
P
os
te
d
on

12
J
u
n
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
24
56
29
9.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/A

C
C
E
S
S
.2
0
20
.3
0
07
33
8

Cloudstrike: Chaos Engineering for Security and Resiliency in

Cloud Infrastructure

Kennedy Torkura 1

1Hasso Plattner Institute

October 30, 2023

Abstract

Most cyber-attacks and data breaches in cloud

infrastructure are due to human errors and misconfiguration

vulnerabilities. Cloud customer-centric tools are lacking, and existing

security models do not efficiently tackle these security challenges.

Novel security mechanisms are imperative, therefore, we

propose Risk-driven Fault Injection (RDFI) techniques to tackle

these challenges. RDFI applies the principles of chaos engineering

to cloud security and leverages feedback loops to execute, monitor,

analyze and plan security fault injection campaigns, based on

a knowledge-base. The knowledge-base consists of fault models

designed from cloud security best practices and observations

derived during iterative fault injection campaigns. Furthermore,

the observations indicate security weaknesses and verify the

correctness of security attributes (integrity, confidentiality and

availability) and security controls. Ultimately this knowledge is

critical in guiding security hardening efforts and risk analysis.

We have designed and implemented the RDFI strategies including

various chaos algorithms as a software tool: CloudStrike. Furthermore,

CloudStrike has been evaluated against infrastructure

deployed on two major public cloud systems: Amazon Web Service

and Google Cloud Platform. The time performance linearly

increases, proportional to increasing attack rates. Similarly, CPU

and memory consumption rates are acceptable. Also, the analysis

of vulnerabilities detected via security fault injection has been

used to harden the security of cloud resources to demonstrate the

value of CloudStrike. Therefore, we opine that our approaches

are suitable for overcoming contemporary cloud security issues

1

1

CloudStrike: Chaos Engineering for Security and
Resiliency in Cloud Infrastructure

Kennedy A. Torkura, Muhammad I.H. Sukmana, Feng Cheng and Christoph Meinel Hasso-Plattner-Institute for
Digital Engineering,

University of Potsdam,
Potsdam, Germany

Email: firstname.lastname@hpi.de

Abstract—Most cyber-attacks and data breaches in cloud
infrastructure are due to human errors and misconfiguration
vulnerabilities. Cloud customer-centric tools are lacking, and ex-
isting security models do not efficiently tackle these security chal-
lenges. Novel security mechanisms are imperative, therefore, we
propose Risk-driven Fault Injection (RDFI) techniques to tackle
these challenges. RDFI applies the principles of chaos engineering
to cloud security and leverages feedback loops to execute, monitor,
analyze and plan security fault injection campaigns, based on
a knowledge-base. The knowledge-base consists of fault models
designed from cloud security best practices and observations
derived during iterative fault injection campaigns. Furthermore,
the observations indicate security weaknesses and verify the
correctness of security attributes (integrity, confidentiality and
availability) and security controls. Ultimately this knowledge is
critical in guiding security hardening efforts and risk analysis.
We have designed and implemented the RDFI strategies including
various chaos algorithms as a software tool: CloudStrike. Fur-
thermore, CloudStrike has been evaluated against infrastructure
deployed on two major public cloud systems: Amazon Web Ser-
vice and Google Cloud Platform. The time performance linearly
increases, proportional to increasing attack rates. Similarly, CPU
and memory consumption rates are acceptable. Also, the analysis
of vulnerabilities detected via security fault injection has been
used to harden the security of cloud resources to demonstrate the
value of CloudStrike. Therefore, we opine that our approaches
are suitable for overcoming contemporary cloud security issues.

I. INTRODUCTION

Cyber-attacks against Infrastructure as a Service (IaaS)
cloud platforms have increased in recent years, mostly ex-
ploiting configuration-based vulnerabilities. These types of
vulnerabilities include misconfigured Access Control Policies
(ACP), over-privileged users and lack of audit logging. Con-
sequently, the Cloud Security Alliance (CSA)’s Top Cloud
Computing Threats 2019 report [1] revealed that data breaches
and misconfiguration, and inadequate change control are the
top two cloud security threats. Similarly, the Ponemon In-
stitute’s Data Breach Report 2019, disclosed that 49 % of
breaches are caused by system glitches and human errors [2].
The key takeaway from these reports and similar research
is that Cloud customers are the weakest link in the cloud
ecosystem. Furthermore, while CSPs fulfill their responsibili-
ties as specified in the Shared Security Responsibility Model
(SSRM), cloud customers are struggling with fulfilling their
responsibilities. There are several reasons for this including
lack of efficient, customer-centric tools [3], wide skills gap

about cloud technologies [1], [4] and increasing complexity of
cloud services. Some of these challenges can be resolved by
evolving customer-centric security mechanisms that are agile
and proactive [1].

We tackle the above-mentioned security challenges with
a novel concept - Risk Driven Fault Injection (RDFI), a
unique application of chaos engineering [15], [16] to cyber-
security. RDFI extends the principles of chaos engineering 1 to
cloud security to gain both security benefits, additional to the
already established resiliency gains. The state-of-the-art chaos
engineering techniques inject faults into software systems to
detect availability issues e.g latency. Subsequently, these issues
are resolved to improve system resilience i.e. confidence in the
system’s capability to withstand turbulent conditions [16] in
production environments. In general, implemented resiliency
patterns e.g. timeouts, retries, and fallbacks are important
for chaos engineering experiments, given they provide clear
feedback information about system behavior [17], [18]. These
feedback are indicative of faults, thereby providing opportu-
nities for mitigation. However, these resiliency strategies are
not designed to improve security, rather, they are designed to
tackle availability attributes.

Since faults and failures could also impact security, it makes
sense to derive similar resiliency strategies for security. Table
I is a summary of some notable chaos engineering tools,
we can notice the diversity of applications i.e. across several
abstraction layers, but most tools focus on solving issues
related to non-security availability attributes. Hence, we aim at
devising ways for transferring the gains of resiliency patterns
to security. Conversely, we propose the notion of RDFI, for
injecting security faults, that detect security vulnerabilities i.e.
failures that impact confidentiality, availability and integrity.
Similar to the feedback loops employed for non-security faults,
we propose an adaptation of the Monitor Act Plan Execute
over-a-shared Knowledge-base (MAPE-K) feedback loop [19],
which has been popularly employed in complex, autonomous
computing. Our adaptation provides an effective model for
detecting vulnerabilities in cloud infrastructure by injecting
security faults. These faults are codified as hypotheses to
verify the security tools, controls and attributes. For example,
a hypothesis might be: is the principle of least privilege well
configured for AWS S3 bucket XYZ?

1https://principlesofchaos.org/

2

TABLE I: Chaos Engineering Frameworks

Framework Target Stack Resiliency Attributes Application Layer

Chaos Kong [5] AWS Regions availability (non-security) cloud network

Chaos Gorilla [6] AWS Availability Zones availability (non-security) cloud network

Chaos Monkey [7] AWS Availability Zones availability (non-security) cloud instances
(VMs)

Chaos Monkey
for Spring Boot [8] Spring Boot Applications availability

(non-security e.g. latency, terminations)
Java applications

(e.g. REST, inter-service calls)

Royal Chaos [9] Java applications availability (non-security) JVM

Chaos Toolkit [10] AWS, Azure, Google
& Kubernetes availability (non-security) cloud & kubernetes

network

PowerfulSeal [11] Kubernetes availability (non-security) kubernetes network
(e.g. pods, microservices)

ChaosMesh [12] Kubernetes availability (non-security) kubernetes network

ChaoSlingr [13] AWS security
(confidentiality, integrity & availability)

cloud services
(e.g. S3, IAM)

CloudStrike [14] AWS & GCP security
(confidentiality, integrity & availability)

cloud services
(e.g. S3, IAM)

RDFI is implemented in CloudStrike [14], a cloud security
system that implements chaos engineering principles. We have
extended the initial work in [14], by implementing security
fault models drawn from industry standard best practices
e.g. the Centre for Internet Security (CIS) benchmarks for
Cloud Service Provider (CSP) [20], [21] and the CSA cloud
penetration testing playbook [22]. These documents provide
guidance for cloud security, which we leveraged to construct
test suites for injecting security faults. Additionally, in order
to achieve non-random, sequential exploration of the fault
space, (attack surface) cloud attack graphs were employed.
To the best of our knowledge, there is no other work that
injects security faults against cloud infrastructure using similar
techniques.

Contributions: In an earlier work-in-progress paper [14],
we proposed basic concepts for applying the principles od
chaos engineering to cloud security. In this article, we have
extended the work in the following ways:

• We establish the relationship between chaos engineer-
ing and related concepts: dependability, security and
resiliency thereby demonstrating that security can be
practically expressed as an attribute of resilience (Section
II-B).

• We apply security risk paradigms e.g. attack graphs and
vulnerability scoring, to chaos engineering using RDFI
(Section III).

• We propose the Security Chaos Engineering (SCE) feed-
back loop (adapted from the MAPE-K model [19]), as a
model for applying the principles of chaos engineering
to cyber-security (Section III-A).

• Proposed several security fault models, which aid in
detecting security vulnerabilities in cloud infrastructure
(Section III-C).

• We implemented our concepts as a software package:
CloudStrike (Section IV), and conducted extensive ex-
periments using realistic, state-of-the-art attacks against
two major CSPs: AWS and GCP (Section V).

The rest of this paper is structured as follows, in the
next section, we discuss the introduce a running example to
make our consolidate our use-case, and thereafter establish
the relationship between chaos engineering, dependability,
security and resiliency. In Section III, we present the SCE
feedback loop, RDFI, our fault models and how the principles
of chaos engineering are applied in RDFI. The design and
implementation of CloudStrike is highlighted in Section IV,
while results of our evaluation are in Section V. Related works
are presented in Section VI, while our interesting next steps
are highlighted in Section VII and the paper is concluded in
Section VIII.

II. SECURITY CHAOS ENGINEERING

SCE is the application of chaos engineering concepts to
cyber-security [23], [24]. This Section discusses important
concepts around SCE. A running example is first introduced,
then the relationship between chaos engineering, dependabil-
ity, security and resiliency is highlighted. Thereafter, our
methodology for ensuring safe experiments in discussed.

Fig. 1: Running Example- an illustration of the Capital One
Data Breach

3

A. Running Example

To provide a solid illustration of the contemporary cloud
security issues, we would use the Capital One data breach
[25] of June 2019, as a running example. This data breach
occurred due to several attacks against Capital One’s AWS
infrastructure, Figure 1 is an illustration of the attack scenario.
The initial entry point (EP01) was a misconfigured reverse
proxy, that the attacker identified and leveraged to gain access
to an Elastic Computing Cloud (EC2) VM (Step 1), where
the reverse proxy server was hosted. Having gained an initial
foothold, the attacker executed a Server-side Request Forgery
attack against the metadata server (Step 2), to obtain valid and
extensive permissions. The metadata server in turn requests
for permissions from the AWS IAM, as defined in the profile
access control policy (Step 3). These permissions are quite
broad, granting access to the entire AWS S3 service i.e. the
VM (including any user inheriting the permissions scoped
within the VM) can make root-level requests against all assets
within the AWS S3 service. Therefore the attacker inherits
these privileges (Step 4) (EP02), by virtue of taking control
of the VM. Thereafter, the attacker retrieves several critical
information from the S3 bucket (Step 5) e.g. customers’ email
addresses, social security numbers and credit card information
(EP03) . In the above scenario, we notice several issues:
(a)misconfigured reverse proxy (EP01), (b) over-privileged
profile policy, that does not satisfy the principle of least
privilege (EP02) (c) massive ex-filtration of sensitive data
from the S3 bucket without triggering alarms (EP03). Hence
this provides an example why we have focused our research
and proposed solution on these types of vulnerabilities: human
error due to misconfigured cloud assets.

B. Chaos Engineering

Chaos engineering [15], [17] has emerged as a discipline to
enable resiliency in the cloud. According to Basiri et.al [15],
chaos engineering is the discipline of experimenting on a
distributed system in order to build confidence in its capability
to withstand turbulent conditions in production. At the core
of chaos engineering is the idea of conducting experiments
to either affirm or disprove hypotheses. Here, a hypothesis
refers to an expected or assumed behavior of a system, under
specific scenarios. During chaos engineering experiments, hy-
potheses are tested by injecting turbulence e.g. faults, under
real situations, while observing system behavior. The observed
behavior is new knowledge, as it affords insights to how the
system will fail or withstand (confirm or disprove the defined
hypotheses). However, the state-of-the-art chaos engineering
techniques focus on constructing hypotheses that focuses on
availability attributes. We believe that security-focused hypoth-
esis are also possible, and would be very beneficial to security
professionals. Furthermore, since an investigation of existing
literature reveals that resiliency is not limited to availability
attributes, but also include security(confidentiality integrity).
Therefore, the next subsections lay the foundation for making
these connections.

Fig. 2: The Dependability Tree [26] shows the relationship
between dependability and security.

Fig. 3: State Transition Analysis used to enable safety in SCE
via reversibility concepts

C. Dependability

Dependability is a global concept that includes several at-
tributes: reliability, availability, integrity, availability, maintain-
ability and safety [26], [27]. These attributes, also illustrated
in Figure 2, are highly desirable, but could be negatively
impacted by the effects of failures, faults and errors. Chaos
engineering implementations e.g. Netflix Chaos Monkey [7]
employ fault injection techniques for addressing these threats.
However, the threats are not comprehensibly addressed by the
current, state-of-the-art chaos engineering constructs, some of
the notable implementations are on Table I. These constructs
focus on increasing confidence in the availability attributes of
systems via injection of non-malici ous faults. Consequently,
the remaining dependability attributes are neither tested nor
guaranteed. Hence, security failures such as those caused by
malicious faults (cyber attacks) will no be handled by the
current resiliency techniques: timeouts, retries, and fallbacks.

D. Security

Security is a summation of confidentiality, integrity and
availability, and is also subsumed under dependability [26],
[28]. These attributes define the way security of any system is
perceived, therefore their alteration infers security violation.
CloudStrike digresses from focusing on injection of non-
malicious faults, to malicious faults. This enables verification
of cloud security properties, e.g. configurations of AWS S3
buckets. A typical example is provided in the running example
(Section II-A), where the attacker was able to escalate privi-
leges (EP02) and move laterally without triggering any secu-
rity alerts (EP03). Several cloud security best practices have
been proposed e.g. the principle of least privilege. Yet, there
are no defined techniques for verifying correct implementation,

4

hence the high rate of cloud breaches. CloudStrike is designed
to breach this gap via automatic and continuous verification
of cloud security properties, these properties are defined as
hypotheses for chaos engineering experiments (Section III-D).

E. Resiliency
Resiliency is defined as the ability of a system to persist its

dependability over a period of time regardless of changes [29],
[30]. These changes are very important in the cloud due to the
heterogeneity of services, dynamic events and high volatility of
resources. Essentially, efficient change control is imperative for
cloud security as changes could be Indicators of Compromise
[1]. Therefore, mechanisms that are designed to check for
the resiliency of cloud systems should inject both malicious
and non-malicious changes as part of resiliency testing. This
approach efficiently tackles the cloud threat : lack of efficient
change control mechanisms as outlined in the CSA top cloud
threats 2019 [1].

F. Safety in Fault Injection
Practicing chaos engineering in production requires a good

measure of safety. These safety measures provide options
for rolling back changes that adversely impact deployments.
We leveraged the concept of state transition analysis to
achieve safety. State transition analysis is an analytical model
for detecting and representing malicious events in computer
systems [31]. Essentially, malicious activities are modeled as
the transition of states originating from a secure state (good)
So. As illustrated in Figure 3, the states change from So to S1

and can progress until Sn. Each subsequent state represents
a compromised state due to malicious attacker action e.g.
change of an AWS access policies order to escalate privileges.
Therefore, the secure (good) state So, has to be initially
established, this is straightforward if Infrastructure as Code
(IaC) e.g. HashiCorp Terraform 2 or AWS CloudFormation
3, is the orchestration strategy for the cloud environment. IaC
enables declarative, representation of infrastructure in JSON or
YAML formats. Conversely, IaC can be persisted and retrieved
to recreate resources by rolling back changes from Sn to So.
Note that So can also be constructed in the absence of IaC by
enumerating and persisting cloud resources using cloud APIs.

III. RISK DRIVEN FAULT INJECTION

RDFI implements chaos engineering with a security risk
analysis perspective. The security attributes (confidentiality,
integrity and availability) are considered while exploring the
fault space i.e. the hypothesis are framed within this context.
Therefore, faults that impact on these attributes are orches-
trated against the target cloud infrastructure. A security risk-
driven approach is more helpful to security practitioners since
detected vulnerabilities are analyzed and quantified and thus
easier to interpret for subsequent decision making.

In following subsections, several aspects of RDFI are dis-
cussed including security risk metrics, fault models and a brief
description of how the principles of chaos engineering are
implemented in RDFI.

2https://www.terraform.io/
3https://aws.amazon.com/cloudformation/

A. Security Chaos Engineering Feedback Loop

There are currently no established guidelines for practicing
SCE. However, such practices exist for chaos engineering,
infact, modern software engineering frameworks e.g. microser-
vices implement resiliency patterns e.g. timeouts and bulk-
heads and circuit-breaker. The SCE Feedback Loop shown in
Figure 4 summarizes how SCE can be used to ensure security
and resiliency in cloud infrastructure. It describes the strategy
for conveying the security information gained from the chaos
engineering campaigns to the deployed security controls and
mechanism in an efficient and iterative manner. The idea for
adopting a feedback loop is motivated by control engineering
and autonomous computing domains where the MAPE-K feed-
back loop [19] is a popular mechanism maintaining stability.
However, the MAPE-K feedback loop is passive since it listens
to events i.e. employs event-driven approaches. Conversely,
SCE initiates events via fault injection and then monitors,
hence a proactive feedback loop is more suitable. Therefore,
we have adapted the MAPE-K feedback loop by making the
EXECUTE phase the first module, aka Execute Monitor Act
Plan over-a-shared Knowledge-base (EMAP-K). The mapping
of the various MAPE-K functions with CloudStrike is shown
in Figure 5. Our adapted model works in the following manner:

1) Execute: The first component of the SCE feedback
loop is the execute component. It is responsible for inject-
ing security faults into the target cloud infrastructure. For
example, in Algorithm 2, the faults injected are designed
to disable the logging functionality of a specific AWS S3
bucket. This is a common attack step employed during cyber-
attacks to hide attackers tracks and avoid triggering alerts.
The execute component is responsible for implementing these
fault injection operations. Unlike the MAPE-K model, where
the monitor component is the initiating component, here the
execute component initiates the model. This is because chaos
engineering is a proactive mechanism and not a reactive one
like MAPE-K.

2) Monitor: Following the successful injection of security
faults, it is critical to maintain real-time visibility of the target
cloud infrastructure, this enables timely intervention if the
exercise begins to adversely affect the system, especially when
testing in production environments. Therefore, the Monitor
components uses several mechanisms to ensure visibility.
Firstly, logs from CloudStrike are collected and analyzed,
and thereafter observability tools from the cloud service are
leveraged e.g. AWS CloudWatch 4, AWS X-RAY(distributed
tracing) 5.

4https://aws.amazon.com/cloudwatch/
5https://aws.amazon.com/xray/

TABLE II: Dependability VS Security Controls

Means of dependability Security controls

Fault prevention IDS, firewalls, AWS GuardDuty
Fault tolerance Intrusion Prevention Systems

Fault removal Vulnerability Patching, access
privilege revocation

Fault forecasting Threat/vulnerability prediction,
threat intelligence analytics

5

BaseScore = round to 1 decimal(((0.6 ∗ Impact) + (0.4 ∗ Exploitability)–1.5) ∗ f(Impact)) (1)

Impact = 10.41 ∗ (1− (1− ConfImpact) ∗ (1− IntegImpact) ∗ (1−AvailImpact)) (2)

Exploitability = 20 ∗AccessV ector ∗AccessComplexity ∗Authentication (3)

Fig. 4: SCE Feedback Loop - an adaptation of the MAPE-K
framework to support security fault injection campaigns.

3) Analyze: Observations derived from the cloud infras-
tructures is collected and analyzed. The analysis helps in re-
fining the information to aid better understanding and possible
implications e.g. impact of the security risks. Part of this
process is the scoring and classification of the detected risks,
more details of these steps are provided in Section III-B.

4) Plan: The Plan component takes the knowledge derived
from fault injection and applies it in two major ways. Firstly,
the knowledge, is passed to the respective security mechanisms
e.g. security tools deployed to protect cloud infrastructure
to suggest possible hardening measures. Hence, the security
controls, as enumerated on Table II consume the analysed
knowledge. For example, security fault injection campaigns
against in Running Example would identify over-privileged
Identity and Access Management (IAM) policies and raise
alarms. The alarm may be used in several ways, a less
permissive policy might be used to replace the existing one,
or a rule might be added to the AWS CloudWatch to prompt
the security administrator if specified (suspicious) API calls
originate from the VM. The second way the derived knowledge
is applied consist in preparing for subsequent fault injection
campaigns. The discovered vulnerabilities are leveraged to
plan more attacks for other assets in the cloud infrastructure
e.g. by enriching the fault models.

5) Knowledge-base: At the center of the SCE feedback
loop is the knowledge-base, consisting of security information.
The security information about the cloud infrastructure (the
managed system) is derived from several sources e.g. fault
models and cloud security best practices. Also, the results of
the analyzed behavior due to fault injections is an important
part of this knowledge-base as it provides information that is
immediately actionable. For example, if there are no alerts due
to the security faults defined in Algorithm 2, that observation
is persisted in the knowledge-base.

B. Security Risk Metrics

The outcome of fault injection campaigns are not left in
binary categories e.g. secure/insecure or true/false, instead fine
grained security risk metrics are employed. These metrics are
computed for every security vulnerability detected during fault
injection campaigns using the Common Vulnerability Scoring
System (CVSS), one of the most popular security metrics
standard.

1) CVSS: We extended our previous works on threat model-
ing and proactive risk analysis for cloud infrastructure, where
we used the CVSS version 2 to score vulnerabilities in cloud
infrastructure [32], [33]. The CVSS metrics are expressed
using with base scores, which are numeric representations of
risks, assessed in terms of severity [34], [35]. The base scores
are computed using the Impact (Eqn 2) and Exploitability
(Eqn 3) metrics, as expressed in Eqn 1. We have used our
expert knowledge to compute these metrics, comparing them
with similar vulnerabilities and following the guidelines in the
CVSS manuals [34], [35]. Therefore, detected vulnerability
due to the fault injection campaigns are scored, and the
scores serve as a guide for risk prioritization [36] and other
risk management tasks, thereby making our approach more
practically useful.

2) Deriving Security Metrics with CVSS: Let us consider
how to compute security severity using the CVSS for two rep-
resentative cloud attacks: Cloud Storage Enumeration Attack
and Cloud Storage Exploitation Attack [32], [33], [37].

• Cloud Storage Enumeration Attack. This attack aims at
detecting misconfigured buckets for a selected target e.g.
a company’s AWS S3 buckets that are publicly acces-
sible. The attacker leverages previous knowledge about
the target acquired via enumeration techniques [38], to
construct possible keywords that are relevant to the target
e.g company name. These keywords are then fed into
the word-list generation tool e.g. Mentalist 6, to generate
all possible word combinations that are potentially AWS
S3 bucket names. Thereafter, the generated word-list is
fed to a cloud exploitation tools e.g. Bucketfinder 7 to
conduct the attack. Bucketfinder uses the word-list to
construct and probe AWS S3 URLs using HTTP GET
requests, responses with code 200 are publicly accessible.
Due to space limitations, some details of the Equations
1 - 2 are omitted e.g. static values for the AccessVec-
tor, AccessComplexity, Authentication, ConfImpact, In-
tegImpact and AvailImpact. These values are available at
various resources e.g the CVSS Implementation Guide
[34]. We assign Network for the AttackVector metric
since the attack can be executed over the internet. the

6https://github.com/sc0tfree/mentalist
7https://digi.ninja/projects/bucket finder.php

6

Algorithm 1 Malicious User-Bucket Attack Scenario

1: procedure BUCKETATTACK
2: createNewUser() . create a new user e.g. Bob
3: getCloudBuckets() . get a list of all the buckets in

the cloud
4: selectRandomBucket← getCloudBuckets() . select

a random bucket from the set of buckets in the cloud
5: createBucketPolicy()
6: assignUserAccessPolicy ← selectRandomBucket .

give user e.g. Bob read access to the existing bucket
7: end procedure

AccessComplexity is assigned Low given that attackers
can execute this attack with tools available in the wild
e.g Metasploit and on several GitHub repositories. The
Authentication metric is set to None, because no authen-
tication is required for the attack. For the Impact metrics,
IntegImpact, ConfImpact and AvailImpact is set to Partial
since there is a possibility of either acquiring materials
encrypted in buckets/objects with properly configured
Access Control List (ACL). Based on these metrics
(AV:N/AC:L/Au:N/C:P/I:P/A:P) 8 we derive 7.5, as the
base score. The Cloud Storage Enumeration Attack is
comparable to brute force password guessing attacks e.g.
CVE-2012-3137 9.

• Cloud Storage Exploitation Attack The Cloud Storage
Enumeration Attack could use the previous attack as a
staging step. The actual attack against identified mis-
configured buckets are during this attack, using cloud
exploitation tools e.g. Bucketfinder. To compute the
severity scores, we assign Network to the AttackVector
metric, since the buckets are reachable via the inter-
net. The AccessComplexity is assigned Low, while the
Authentication metric is set to None, given there is
no authentication mechanism protecting the bucket. The
Impact metrics is more severe given the previous attack
informs the attacker of buckets that are publicly accessi-
ble. Thus, the IntegImpact, ConfImpact and AvailImpact
are set to Complete. We thus have the base metrics as
(AV:N/AC:L/Au:N/C:C/I:C/A:C), and arrive at a score of
10.0. The score is reasonable considering it affords an
attacker full access to AWS S3 bucket.

C. Fault Models
Fault models [39] are commonly used in traditional fault

injection schemes to establish a sequence and order for
conducting fault injection campaigns. In order to derive the
fault models used in our scheme, several sources of security
information have been synthesized. Furthermore, an important
aspect of fault injection algorithms is the ability to detect
all possible faults (wide fault coverage) within a defined
failure scope. Essentially, our failure scope encapsulates the
impact of security failures against cloud assets. We based our

8this is a vector string representation of all computed metrics for a
vulnerability

9https://nvd.nist.gov/vuln/detail/CVE-2012-3137

Algorithm 2 Disable Logging in AWS S3

1: procedure DISABLE LOGGING
2: getCloudBuckets() . enumerate the buckets in the

cloud
3: selectRandomBucket← getCloudBuckets() . select

a random bucket from the set of enumerated buckets
4: disableBucketLogging() . stop all logging activities

against the bucket
5: end procedure

fault models on the CSA cloud penetration test playbook [22],
which categorizes public IaaS into three domains for security
testing: (1) application, data, business logic, (2) cloud service
and (3) cloud account. However, we focus on the latter two
domains: cloud account security and cloud service security
which directly map to the cloud IAM and cloud storage
respectively. The following sources considered to formulate
RDFI fault models:

1) Cloud Security Knowledge-base: Cloud security best
practices have been proposed by several organizations such
as the CIS benchmarks and the CSA security guides. These
best practices specify checks to improve the security posture
for CSPs and cloud customers. Automated security tests could
therefore be implemented based on these best practices. For
example, the Amazon Web Services (AWS) CIS Recom-
mendation 2.6 recommends activation of AWS CloudTrail:
Ensure S3 bucket access logging is enabled on the CloudTrail
S3 bucket. This recommendation aims at ensuring that all
activities against the AWS buckets are recorded and retained
for subsequent retrieval and analysis. Accordingly, an example
of a security fault injection we have derived from this recom-
mendation is disable bucket logging. Algorithm 2 illustrates
the implementation of this fault against AWS S3 buckets.

2) Cloud Penetration Testing Playbook: Although the
above-mentioned approach provides rich guidelines for build-
ing fault models, we leverage existing knowledge from tradi-
tional security testing e.g. penetration testing. This is achieved
by synthesizing the test cases provided in the CSA Penetration
Testing playbook [40], which contains over 70 test cases.
A key advantage of the playbook is that it puts the test
cases within the context of public clouds and extracts the
responsibilities that are specific to the Cloud Customer (CC).
The test cases are generic and therefore applicable to different
cloud platforms. There are several categories of security tests
can be performed, some of these are shown on Table III.

3) Attack Graphs: One limitation of the above fault models
is the lack of methodologies for sequential injection of faults.
In reality, attacks are conducted in a step-by-step procedure
i.e. from unprivileged to privileged states to achieve desired
objectives. Furthermore, the chaining of attacks is a com-
mon attack technique employed to hide malicious tracks or
persist control e.g. cyber-attack kill chain [41] is a popular
attack model that defines methods of advanced persistent
attacks. Therefore, RDFI employs attack graphs [42], which
are commonly used to illustrate such steps employed by
attackers. This approach is similar to Lineage Driven Fault
Injection (LDFI) [43], in which a top-down approach is used

7

Fig. 5: Architecture of CloudStrike showing the mapping to MAPE-K model [19]

Fig. 6: An Attack Graph of the Running Example (Note: portions of this graph were omitted for legibility)

to inject faults into a system to observe the success rate of
the system (consequences). Attack graphs are also similar to
fault trees, which are commonly used to illustrate fault models.
Furthermore, attack graphs aid in avoiding randomized attack
procedures as practiced in other chaos engineering tools e.g.
Chaos Monkey [43]. Another advantage of using attack graphs
is they aid automation, and reduce the need for security experts
and chaos engineering experts as noted by Alvaro et.al [44].
We leverage the graph generation feature of Terraform 10 to
construct attack graphs (Figure 6), which are then further
processed using GraphViz-Java 11, a Java implementation of
the of GraphViz. This is quite straightforward since Terraform
internally depends on Resource Graphs, to perform its opera-
tions e.g. terraform apply. Furthermore, this feature internally
uses GraphViz 12 and Dot 13, which are popularly used
for graph visualization and expression language respectively.
Attack graphs can also be constructed for cloud infrastructure

10https://www.terraform.io/
11https://github.com/nidi3/graphviz-java
12https://www.graphviz.org/
13https://graphviz.gitlab.io/ pages/doc/info/lang.html

orchestrated using other tools by discovering the infrastructure
Terraform resource discovery feature 14. In this case the cloud
infrastructure is first converted to Terraform state files to
enable graph generation.

D. Applying Chaos Engineering with RDFI
CloudStrike uses several chaos algorithms to inject security

faults (AttackPoints) into cloud infrastructure, thereby causing
specific actions. Table IV outlines some of these attack points
and the specific cloud resources that are impacted. In general,
the chaos engineering principles proposed by Basiri et.al [15]
are adhered to as explained below:

1) Build A Hypothesis Around a Steady-state Behavior:
Central to every chaos engineering experiment is the determi-
nation of a hypothesis about normalcy and abnormality, with
corresponding measurable attributes. Thus, we exploited the
concept of expected state [32] - the secure state of a cloud
resource at time to. Essentially, the expected state is known
by the resource orchestration system. For example, an ACP

14https://www.terraform.io/docs/providers/oci/guides/resource discovery.html

8

TABLE III: Security Fault Injection Categories

Test category Examples
Validating baseline security requirements
Employ security test cases, guides and checklists
relevant to domain & technologies web, mobile, native, serverside

Test for Spoofing of user identity and other entities Compromise default privileged service and user accounts in legacy cloud environments and services
(like Azure old ASM co-administrator accounts or Azure Storage Account keys)

Test for Tampering Alter data in datastore for fraudulent transactions or static website compromise (s3, rds,redshift)
Test for Repudiation Operate in regions where logging is not enabled or disable global logging (like CloudTrail)
Test for Information disclosure
(privacy breach or data leak)

Leverage misconfigured and default security groups and access lists for exfiltration of datato ANY
internet IP address (vpc acl, instance sgs)

Test for Denial of service Destroy cloud services configuration, datastores and/or accounts (sufficient to use –dry run AWS cli flag or
prove you have the privileges to)

Test for Elevation of privilege Add users, assets or accounts to existing roles or groups with higher privileges
(leverageprivileges such as iam:AddUserToGroup)

Test for Other Cases and Objectives Leverage misconfigured security groups and access lists for lateral movement between assets in the
Cloud(EC2, RDS, other), from account to account (AWS cross account assume role

Persistence Assign a public IP to a compromised / internal resource (AWS cli / console - elastic IP)

may specify read access for a user, Alice at time to. This
is registered in the orchestration system and a measurable
attribute is defined e.g. a HTTP 401 error (unauthorized) is
produced if Alice sends a request to a resource (e.g. bucket)
after her privileges are removed.

2) Vary Real World Events: To simulate real world events,
a variation of possible attacks is implemented. CloudStrike
orchestrates random actions against target cloud systems e.g.
deletion, creation, and modification, using the respective cloud
APIs. Three chaos modes are supported: LOW, MEDIUM and
HIGH, which correspond the magnitudes of 30 %, 60 % and 90
% respectively. Table IV is an example of AttackPoints used,
each AttackPoint defines a specific action to be conducted,
a combination of two or more AttackPoints forms an attack
scenario. Algorithm 1 combines AP1 and AP4 to create a
scenario where an attacker creates a random user in a cloud
account, creates a privileged policy for accessing a cloud
bucket and attaches the policy to the malicious account.

3) Run Experiments in Production: Chaos engineering ex-
periments take a different approach from traditional software
engineering testing, where tests are limited to development
environments [16]. Since the major motivation for Chaos
engineering is to gain confidence when systems are exposed
to real-life scenarios i.e. production, running experiments in
such environments is imperative. However, a phased approach
is required based on the level of maturity of the organization.
These levels of maturity are clearly outlined in the chaos
maturity model [16] and are hinged on two core metrics:
sophistication and adoption. Safety measures are required as
a fundamental basis for recovering systems to steady states.
We achieve this by employing the concept of expected states
and cloud state [32]. These expected states are persisted and
can be easily used to recover cloud environments to its secure
states. We deployed CloudStrike against resources deployed
on AWS and Google Cloud Platform (GCP).

4) Automate Experiments to Run Continuously: A clear
distinction between traditional security testing and chaos engi-
neering is the use of automation. Security automation enables
continuous oversight, which is necessary in the cloud due to
constant changes e.g. change of ACPs and provisioning of new
API keys. These changes could be initiated for either malicious
or benign reasons hence the need for proactively measures

to experiment and study malicious scenarios, thereby gaining
insights into efficient ways for designing and implementing
secure cloud systems.

IV. IMPLEMENTATION

All components of CloudStrike are implemented in Java,
attacks are transmitted to the cloud platforms using APIs of
AWS and GCP, hence there is no need to install agents on
target cloud infrastructure. Figure 5 illustrates CloudStrike’s
architecture, details are as follows:

A. Chaos Controller

This is the coordinator of the chaos injection experiments,
it receives requests for experiments with necessary parameters
e.g. cloud access credentials, preferred chaos mode and cloud
resources to be tested. This is based on a designated security
hypotheses and it is passed down to the Chaos Manager.
Eventually, the results of the chaos engineering experiments
e.g. the detected vulnerabilities are analyzed and handed back
to the chaos controller for onward transmission to human
administrators or external security tools. The Chaos controller
maps to the plan component of MAPE-K framework (Section
III-A4).

B. Chaos Manager

The Chaos Manager receives the instruction to conduct
attacks based on specified attack modes. The attack modes are
categorized as follows: LOW, MEDIUM & HIGH. However,
to have more refined, fine-grained control, the rate of attack,
which is abstracted in the aforementioned attack modes, could
be varied from 0.1 - 0.9, where 0.9 refers to more aggressive
attacks. Thereafter, the Chaos Manager aggregates the speci-
fied targets from the expected state (see Figure 5), then a subset
of the collected set of assets is selected based on the attack
rate. The higher the attack rate, the more the number of assets
to be attacked. The selected assets are them attacked based on
RULES drawn from the Fault Engine e.g. DELETE AWS S3
bucket X. The Chaos Manager maps to the plan component
of the MAPE-K framework (Section III-A4).

9

TABLE IV: Examples of CloudStrike’s AttackPoints

Attack ID Cloud Resource Chaos Action Description

AP1 User create create random user

AP2 User delete delete existing user

AP3 User modify change user configuration e.g. privileges, role or group

AP4 Policy create create new policies with random ACLs and attach to cloud resource(s)

AP5 Policy modify modify existing policy e.g. change ACL to deny original owner access to the resource

AP6 Policy delete detach policy from a resource, delete the policy

AP7 Role create creae a new role

AP8 Bucket make public alter private configuration to public

AP9 Bucket disable logging stop logging API calls against bucket

AP10 Bucket make unavailable simulate bucket unavailability e.g. by changing bucket ACL from ALLOW to DENY

C. Fault Engine

The fault engine maps to the knowledge-base component
of the MAPE-K framework (Section III-A5). It consists of
aggregated knowledge on about cloud compliance, best prac-
tices and attack graphs as described Section III-C. These
information is thereafter translated into actionable code, in the
form of RULES that define specific ACTIONS against specific
ASSETS. Here, we define an ACTION as what has to be done
against an asset, these could be :create, delete, modify, which
will create, delete and modify the cloud resource respectively.
Similarly, the ASSETS refers to the cloud resource involved,
e.g. AWS S3 bucket or AWS IAM policy. For example, in
the running example detailed in Section II-A, a RULE will
be of the form : MODIFY ACL for BUCKET X TO DENY
ACCESS TO USER Y, in this case the chaos algorithm will
fetch the ACL for Bucket X and remove User X name from
it. Effectively, User X will no longer have access to the Bucket.

D. Fault Injector

The fault injector is responsible for implementing the se-
curity faults composed by the Chaos Manager. The faults
are orchestrated against the target cloud assets. Furthermore,
using a defined heuristic, the fault injector either injects single
attack points or combines multiple attack points into attack
scenarios as illustrated on Table IV. The Fault Injector maps
to the execute component of the MAPE-K framework (Section
III-A1).

E. Chaos Monitor

To ensure safety, the chaos monitor continuously monitors
the progress of attacks to easily detect overwhelming effects
due to fault injection. We employ techniques that afford
reversibility of states as described in Section II-F. We lever-
age our previously developed system CSBAuditor [32], for
maintaining continuous visibility of monitored cloud accounts.
This is supported by a logging system based on Log4J 15,
and Cloud provider logging mechanisms: AWS CloudWatch
and GCP Stackdriver. Combining both server-side and cloud-
side logging and metrics provides efficient observability for

15https://logging.apache.org/log4j/2.x/

deriving real-time insights of chaos engineering experiments.
The Chaos Monitor is also responsible for recovering the target
system to normal (secure) states either when the experiment
is terminated or completed (Figure 3). The chaos monitor
implements the state transition analysis to reverse the effects
of experiments. It also computes the risk scores using the
CVSS algorithms in Eqn 1 - 3 and persists the reports
generated in the risk database. The Chaos Monitor maps to
the monitor component of the MAPE-K framework (Section
III-A2).

F. Chaos Analyzer

The vulnerabilities detected during fault injection campaigns
are passed to the Chaos analyzer for subsequent analysis. Here,
pre-computed severity scores are assigned to the vulnerabilities
and reports are generated. Furthermore, the observations are
retained in a knowledge-base (risk database) for later reference
and also used for implementing security counter-measures
and mitigation. Possible recommendations include updating
security rules for security groups (cloud firewalls), restriction
of access to overly permissive access control policies. The
results of the analysis are also passed to the Chaos Controller
for onward transfer to the relevant security mechanisms to
remediate the detected vulnerability. Therefore, the Chaos
Analyzer maps to the analyze component of the MAPE-K
framework, while the risk database maps to the knowledge-
base component (Section III-A5).

V. EXPERIMENTS AND EVALUATION

We evaluated CloudStrike against a cloud infrastructure test-
bed that depicts an enterprise cloud environment, comprised
of assets deployed on AWS and GCP. We adopted the cloud
testing methodology proposed by the CSA’s Cloud Penetration
Testing Playbook, which groups cloud infrastructure into three
categories for security testing: (1) Application Data, Business
logic, (2) Service and (3) Account, details of the composition
of these categories are illustrated in Figure 8.

• Cloud Test-bed: Our experiments are focused on IAM
(users, policies e.t.c.) and cloud storage service (S3
buckets, configurations e.t.c.), which are in categories (2)
and (3). We do not consider the third component i.e. the

10

(a) GCP Performance (b) AWS Performance

Fig. 7: Comparing (a) GCP and (b) AWS Performance

application layer e.g. microservices. Fifty user accounts
are provisioned on AWS and GCP cloud infrastructure i.e.
25 per cloud. Each user account is properly configured
using privilege separation concepts. CloudStrike then
enumerates the cloud accounts, and acquires detailed
information on composition and deployment.

• CloudStrike deployment: CloudStrike is deployed on a
Windows 10 computer, composed as follows: Intel (R)
Core (TM) i5-5200U CPU, 2.20Ghz processor, 8GB
RAM and 1 TB HDD.

Fig. 8: Three Main Layers of Cloud Infrastructure useful for
structuring Cloud Security Testing

A. Time Performance

These set of experiments aim at evaluating the performance
of CloudStrike w.r.t time overhead while injecting security
faults (workloads). For the first experiment, the major attack
modes LOW, MEDIUM and HIGH produced by the Chaos
Manager (Section IV-B), are launched against GCP assets.
After each attack mode, the assets are recovered back to the
secure state using the expected state [32] - the secure state of
a cloud resource at time to. Details of our recovery strategy
is in Section II-F. Essentially, the expected-state is the single-
source-of-truth, hence is used to recover the test-bed to its
expected-state. The Chaos Manager is used to construct and
similar faults against the AWS assets, the time taken for each
step is recorded. Figures 7a and 7b show the results for GCP
and AWS respectively. We note that the performance for AWS
is better than GCP, e.g. for the LOW attack modes, it takes

about 290 secs to complete the attack for GCP. Conversely,
the same attack mode (LOW) is completed within 38 seconds
for AWS. Similar disparities in time performance is observed
for other experiments, essentially the GCP APIs are more
complex, having layered dependencies and more calls are
made to complete requests. The next experiment is similar
to the previous ones, but only one attack rule is used: pub-
lic bucket access. This rule is used for making private buckets
public, hence the expected-state is first enumerated, to acquire
the details of the buckets and respective ACLs. A subset
of random buckets is extracted from the set of all buckets,
then the ACLs of the randomly selected subset of buckets
are changed from PRIVATE to PUBLIC. Figure 9 illustrated
the combined time taken to based on varying attack-rates.
The graph is plotted on a scale of 0.1 to 0.9 illustrating the
implemented attack rates: 0.9 depicts the most severe attacks,
resulting from a higher number of compromised assets. We
note that the time taken is almost linear, reflecting a linear
increase of time relative to increase in attack rates. Hence,
the time taken has no significant overhead to the system,
implying that the system can be easily scaled (e.g. to test
hundreds of cloud resources on multiple cloud infrastructure)
without risking the consequence high overhead or performance
challenges.

B. Performance of Recovery Operations
Safety is crucial to successful security fault injections as ear-

lier explained in Section II-F. Therefore, CloudStrike performs
recovery operations on completion of security fault injection
campaigns. We want to evaluate the impact of these operations
to gain insights of the overhead. Therefore faults are injected
against the AWS test-bed using the three fault modes i.e. LOW,
MEDIUM and HIGH for about 10 minutes. The results are
resented in Figure 10, it shows the time on the x-axis and
the number of requests executed by CloudStrike on the y-
axis. Figure 11, combines the number of requests for the fault
injection (in blue), and the number of requests for the recovery
operations (in red). Clearly, the recovery operations have a
huge overhead compared to the fault injection requests. The
reason for this is that the recovery operations execute global
checks for all assets using the by using the state-transition-
analysis technique and expected-state earlier explained in

11

Section II-F. On the one hand, this approach has the advantage
of exhaustively inspecting the entire set of resources to detect
changes and recover them, i.e. reverse changes. On the other
hand, this results in sending a a lot of requests depending on
the volume of injections (mode of injection).

Fig. 9: Time taken for public bucket access attacks against
AWS and GCP

Fig. 10: Performance of CloudStrike Fault Injection over three
Modes: LOW, MEDIUM and HIGH

Fig. 11: Performance of Recovery Operations

C. CPU and Memory Consumption

The aim of this experiment is to analyze the overhead with
regards to CPU and RAM. Figure 12 illustrates the CPU
consumption of CloudStrike, we observe that on the average,
the CPU consumption is less than 10 %, however, there are
some spikes observed which correspond to the period when the
GCP assets are attacked. The GCP API has a higher overhead
due to re-authentication and more complex request hence
more CPU is utilized. Similarly, for memory consumption,
we observe that memory consumption gradually rises from a
minimum of 28mb to a maximum of 175mb, this corresponds
also to the increased rate of attacks in two different attack
cycles (Figure 13).

Fig. 12: CPU Performance

Fig. 13: Memory Consumption

D. Security Evaluation

The goal of applying chaos engineering principles to cloud
security is to prove a given security hypothesis, and thereafter,
this provides the justification to apply appropriate security
measures. The adapted MAPE-K model (EMAP-K) illustrated
in Figure 4, provides a model for evaluating chosen security
hypotheses, the results from which the security of environ-
ments can be hardened. The above described experiments
implemented several hypotheses composed of attack points
and attack scenarios (Figure IV). In order to evaluate the
performance of CloudStrike from a security perspective, con-
sider the attack illustrated in Algorithm 2. Here the hypothesis
is Alarms will be triggered if the bucket logging feature is
disabled. We chose the bucket logging feature since it is a
best practice recommended by the CSA: Ensure S3 bucket
access logging is enabled on the CloudTrail S3 bucket and also
recommended as a test for Repudiation in the CSA Penetration
testing playbook: Test for Repudiation - Disable data store

12

Fig. 14: Improvement of Attack Detection Due to Application of Knowledge Provided by CloudStrike

access logging to prevent detection and response. [22].

Listing 1: Security Alert from AWS Guardduty
Amazon S3 S e r v e r Access Logging was

d i s a b l e d f o r S3 b u c k e t
company − t u r c o t t e − log −ddbe1033 −e65e

by A t t a c k e r c a l l i n g Pu tBucke tLogg ing .
Th i s can l e a d t o l a c k

of v i s i b i l i t y i n t o a c t i o n s t a k e n on
t h e a f f e c t e d S3 b u c k e t

and i t s o b j e c t s

We describe some of the results below. Since the cloud
assets are deployed on AWS, we enabled several AWS security
services to i.e. anomaly detection architecture composed :
AWS Detective, AWS Config, AWS GuardDuty and AWS
CloudWatch. Following, the attacks implemented in the above
section, we notice the only one detection captured the hypothe-
ses tested via the fault injection campaigns.

Listing 2: AWS CloudWatch Rule for Detecting Malicious
Events

{
"source":[
"aws.s3"
],
"detail -type":[
"AWS API Call via CloudTrail"
],
"detail":{
"eventSource":[
"s3.amazonaws.com"
],
"eventName":[
"PutBucketPolicy",
"PutBucketAcl"
]
}
}

Specifically, the only hypothesis proven right was Alarms
will be triggered if S3 bucket policies are altered. For example,
the AWS GuardDuty alarm in Listing 1 was thrown indicating
the detection of malicious event, the even twas triggered due
to our fault injection campaigns. However, the other faults
injected were not detected by the AWS security tools. To

improve the detection efficiency and security of the system,
it is necessary to fine tune the detection configurations of
the AWS security services. Therefore, based on the results
of the fault injections, i.e. the infrastructure that was suc-
cessfully compromised, we can exploit this knowledge as a
guide. This is done by implemented a detection rules on
AWS CloudWatch, so we the policy in Listing 2 to detect
bucket policies and bucket ACLs modification events. The
rule works by aggregating all access logs using Cloudtrail and
thereafter filtering the logs for specified API calls that trigger
corresponding events, we are interested in these two API calls:
PutBucketPolicy and PutBucketAcl. Since Cloudtrail provides
detailed history of all events, this provides an effective way
for detecting when malicious requests are made. Thereafter
we repeat the fault injection as above and we observe that the
number of events detected by the detection system increases,
this is illustrated in Figure 14.

E. Comparison With ChaoSlingr

To the best of our knowledge, ChaoSlingr 16 is the only
application that provides similar functionalities with Cloud-
Strike. The other Chaos Engineering tools either operate
at a different abstraction level are designed to ensure non-
security resiliency attributes e.g. availability, as summarized on
Table I. In order to compare the performance of CloudStrike
with ChaoSlingr, we deployed ChaoSlingr and configured it
against the environment earlier explained in the beginning
of this section. ChaoSlingr was implemented as a Proof-of-
Concept for SCE, however the tool implements only three
rules: s3 Policy slingr, s3 acl slingr and PortChange Slingr.
We compared CloudStrike with ChaoSlingr using the rules
that are responsible for making the S3 buckets to be public,
these rules are designed to check if there are any security
alerts that are triggered when the buckets are switched from
PRIVATE to PUBLIC, therefore the rules s3 acl slingr and
cloudstrike acl public were compared respectively. A new
bucket is created in the AWS environment - chaoticseval01,
and configured to be private. Then one after the other the
rules are executed against the bucket and the time performance
based on time is recorded using the AWS XRAY. Figures
16a and 16b illustrate the performance of CloudStrike and
ChaoSlingr respectively. As seen in the Figure 16, ChaoSlingr

16https://github.com/Optum/ChaoSlingr

13

(a) CloudStrike Performance (b) ChaosSlingr Performance

Fig. 15: Comparing Response Distribution for Injecting Faults into AWS S3 Buckets (CloudStrike VS ChaoSlingr)

(a) CloudStrike Performance (b) ChaosSlingr Performance

Fig. 16: Comparing Trace Distribution for Injecting Faults into AWS S3 Buckets (CloudStrike VS ChaoSlingr)

is slightly faster than CloudStrike with approximately 30s.
However, we assume the gain in speed to be based on the
the fact that ChaoSlingr is implemented as AWS Lambda
serverless functions 17, which makes it faster since most
intercommunication is between internal AWS APIs, while
the communication used by CloudStrike involves more of
external API since we use the basic AWS Java APIs, and
CloudStrike is deployed locally deployed on a local PC. A
closer look at the trace distribution as measured by AWS XRay
(distributed tracing service), shows that the initialization phase
for ChaoSlingr is about 276ms, while that for CloudStrike is
about 360ms. Furthermore, ChaoSlingr is faster for the actual
fault injection. However, CloudStrike implements over 20 fault
injection rules some of these are listed on Table IV, therefore
a wider fault space is covered. ChaoSlingr implements only 3
rules.

F. Discussion

Currently, the aspects of most cloud security configuration
involve manual efforts, this increases the chances of human
error, considering the need to scale while configuring complex
cloud assets like access policies [37]. There is a growing
adoption of IaC and orchestration techniques, however these
mechanisms are mostly not focused on security and therefore
require security configuration in order to orchestrate infras-
tructure securely. Furthermore, security services offered by
CSPs e.g. AWS CloudWatch and AWS Detective are quite
immature, mostly requiring human expertise to use effectively.
Hence, SCE provides a test-based approach that provides

17https://aws.amazon.com/lambda/

clearer guidance on which security efforts to focus and what
configurations are not secure. Though some security knowl-
edge might be required, the goal is to produce reports that
are clear and direct, stating the detected vulnerabilities and
recommended solution. For example, in the security evaluation
(Section V-D), the detection efficiency of AWS CloudWatch
improved following implementation of the rules necessary to
mitigate the vulnerabilities detected by CloudStrike. However,
the rules were added manually, and will not scale in reality,
therefore automating the entire process will be an interesting
future effort. Similarly, the use of attack graphs would aid
automation and integration with other tools. We consider this a
huge gain for security professionals not conversant with cloud
technologies since attack graphs are well known. However,
the performance of the attack graph was not done in this
work as we focused on the results produced using random
fault injection techniques, therefore, the attack graph analysis
is planned for future work. We also acknowledge that most of
the evaluation focused on AWS, this is due to the concentration
of tools and methodologies around AWS cloud. Furthermore,
the cloud threat landscape has seen more attacks focused on
AWS infrastructure such as the Capital One data breach which
we used as a running example (Section II-A). However, we
have developed the chaos algorithms and other components of
CloudStrike to also test resources on GCP.

VI. RELATED WORK

There is a limited amount of work on resiliency testing of
distributed systems using chaos engineering techniques, and
most of these work aim at tackling the non-security attributes.
Conversely, security fault injection has been used in contexts

14

other than cloud systems. We compare and contract our work
with these two categories of related works i.e those that focus
on non-security attributes and those that investigate security
attributes.

Non-security Fault Injection: Chaos Monkey [7] is a tool
invented by Netflix for injecting random faults in production.
Together with its variants (Netflix Simian Army), perturbations
are injected into various levels of cloud infrastructure includ-
ing VMs, to cloud network regions and availability zones.
Through these means, various resiliency issues are detected
especially at the network levels. However, the faults injected
specifically test the availability related attributes of cloud
services. We aim at the security attributes in order to introduce
resiliency that improves security. Moreover, Chaos Monkey
injects faults in a random manner, we aim at employing
sequential fault injection strategy via RDFI. Gremlin [18]
is a fault injection system aimed at testing the resiliency
of microservices. It achieves its objective by injecting non-
malicious faults against the network layer of microservices.
Our fault injection strategies leverage the API connecting
cloud customers and cloud services and focus on security
faults. Zhang et’al [9] proposed ChaosMachine, a system
for live analysis and falsification of exception-handling in
the JVM. ChaosMachine employs bytecode instrumentation
and remote control of fine-grained fault injection to detect
resilience weaknesses in try-catch-exemption handling. These
issues are thereafter reported to developers via reports. Alvaro
et’al proposed LDFI [43], as an alternative to random fault
injection to provide structured and intelligent exploration of
defined fault space. We gained the intuition for employing
attack graph for exploring cloud infrastructure attack surfaces
(which defines the fault space from a security viewpoint) since
LDFI does not suit the security use-case.

Security Fault Injection: Du ’et al [45] proposed an
approach for detecting vulnerabilities in software systems via
injection of security faults. The fault models employed were
extracted from vulnerability databases. Similarly, Fonseca et.al
[46] proposed Vulnerability & Attack Injector Tool (VAIT) for
automatic injection of security faults into web applications.
Similar to our work, security faults are injected based on
the continuous analysis the target web application and the
injected attacks are realistic. In [47], a fault injection taxonomy
for Service-Oriented Architecture (SOA) is proposed, the
taxonomy includes security faults such as authentication and
authorization faults. Infection Monkey 18 is a open source
Simulation As tool used for validating the resilience of cloud
networks and compute instances. However, the techniques
adopted by Infection Monkey are very similar to conventional
penetration testing, hence it differs from chaos engineering.
There are no safety guarantees like roll-back, black-box testing
techniques are employed and it is not based on experimen-
tation as defined in the principles of chaos engineering. Our
work is purely based on those principles and therefore employs
a different philosophy to cloud security. Moreover, Infection
Monkey targets cloud network layers, we target the cloud
APIs, cloud account components e.g. users, ACPs etc. To the

18https://www.guardicore.com/infectionmonkey/

best of our knowledge, there is no other work that injects
security faults against cloud systems.

VII. FUTURE WORK

A more intelligent recovery strategy will be implemented,
that specifically takes note of the cloud assets that were
changed during the security fault injection campaign. It is
envisaged that this will improve efficiency by reducing the
time overhead. Also in order to improve the performance and
reduce the overhead due to network issues, it will be nice
to implement the CloudStrike using serverless functions such
as AWS Lambda. We did not analyze the performance of
the Attack Graph construction in this article, however, this
is planned as a future investigation. Furthermore, whilst we
focused on IAM and cloud storage in this work, it will be
interesting to extend it to cover other cloud services and
systems such as AWS EC2 and Kubernetes.

VIII. CONCLUSION

We have presented CloudStrike, a security chaos engineer-
ing system designed for multi-cloud security. The state-of-
the-art chaos engineering systems focus on detecting non-
security weaknesses, which are largely based on availabil-
ity properties. CloudStrike however, extends the gains of
chaos engineering to security by injecting security faults that
impact confidentiality, integrity and availability into cloud
infrastructure. The notion of RDFI has been proposed to
aid automatic, risk-based mechanisms by leveraging attack
graph techniques and scoring detected vulnerabilities with
CVSS algorithms. The security faults are realistic and are
automatically injected using techniques that guarantee safety
through state reversibility while verifying defined security
properties. These security properties are specified as security
hypotheses which are then proved. In order to transfer the
output of the fault injections in an effective manner, we have
adapted the MAPE-K framework and implemented the core
functionalities as components of CloudStrike. These proposed
methods are suitable for detecting vulnerabilities in cloud
infrastructure, including human errors and misconfigurations,
thereby enhancing cloud customer’s confidence that such sys-
tems will withstand attacks in production e.g. the recurring
AWS S3 data breaches. CloudStrike has been implemented
and used for extensive evaluations against cloud infrastructure
deployed on AWS and GCP.

Kennedy A. Torkura received MSc. degree in
Cyber Security from the Lancaster University, UK.
He is a cyber-security doctoral candidate at the
Internet Technologies and Systems Research Group
of the Hasso Plattner Institute for Digital Engineer-
ing, Potsdam, Germany. His research focuses on
security risk and threat analysis of cloud-native en-
vironments, security chaos engineering, and incident
response..

15

Muhammad I.H. Sukmana received B.Sc. degree
in Information Technology from Asia Pacific Uni-
versity of Technology and Innovation, Malaysia and
M.Sc. degree in Communication Systems and Net-
works from Technical University of Applied Science
Cologne, Germany. He is currently pursuing the
Ph.D. degree at Hasso Plattner Institute, University
of Potsdam, Germany. His current research interests
include applied cryptography, cloud security man-
agement, and enterprise access control.

Feng Cheng received B.Eng. degree from Bei-
jing University of Aeronautics and Astronautics,
China, MEng. degree from Beijing University of
Technology, China, and PhD degree from University
of Potsdam, Germany. He is a senior researcher
heading the IT Security Engineering (Sec-Eng) Team
at Hasso Plattner Institute (HPI) at University of
Potsdam, Germany. His research is mainly focused
on Big Security Data analytics, network security,
firewall, IDS/IPS, attack modeling and penetration
testing, SOA and Cloud Security, SDN, etc

Christoph Meinel received PhD degree at Hum-
boldt University, Germany. He is currently the Pres-
ident and CEO of the Hasso Plattner Institute, Ger-
many and full professor at the University of Pots-
dam, Germany for Internet Technologies and Sys-
tems chair. His research focuses on Future Internet
Technologies, in particular Internet and Information
Security, Web 3.0, Semantic-, Social- and Service-
Web, as well as on innovative Internet applications,
such as e-Learning and Telemedicine.

REFERENCES

[1] C. S. Alliance, “Top threats to cloud computing the egregious 11,” Cloud
Security Alliance Top Threats Report, 2019.

[2] Ponemon, “2019 cost of a data breach report,” Online, 2019, [Accessed:
08 September 2019].

[3] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing:
Opportunities and challenges,” Information sciences, vol. 305, pp. 357–
383, 2015.

[4] “The cloud talent drought continues (and is even larger
than you thought),” Online, 2020, [Accessed: 5 June 2020.
[Online]. Available: https://www.forbes.com/sites/emilsayegh/2020/03/
02/the-2020-cloud-talent-drought-is-even-larger-than-you-thought/

[5] Netflix, “Chaos engineering upgraded,” Online, [Accessed:
02 July 2020]. [Online]. Available: https://netflixtechblog.com/
chaos-engineering-upgraded-878d341f15fa

[6] A. Tseitlin, “The antifragile organization,” Queue, vol. 11, no. 6, pp.
20–26, 2013.

[7] Netflix, “Netflix chaos monkey upgraded,” Online, [Accessed:
02 July 2020]. [Online]. Available: https://netflixtechblog.com/
netflix-chaos-monkey-upgraded-1d679429be5d

[8] Codecentric, “Chaos monkey for spring boot,” Online, [Accessed:
02 July 2020]. [Online]. Available: https://codecentric.github.io/
chaos-monkey-spring-boot/

[9] L. Zhang, B. Morin, P. Haller, B. Baudry, and M. Monperrus, “A
chaos engineering system for live analysis and falsification of exception-
handling in the jvm,” arXiv preprint arXiv:1805.05246, 2018.

[10] R. Miles, Learning Chaos Engineering: Discovering and Overcoming
System Weaknesses Through Experimentation. O’Reilly Media, 2019.

[11] Bloomberg, “Powerfulseal,” Online, [Accessed: 02 July
2020]. [Online]. Available: https://www.techatbloomberg.com/blog/
powerfulseal-testing-tool-kubernetes-clusters/

[12] ChaosMesh, “Chaosmesh,” Online, [Accessed: 02 July 2020]. [Online].
Available: https://www.chaosmesh.com/

[13] A. Rinehart, “Chaoslingr,” Online, [Accessed: 02 July 2020]. [Online].
Available: https://github.com/Optum/ChaoSlingr

[14] K. A. Torkura, M. I. Sukmana, F. Cheng, and C. Meinel, “Security
chaos engineering for cloud services: Work in progress,” in 2019 IEEE
18th International Symposium on Network Computing and Applications
(NCA). IEEE, 2019, pp. 1–3.

[15] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering.” IEEE Software,
2016.

[16] C. Rosenthal, L. Hochstein, A. Blohowiak, N. Jones, and A. Basiri,
Chaos Engineering - Building Confidence in System Behavior through
Experiments. O’Reilly Media,, 2017.

[17] A. Basiri, L. Hochstein, N. Jones, and H. Tucker, “Automating chaos
experiments in production,” arXiv preprint arXiv:1905.04648, 2019.

[18] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2016, pp. 57–66.

[19] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[20] CIS Amazon Web Services Foundations. Center for Internet Security,
2018.

[21] CIS Benchmarks for Google Cloud Platform. Center for Internet
Security, 2018.

[22] CSA, “Cloud penetration testing playbook,” 2019.
[23] C. Rosenthal and N. Jones, Chaos Engineering - System Resiliency in

Practice. O’Reilly Media,, 2020.
[24] A. Rinehart, “Security chaos engineering: A new paradigm for

cybersecurity,” Online, [Accessed: 02 July 2020]. [Online]. Available:
https://opensource.com/article/18/1/new-paradigm-cybersecurity#:
∼:text=Security%20Chaos%20Engineering%20is%20the,against%
20malicious%20conditions%20in%20production.

[25] R. McLean. (2019) A hacker gained access to 100 million capital one
credit card applications and accounts. [Online]. Available: https://edition.
cnn.com/2019/07/29/business/capital-one-data-breach/index.html

[26] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[27] A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental concepts of
dependability. University of Newcastle upon Tyne, Computing Science,
2001.

https://www.forbes.com/sites/emilsayegh/2020/03/02/the-2020-cloud-talent-drought-is-even-larger-than-you-thought/
https://www.forbes.com/sites/emilsayegh/2020/03/02/the-2020-cloud-talent-drought-is-even-larger-than-you-thought/
https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://codecentric.github.io/chaos-monkey-spring-boot/
https://codecentric.github.io/chaos-monkey-spring-boot/
https://www.techatbloomberg.com/blog/powerfulseal-testing-tool-kubernetes-clusters/
https://www.techatbloomberg.com/blog/powerfulseal-testing-tool-kubernetes-clusters/
https://www.chaosmesh.com/
https://github.com/Optum/ChaoSlingr
https://opensource.com/article/18/1/new-paradigm-cybersecurity#:~:text=Security%20Chaos%20Engineering%20is%20the,against%20malicious%20conditions%20in%20production.
https://opensource.com/article/18/1/new-paradigm-cybersecurity#:~:text=Security%20Chaos%20Engineering%20is%20the,against%20malicious%20conditions%20in%20production.
https://opensource.com/article/18/1/new-paradigm-cybersecurity#:~:text=Security%20Chaos%20Engineering%20is%20the,against%20malicious%20conditions%20in%20production.
https://edition.cnn.com/2019/07/29/business/capital-one-data-breach/index.html
https://edition.cnn.com/2019/07/29/business/capital-one-data-breach/index.html

16

[28] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A comparative
analysis of network dependability, fault-tolerance, reliability, security,
and survivability,” IEEE Communications Surveys & Tutorials, vol. 11,
no. 2, pp. 106–124, 2009.

[29] L. Simoncini, “Resilient computing: An engineering discipline,” in 23rd
IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009, 2009.

[30] J.-C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP Int.
Conf. On dependable systems and networks, 2008, pp. G8–G9.

[31] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis: A
rule-based intrusion detection approach,” IEEE transactions on software
engineering, no. 3, pp. 181–199, 1995.

[32] K. A. Torkura, M. I. Sukmana, T. Strauss, H. Graupner, F. Cheng,
and C. Meinel, “Csbauditor: Proactive security risk analysis for cloud
storage broker systems,” in 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA). IEEE, 2018, pp. 1–10.

[33] K. A. Torkura, M. I. Sukmana, M. Meinig, A. V. Kayem, F. Cheng,
C. Meinel, and H. Graupner, “Securing cloud storage brokerage systems
through threat models(,” in Advanced Information Networking and
Applications (AINA), 2018 IEEE 32nd International Conference on.
IEEE.

[34] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the
common vulnerability scoring system version 2.0,” in Published by
FIRST-Forum of Incident Response and Security Teams, 2007.

[35] K. Scarfone and P. Mell, “The common configuration scoring system
(ccss): Metrics for software security configuration vulnerabilities,” NIST
Interagency Report, vol. 7502, 2010.

[36] R. Wirtz and M. Heisel, “Cvss-based estimation and prioritization for
security risks,” in Proceedings of the 14th International Conference
on Evaluation of Novel Approaches to Software Engineering (to be
published), 2019.

[37] A. Continella, M. Polino, M. Pogliani, and S. Zanero, “There’s a hole
in that bucket!: A large-scale analysis of misconfigured s3 buckets,”
in Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, 2018, pp. 702–711.

[38] P. Engebretson, The basics of hacking and penetration testing: ethical
hacking and penetration testing made easy. Elsevier, 2013.

[39] L. Feinbube, L. Pirl, and A. Polze, “Software fault injection: A practical
perspective,” in Dependability Engineering. IntechOpen, 2017.

[40] C. Alliance, “Cloud penetration testing playbook,” Cloud Security Al-
liance, 2019.

[41] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains,” Leading Issues in Information Warfare &
Security Research, 2011.

[42] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack
graph-based probabilistic security metric,” Lecture Notes in Computer
Science, 2008.

[43] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-driven fault
injection,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 331–346.

[44] P. Alvaro and S. Tymon, “Abstracting the geniuses away from failure
testing,” Queue, vol. 15, no. 5, pp. 29–53, 2017.

[45] W. Du and A. P. Mathur, “Vulnerability testing of software system using
fault injection,” Purdue University, West Lafayette, Indiana, Technique
Report COAST TR, pp. 98–02, 1998.

[46] J. Fonseca, M. Vieira, and H. Madeira, “Evaluation of web security
mechanisms using vulnerability & attack injection,” IEEE Transactions
on dependable and secure computing, vol. 11, no. 5, pp. 440–453, 2013.

[47] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for
service-oriented architecture,” in 10th IEEE High Assurance Systems
Engineering Symposium (HASE’07). IEEE, 2007, pp. 367–368.

	Introduction
	Security Chaos Engineering
	Running Example
	Chaos Engineering
	Dependability
	Security
	Resiliency
	Safety in Fault Injection

	Risk Driven Fault Injection
	Security Chaos Engineering Feedback Loop
	Execute
	Monitor
	Analyze
	Plan
	Knowledge-base

	Security Risk Metrics
	cvss
	Deriving Security Metrics with CVSS

	Fault Models
	Cloud Security Knowledge-base
	Cloud Penetration Testing Playbook
	Attack Graphs

	Applying Chaos Engineering with RDFI
	Build A Hypothesis Around a Steady-state Behavior
	Vary Real World Events
	Run Experiments in Production
	Automate Experiments to Run Continuously

	Implementation
	Chaos Controller
	Chaos Manager
	Fault Engine
	Fault Injector
	Chaos Monitor
	Chaos Analyzer

	Experiments and Evaluation
	Time Performance
	Performance of Recovery Operations
	CPU and Memory Consumption
	Security Evaluation
	Comparison With ChaoSlingr
	Discussion

	Related Work
	Future Work
	Conclusion
	Biographies
	Kennedy A. Torkura
	Muhammad I.H. Sukmana
	Feng Cheng
	Christoph Meinel

	References

