peaks are emphasized and HF 
peaks are lost in the noise. 

 

 
Fig. 7. Comparison of RR editing methods using data from a 
‘HD patient’.  The RR tachogram is shown in the top pane, 
with a solid line added for clarity.  Breaks in the solid line 
indicate RR intervals that are identified as suspicious and 

excluded or edited. The cubic spline method is included for 
illustration as its distorting effects are less obvious with real 

data. 
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TABLE I 
RESULTS FROM 100 SIMULATIONS OF RANDOM NOISE IN THE ‘DISTORTED’ SIGNAL COMPARED AGAINST THE LS 

PERIODOGRAM ESTIMATED FOR THE ORIGINAL SIGNAL. 
 Original Signal Distorted Signal  

(mean ± std) 
Mean average RR interval (sec) 1.009±0.0038 0.9196±0.0061 
Range RR intervals 0.151 0.870±0.110 
LF power (nu) 0.39 0.32±0.04  
HF power (nu) 0.61 0.62±0.04  
LF/HF 0.6357 0.52±0.09 
LF peak height (ms2/Hz) 0.1668 0.54±0.16 
HF peak height (ms2/Hz) 0.2601 0.68 ±0.18 
Al/Ah 0.6413 0.79±0.34 
LF Peak Location (mHz) 95 97.4±19.6 
HF Peak Location (mHz) 275 275.8±9.1 
LF Df3dB (Hz) x 10-3    3.00 3.6±0.11 
HF Df3dB (Hz) x 10-3    2.90 3.4±0.91 
Fraction of power within +/-0.01Hz of LF band 0.76 0.69±0.21 
Fraction of power within +/-0.01Hz of HF band 0.75 0.86±0.22 
Total Power (dB) -28.46 -17.97±0.41 

 

TABLE II 
COMPARISON OF RESULTS OBTAINED FROM 5 DIFFERENT METHODS OF RR EDITING (OVER 100 SIMULATIONS WITH 

DIFFERENT RANDOM NOISE PROFILES). DATA ARE PRESENTED AS MEAN ± STD 
 

 
 

Method 5 - Replacement 

 
Method 1 
LS Baseline 

Method 2 
Rules 

Method 3 
OUGP 

Method 4 
EMD 

 
Cubic Spline  

 
Linear  

 
Mean Replacement 

Mean RR (sec) 0.94±0.01 0.93±0.01 0.91±0.01 0.92±0.01 0.94±0.05 0.94±0.01 0.94±0.01 

Range RR (sec) 0.638 0.724 0.598 0.805 0.743 0.889 0.867 

LF (nu) 0.39±0.05 0.42±0.06 0.44±0.04 0.44±0.04 0.43±0.05 0.39±0.05 0.39±0.05 

HF (nu) 0.61±0.40 0.48±0.05 0.54±0.04 0.54±0.04 -0.45±0.05 0.51±0.04 -0.51±0.04 

LF/HF 0.77±0.16 0.89±0.18 0.82±0.14 0.82±0.14 0.98±0.21 0.77±0.16 0.76±0.15 

Ptot (dB) -19.11±0.46 -19.94±0.45 -19.44±0.46 -19.54±0.38 -18.37±0.47 -19.11±0.47 -19.57±0.42 

LF location (mHz) 94.55±3.51 90.62±15.10 95.18±5.95 94.95±3.62 75.57±42.29 71.06±38.51 91.99±30.51 

HF location (mHz) 273.18±17.99 251.23±59.65 264.75±49.54 274.92±37.3 155.96±81.59 153.22±79.99 237.12±65.95 

Al/Ah 1.22±0.60 1.76±0.85 1.93±0.94 0.781±0.31 0.88±1.232 1.23±0.93 1.56±0.84 
% of LF Peak > 
FAP 10% 98 93 99 99 84 84 83 
% of HF Peak > 
FAP 10% 98 88 96 100 84 82 70 

 

TABLE III 
COMPARISON OF RESULTS OBTAINED FROM 5 DIFFERENT METHODS OF RR EDITING USING PATIENT  

 Method 1 Method 2 Method 3 Method 4 Method 5 
 LS Baseline Rules OUGP EMD Cubic Spline 

Mean RR (sec) ±std 0.77±0.09 0.75± 0.05 0.76±0.06 0.76±0.07 0.77±0.09 
Range RR (sec) 0.43 0.25 0.27 0.34 0.43 
LF/HF 2.97 0.54 3.76 2.87 3.66 
LF (nu) 0.38 0.31 0.69 0.5 0.46 
HF (nu) 0.13 0.58 0.18 0.17 0.12 
Ptot (dB) 1.002 1.001 1.001 1.001 1.002 

 


