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Abstract

Some vehicular Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing

can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a

fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In

this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment.

The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in

a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned

information. By integrating the “proactive’‘ and “preemptive” approach, the proposed scheme can achieve a better forwarding

of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the

performance advantage of the proposed scheme over existing baselines.
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Abstract—Some vehicular Internet-of-Things (IoT) applica-
tions have a strict requirement on the end-to-end delay where
edge computing can be used to provide a short delay for end-users
by conducing efficient caching and computing at the edge nodes.
However, a fast and efficient communication route creation in
multi-access vehicular environment is an underexplored research
problem. In this paper, we propose a collaborative learning-
based routing scheme for multi-access vehicular edge computing
environment. The proposed scheme employs a reinforcement
learning algorithm based on end-edge-cloud collaboration to
find routes in a proactive manner with a low communication
overhead. The routes are also preemptively changed based on
the learned information. By integrating the “proactive” and
“preemptive” approach, the proposed scheme can achieve a better
forwarding of packets as compared with existing alternatives. We
conduct extensive and realistic computer simulations to show the
performance advantage of the proposed scheme over existing
baselines.

Index Terms—Vehicular networks, routing protocol, collabo-
rative learning, multi-access vehicular environment, fuzzy logic,
reinforcement learning.

I. INTRODUCTION

Future vehicular Internet-of-Things (IoT) systems involve a
huge number of devices in multi-access environments where
different types of wireless spectrums should be efficiently
utilized [1]–[3]. At the same time, novel services, such as co-
operative autonomous driving and intelligent transport systems
that demand unprecedented accuracy, latency and bandwidth
are emerging. These services have an extreme variance in their
resource demand with respect to time, location, context, as
well as individual patterns. Current vehicular IoT systems,
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such as autonomous driving, only consider the intelligence
of a single vehicle agent, and therefore a limitation exists. In
order to realize a more intelligent vehicular IoT system, the
collaboration between different vehicle/roadside units should
be utilized efficiently. This requires an efficient and intelligent
networking scheme that can handle the highly mobile and
varying features of the environment.

The future vehicular IoT applications can be classified into
two main categories in terms of the underlying networking
technologies, namely, vehicle-to-infrastructure (V2I) applica-
tions and vehicle-to-vehicle (V2V) applications. Most V2I
applications, such as vehicular sensor data collections, are
traffic-intensive, which means that the applications require a
communication approach that could deliver a large amount
of data in a short time. In contrast, most vehicle-to-vehicle
applications are used to delivery safety messages or control
messages between vehicles, which are delay-sensitive. The
traffic-intensive applications and delay-sensitive applications
have different types of quality-of-service (QoS) or quality-
of-experience (QoE) requirements [4], [5], and therefore we
should consider the difference in the design of communication
protocols.

Meanwhile, there could be multiple types of communication
interfaces available simultaneously for each vehicle, resulting
in the selection of best communication approach in a multi-
access environment particularly important. The edge comput-
ing [6]–[9] has been widely discussed for use in data caching
and computation offloading. However, the communication
route selection in a multi-access vehicular environment was
not discussed adequately. Since the communication request
and the corresponding QoS requirement are always difficult
to predict, we have to reserve some communication resources
before a request is made. However, it is difficult to find the
best route for each possible communication pair with low over-
head, especially when the communication environment itself
changes fast with the vehicle movement. It is important to
design an intelligent method to handle these spatial-temporal
changes of vehicular environment. Recently, artificial intel-
ligence based approaches have been attracting great interest
in achieving intelligence in computer systems. However, due
to the above mentioned characteristics of vehicular networks,
conducting an efficient learning in vehicular environments is a
difficult scientific problem. It is important to design a learning
scheme that could evaluate and improve actions with low
communication overhead.

In this paper, we propose a reinforcement learning based
scheme for route selection in multi-access vehicular edge
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computing environment. We employ an efficient end-edge-
cloud collaboration to fasten the convergence speed of the
learning algorithm. The main contributions of this paper are
as follows.

• We propose a Q-learning-based routing scheme for multi-
access vehicular edge computing environments. The pro-
posed scheme uses a “proactive” approach to find com-
munication routes with a low overhead, reducing the
delay in finding a route when a communication request
is received. The proposed scheme also employs a “pre-
emptive” approach to replace an existing route with a
new one by dynamically learning a better route using a
reinforcement learning approach.

• We propose a decentralized approach for vehicle edge se-
lection by jointly considering the vehicle velocity, vehicle
distribution, and the connectivity between vehicles based
on fuzzy logic.

• We achieve end-edge-cloud collaboration approach based
on a Q-learning algorithm. Each vehicle agent is able to
learn the best route by receiving the feedback from the
cloud/edge.

• We consider different QoS requirements posed by differ-
ent types of applications and select the best next hop route
according to the specific requirement of each application.

The remainder of the paper is organized as follows. We
first give a brief survey of related work in Section II. Then,
the details about the proposed scheme are explained in section
III. Section IV shows the simulation results for the evaluation
of the proposed scheme, and finally section V draws our
conclusions.

II. RELATED WORK

A. Edge computing in vehicular IoT

Most of the existing studies discuss how to conduct effi-
cient caching or computation offloading, and do not seriously
discuss how to find a communication peer in a multi-access
vehicular environment. Su et al. [10] have proposed a cross-
entropy-based caching scheme for vehicular content networks.
The content access pattern, vehicle speed, and vehicle density
were considered in the content caching at the edge nodes
in order to facilitate a timely content delivery. Ale et al.
[11] have employed a bidirectional deep recurrent neural
network (BRNN) to conduct online proactive caching for
edge computing. The BRNN model was used to predict time-
series content requests in order to solve the difficulty in
content popularity recognition. In [12], the joint optimization
of content placement and content delivery in the vehicular
edge computing was studied, and a deep deterministic policy
gradient framework was used to solve the problem.

Feng et al. [13] have introduced the concept of autonomous
vehicular edge computing that utilizes the computational ca-
pabilities of vehicles in a decentralized manner. An efficient
job caching approach was proposed to improve the scheduling
of jobs based on the information exchange between neighbors.
Wang et al. [14] have proposed a multi-user non-cooperative
game-based approach for computation offloading in vehicular
edge computing. They designed a payoff function taking

into account the node distance, application requirements,
communication overhead, and the contention for computing
resources. In [15], Liu et al. discussed the offloading prob-
lem of multiple tasks with task dependency, and proposed
a task scheduling algorithm that prioritizes multiple tasks to
guarantee the completion time constraint of each task while
considering the dependency relationship between tasks. The
problem of vehicle edge server selection for the task migration
has been discussed in [16]. The problem was formulated as a
finite horizon Markov decision process, and a time-aware task
offloading approach was proposed to solve the problem.

Tan and Hu et al. [17] have proposed a joint caching
and computing approach where the resource allocation was
conducted by considering the vehicle mobility and service
deadline constraint. In [18], a deep reinforcement learning-
based joint optimization of the edge computing and content
caching was managed to improve the profits of mobile network
operator while ensuring user QoS in 5G-envisioned internet-
of-vehicles.

B. QoS control in vehicular environment

Since diverse applications that require different levels of
QoS constraints are expected for vehicular networks, the
conventional one-fit-all approach fails to satisfy the needs of
different users. Wu and Zheng [19] have conducted a theoreti-
cal analysis on the uplink local delay between a vehicle and an
edge node in a MEC-based VANET using stochastic geometry.
The distributions of vehicles and edge nodes were modeled as
an independent one-dimensional homogeneous Poisson point
process. The analytical result was validated through computer
simulations and the dominant factors on the transmission delay
were investigated. Zhang et al. [20] have proposed a service-
oriented hierarchical soft slicing framework to support multi-
dimensional QoS in vehicular networks. Different network
slices were constructed to support the context information
service and the infotainment service, respectively, in order to
differentiate different QoS requirements.

In [21], a grid routing protocol was proposed to guarantee
QoS in the perception of complex vehicular IoT environments.
The grid identification number was used to calculate the
distance between nodes and find the least delay path. Garg
et al. [22] have discussed the integration of software defined
networking (SDN) and edge computing for QoS guarantee
in vehicular networks, and proposed a mobility and QoS-
aware SDN framework for autonomous vehicles. Kumar et
al. [23] have studied the multimedia content delivery from
cloud video streaming servers to moving vehicles. In order
to support sufficient QoS for different video streaming cases,
a QoS-aware hierarchical web caching strategy was proposed
based on two metrics, namely, the load utilization ratio and
the query to connectivity ratio. Peng et al. [24] proposed
a dynamic spectrum management framework to guarantee
QoS by considering the spectrum slicing, spectrum allocation,
and transmission power adjustment. Three important issues,
specifically, spectrum slicing among base stations, spectrum
allocation for vehicles, and transmit power adjustment at base
stations, were jointly solved through an alternate concave
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search algorithm. In the above mentioned studies, an efficient
integration of different communication approaches in a multi-
access vehicular environment is not discussed.

C. Communication resource allocation in multi-access vehic-
ular environment

Sun et al. [25] have introduced a data delivery protocol
for vehicular networks based on a prediction of vehicular
traffic volume. Li et al. [26] have addressed the data routing
problem from a vehicle to a fixed destination with multi-
hop forwarding. The routing decision was made by using
a geographical approach that divides a road segment into
smaller grids. However, an efficient use of multiple access
technologies was not studied. In [27], an efficient integration
of licensed and unlicensed spectrums was discussed. An
edge computing approach at vehicles was used to improve
the spectrum efficiency in the case where multiple types
of communication approaches exist. Nkenyereye et al. [28]
have proposed an SDN-based multi-access edge computing
approach for vehicular networks. An OpenFlow algorithm was
developed to facilitate the packet forwarding process based on
the target area and current route condition.

Different types of communications, including broadcast and
unicast, coexist in vehicular networks. In [29], an approach
for neighbor discovery was proposed. The neighbor discovery
approach conducts mobility prediction based on Kalman filter
theory. Kuhlmorgen et al. [30] have proposed a packet for-
warding scheme that takes advantage of both contention-based
forwarding and decentralized congestion control considering
the existence of mixed data traffic.

Some studies have discussed the use of physical layer
technologies in improving the resource allocation efficiency.
Yang et al. [31] have studied the downlink radio resource
management problem for ultra-reliable and low latency com-
munications in V2I systems. The problem was discussed by
exploiting the benefits of massive MIMO. A non-orthogonal
multiple access (NOMA) based resource allocation for vehic-
ular networks has been discussed in [32]. However, the QoS-
aware resource allocation problems in a multi-access vehicular
environment, especially the route selection and communication
approach selection, still need investigations.

III. PROPOSED SCHEME

A. Problem definition and system overview

We assume that each node has three different types of
communication interfaces, specifically, cellular, IEEE 802.11p
and mmWave interface. These communication approaches do
not interfere with each other, and each node can switch
between them or utilize all the communication approaches
simultaneously. The use of different communication interfaces
can improve the wireless resource utilization efficiency while
requiring an approach to find the best communication interface
for the transmission of each packet. Each node sends periodical
hello messages with IEEE 802.11p interface in order to
exchange information among neighbors, and the hello interval

is 1 second by default. The vehicle identifier, position infor-
mation, vehicle velocity, and some other information (details
will be explained later) are attached in the hello messages.

The research problems we discuss here are: 1) how to
efficiently utilize different types of communication interfaces?;
2) how to find the best route for each vehicle with low
overhead in accordance with the requirement and ensure the
update of the route when a change of environment occurs?;
3) how to design a learning scheme that could adapt to the
dynamically changing vehicular environment?

We propose a reinforcement learning-based routing scheme
for multi-access vehicular edge computing environments. The
proposed scheme employs a Q-learning algorithm to find the
best route for each agent, and uses an end-edge-cloud collab-
oration approach to achieve intelligence in the route selection.
The proposed scheme uses different learning approaches for
traffic-intensive applications and delay-sensitive applications.
First, we introduce a route selection approach for traffic-
intensive applications. Then, we introduce a vehicle-to-vehicle
route selection approach for delay-sensitive applications.

In our proposed scheme, IEEE 802.11p is used for trans-
mission of both data and control messages while mmWave is
only used to transmit data among neighbors. Basic procedure
of the proposed scheme consists of two stages. In the first
stage, we choose the vehicle edge nodes 1. In this stage,
we select all the vehicle edges, and ensure that they are
connected with each other through IEEE 802.11p link. In
the second stage, each agent (vehicle) learns the best route
to the corresponding destination by evaluating the reward
(feedback) from the cloud (in the case of V2I communications)
or from the communication partner (in the case of V2V
communications). As shown in Fig.1, an ordinary vehicle
could receive a reward from a base station (BS) or receive
a discounted reward from an edge vehicle. In the former case
the vehicle connects with the BS using cellular interface, and
in the latter case the vehicle connects to the BS through the
edge vehicle using mmWave/IEEE 802.11p interface. Based on
the reward, the vehicle chooses the best action between two
possible next hops, specifically, the BS or the edge vehicle.

The route selection approach for traffic-intensive applica-
tions is as follows. By selecting a vehicle edge node/base
station as the next hop (action), each agent could receive a
feedback from the next hop and evaluate the goodness of
the action. The reward is only allocated by the base station
(BS), and is transmitted to each agent with a discounted value.
The learning for the delay-sensitive applications uses a similar
learning approach but with a difference in the allocation of the
reward. While the learning of the traffic-intensive applications
allocates the reward based on the throughput each route can
provide, the learning of delay-sensitive routes allocates reward
based on the expected transmission delay.

B. Fuzzy logic-based vehicle edge selection
We use a fuzzy logic-based approach to evaluate each

vehicle is whether suitable for being an edge node or not.

1In the following, “edge node” and “vehicle edge node” are used inter-
changeably; “non-edge node” denotes a vehicle that is not selected as an
edge node.
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Fig. 1. Learning based on end-edge-cloud collaboration.

The suitability value is calculated by considering the vehicle
velocity, vehicle distribution, and the connectivity between
vehicles. The suitability value is calculated as follows. First,
three different metrics, namely, stability metric, leadership
metric, and connectivity metric, are defined. Then, we convert
these metrics to fuzzy values using fuzzy membership func-
tions, and then apply some predefined rules to calculate the
fuzzy value for the suitability level. In the final step, the fuzzy
value for the suitability is converted to a numerical value [33].
The suitability value is calculated for each vehicle within the
range of 1

2R where R is the one-hop communication distance
of IEEE 802.11p. If a node finds itself having the largest
suitability value, the node declares itself as an edge node. Here,
“edge node” works a leader to manage a group of vehicles
and provide gateway supports for the ordinary vehicles in the
group.

1) First step – definition of three factors: The stability
metric, leadership metric, and connectivity metric factor are
calculated based on the information in the hello messages
received from neighbors.

Stability Metric (SM ): Stability metric of node x is
calculated as follows.

SM(x) = 1−
||υ(x)| − avgy∈Nx

|υ(y)||
maxy∈Nx

|υ(y)|
(1)

where a higher value means a higher stability. Since hello
messages are exchanged between neighbors, each vehicle can
calculate its neighbors’ SM. Here, avgy∈Nx

|υ(y)| is predicted
from the information attached in the hello messages. SM is
updated periodically (one second interval) based on a weighted
exponential moving average with a smoothing factor of 0.7.
The value of smoothing factor is determined based on our
experience [33].

Leadership Metric (LM ): Leadership metric is calculated
as follows.

LM(x) = min

(
1,

c(x)

Number of neighbor vehicles

)
(2)

where c(x) denotes the number of vehicles traveling to the
same direction as the node x in its neighbors. The higher
the number, the higher chance the vehicle is elected as an
edge node. Here, the number of vehicles in one-hop region is
acquired from the information attached in the hello messages.
LM is updated periodically (one second interval) based on a

weighted exponential moving average with a smooth factor of
0.7.

Connectivity Metric (CM ): Connectivity metric can be
calculated in two ways depending on the available information.
First, we can use the ratio of “the number of hello messages
received from all one-hop neighbors” to “the number of hello
messages sent by all one-hop neighbors” as

CM(x) =
Num of hellos received from all NBs

Num of hellos sent by all NBs
. (3)

Note that “the number of hello messages sent by all one-
hop neighbors” can be calculated by observing the sequence
number of received hello messages since each hello message
is identified with a unique sequence number which is incre-
mented by a predefined value for each hello period. The other
way is to use the antenna height to show the connectivity
metric as a vehicle with a higher antenna always can provide
a better connectivity to the neighbor vehicles. In that case,
CM is calculated as

CM(x) =
h(x)

maxy∈Nx
h(y)

. (4)

where h(x) is the antenna height of node x.
2) Second step – fuzzification and fuzzy rules: Fuzzy logic

is used to evaluate whether a vehicle is suitable for working
as an edge node or not. This evaluation should be conducted
as soon as possible in order to satisfy strict QoS require-
ments of vehicular IoT applications. Therefore, considering
computational complexity, we use triangular or trapezoidal
membership functions instead of non-liner membership func-
tions, such as Gaussian membership functions that require
more computational resources in fuzzy reasoning. The fuzzy
membership functions are defined as shown in Fig. 2. The
linguistic variables of the three metric are defined as {Good,
Medium, Bad}.
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Fig. 2. Fuzzy membership functions (left: SM , middle: LM , right: CM ).

The fuzzy rule is defined in Table I.
Each node calculates the rank (a suitability value for being

an edge node) of each neighbor based on the IF/THEN rules
as defined in Table I. The linguistic variables for the rank
are defined as {Perfect, Good, Acceptable, Unpreferable, Bad,
VeryBad}. In Table I, Rule 1 is expressed as follows:

IF Velocity is Slow, Leadership is High, and Connectivity
is Good THEN Rank is Perfect.

Note that multiple rules could be applied for the same fuzzy
value. Here, we use the Min-Max method to combine the
results from multiple rules.
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TABLE I
FUZZY RULES

Stability Leadership Connectivity Rank
Rule1 Good Good Good Perfect
Rule2 Good Good Medium Good
Rule3 Good Good Bad Unpreferable
Rule4 Good Medium Good Good
Rule5 Good Medium Medium Acceptable
Rule6 Good Medium Bad Bad
Rule7 Good Bad Good Unpreferable
Rule8 Good Bad Medium Bad
Rule9 Good Bad Bad VeryBad
Rule10 Medium Good Good Good
Rule11 Medium Good Medium Acceptable
Rule12 Medium Good Bad Bad
Rule13 Medium Medium Good Acceptable
Rule14 Medium Medium Medium Unpreferable
Rule15 Medium Medium Bad Bad
Rule16 Medium Bad Good Bad
Rule17 Medium Bad Medium Bad
Rule18 Medium Bad Bad VeryBad
Rule19 Bad Good Good Unpreferable
Rule20 Bad Good Medium Bad
Rule21 Bad Good Bad VeryBad
Rule22 Bad Medium Good Bad
Rule23 Bad Medium Medium Bad
Rule24 Bad Medium Bad VeryBad
Rule25 Bad Bad Good Bad
Rule26 Bad Bad Medium VeryBad
Rule27 Bad Bad Bad VeryBad

3) Last step – defuzzification: Fig. 3 shows the output
membership function that is used to convert from a fuzzy
value to a numerical value. The process of conversion is called
defuzzification. In this work, the center of gravity (COG)
method is used for the defuzzification.

 0

 0.2
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

VeryBad Bad Unpreferable Acceptable Good Perfect

Fig. 3. Output membership function.

C. Q-learning based end-edge-cloud collaboration for traffic-
intensive applications

Here, BS is connected to the cloud, and the vehicles are con-
nected to the cloud through the BS. Therefore, the BS is treated
as the cloud in our learning model for simplicity. The selected
edge vehicles are the edges. The ordinary vehicles are the
end nodes. Our aim is to conduct an intelligent collaboration
within the end-edge-cloud architecture. The cloud and edge
nodes give suggestion to the end nodes to select the next hop

node for information transmission. Note that the information
could be sensor data or the data required for task offloading,
which means that finding a next hop node is mandatory for
communications as well as computing.

1) Q-learning model: The Q-learning model is defined as
follows. Vehicles are the agents, and the actions are the pairs of
a possible communication type and the next hop node for the
packet forwarding. The possible actions at each node would
be the set of its one-hop neighbors including base station. The
BS is responsible for sending back a reward for each action the
vehicle executed. The reward will be further transmitted with
a discount by other edge vehicles. Each vehicle adjusts own
behavior based on the feedback from the BS. The information
exchange between agents is done with hello messages. Each
node maintains a Q-Table where each Q-value shows the value
for choosing m as the next hop to the RSU.

2) Update of Q-Table: The state is expressed by a pair of
{destination, current node}, and the action is determined by
{communication type, next hop}. In case of using the cellular
communications, the next hop would be BS, and in the case
of IEEE 802.11p, the next hop node would be a neighbor
node. Each node has to maintain a Q-value for each triple
of a destination, the communication type, and an one-hop
neighbor. Upon reception of each hello message, the Q-Table
is updated. The initial value for each Q-value is 0. Each vehicle
maintains a Q-value to the BS and each vehicle in two-hop
region. Considering the change of neighbors with the vehicle
movement, we release the corresponding Q-Table space of
old neighbors when necessary for the purpose of maintaining
information about new neighbors. The proposed scheme does
not maintain route for each possible destination considering
the size of Q-Table. For finding a route to other nodes, the
proposed scheme uses a hierarchical routing approach where
different levels of gateway nodes exist. Note that for each
vehicle, there is at least one neighbor would be an edge node
that is working as a gateway node and responsible for finding
a route to any other vehicle. The BS also performs a duty
of gateway. After reception of a hello message from node m,
node c updates the corresponding Q-value as

Qc(d, t,m) ← α× LQ(c,m)

×{R+ γ ×maxy∈NBm
Qm(d, t, y)}

+ (1− α)×Qc(d, t,m). (5)

where d and t are the destination node and communication
type, respectively. LQ(c,m) is the link quality value between
node c and m, which is expressed by the hello reception ratio
between two nodes. NBm denotes the one-hop neighbor set
of node m. Here, the learning rate α and discount rate γ are
set to 0.8 and 0.9, respectively, based on our experience [34].
The reward Rm is calculated as

R =

{
R̄, if m is base station and c is an edge node
0, otherwise

(6)

where R̄ ∈ [0, 1] is allocated by the BS according to the
number of vehicles connected to the BS. The base station will
set the reward according the vehicle density. If the density is
high, the cloud will give a high reward to the corresponding



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2020 6

edge candidate. The reward is further discounted according to
the number of hops. The exploration is achieved by exchang-
ing hello messages among neighbors. Therefore, for a route
selection, each node always can choose the pair of node and
communication type showing the highest Q-value.

In case of V2V communication routes, the reward is updated
as

R =

{
1, if m is an edge node
0, otherwise.

(7)

The reward is set to 1 here in order to utilize decentralized
communications as far as possible. The decentralized com-
munication approaches include IEEE 802.11p and mmWave.
Since the mmWave communication is only possible in a line-
of-sight communication link, we only use mmWave for the
communications between an edge vehicle node and its non-
edge neighbors. For this type of communication pairs, if both
mmWave and IEEE 802.11p are available, then the mmWave
is used.

Each edge vehicle attaches its own cost (the corresponding
Q-value) to its neighbors in the hello message. Upon reception
of a hello message from a neighbor vehicle, the vehicle
could update the corresponding cost in the case of using the
neighbor as the next hop based on the Q-learning algorithm.
The exploration of Q-learning is achieved by the periodical
hello message exchange. Therefore, each agent is aware of
the best action based on the Q-values.

D. Q-learning based packet forwarding for delay-sensitive
unicast applications

The delay-sensitive applications could be used to send the
information required for the collaboration between vehicles,
which could enable collaborative autonomous driving. The
data transfer can be either conducted by up to 2-hop V2V
communications or cellular communications. Here the reward
is calculated based on the delay. For V2V communications, the
reward is sent by each vehicle to its neighbors. The selected
edge vehicle could further transmit the discounted reward to
its neighbors, but the reward will not be disseminated to more
than two hops. This is achieved by only the edge vehicle nodes
attaching the Q-Table entries of one-hop neighbors to the hello
messages.

The reward from the BS through cellular interface is calcu-
lated as

R̂ = min(1,
Dth

Spkt∗Nue

BWul
+

Spkt∗Nue

BWdl
+Dbs

) (8)

where Dth, Spkt, Nue, BWul, BWdl, Dbs are the delay
requirement, packet size, number of user devices, uplink
bandwidth, down link bandwidth, and processing delay at
the base station. If the BS is able to satisfy the incoming
request, R̂ is set as 1, and otherwise set to a smaller value.
The processing delay includes all the times required for the
scheduling, queueing, and computing except the propagation
delay.

For the path using IEEE 802.11p communications, the
reward is received from a neighbor node. In this case, the

reward from a vehicle is calculated as

R̂ = min(1,
Dth

Spkt

BW11p×HRR +D11p

) (9)

where BW11p is the bandwidth of IEEE 802.11p (27 Mbps)
and HRR is hello reception ration between two neighbors.
D11p is the processing delay at each vehicle, which includes
all the contention delay, the retransmission delay due to packet
collisions, and computing delay. Here, the discount rate is set
as 0.5 in order to avoid the use of 2-hop transmissions as
far as possible. Note that the parameters of Eq.(8) and Eq.(9)
should be tuned based on the corresponding hardware and
environment, which is beyond the scope of this paper.

E. Data dissemination for delay-sensitive broadcast applica-
tions

Data dissemination for delay-sensitive broadcast applica-
tions should be conducted through IEEE 802.11p V2V com-
munications as it could be difficult to use cellular commu-
nications to detect all the intended receivers. We propose a
multi-hop broadcast approach based on the proposed edge
architecture. As shown in Fig.4, the broadcast messages are
forwarded by the edge nodes. The ordinary nodes do not
rebroadcast the messages, which can significantly reduce the
redundant forwarding. It is also possible to confirm the packet
delivery status of a broadcast packet by sending the acknowl-
edge message (ACK) from the edge nodes, which makes the
retransmission of a broadcast message possible and therefore
ensure a high packet dissemination ratio. The forwarding
algorithm is also simple as follow. If the current node is an
edge node, the node just rebroadcasts the packet, and otherwise
just receives the packet without further forwarding.

Fig. 4. Edge-based multi-hop broadcast.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed scheme, we
conducted extensive computer simulations using ns-2.34 [35]
(see Table II). We used a freeway road having three lanes in
each direction, which was generated using the same approach
as [34]. Each vehicle had three different types of wireless
interfaces, namely, cellular, IEEE 802.11p, and mmWave. For
IEEE 802.11p, we used Nakagami model to include a realistic
fading environment, and the parameters were the same as
[34]. The average transmission range of IEEE 802.11p was
set as 250 m. The proposed protocol was compared with
“Without edge” (without edge computing), “Random edge”
(random edge selection), and “Edge without preemptive” (edge
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without preemptive route change). In “Without edge”, each
node only uses the cellular interface for communications.
“Random edge” collects some nodes randomly to conduct
data caching. “Edge without preemptive” employs the same
approach as the proposed scheme for the edge selection but
does not conduct efficient route change between different
wireless interfaces. Three different types of applications were
considered in the simulations, namely, traffic-intensive applica-
tions, delay-sensitive unicast applications, and delay-sensitive
broadcast applications. In the following simulation result fig-
ures, each error bar shows the 95% confidence interval of the
corresponding data.

TABLE II
SIMULATION ENVIRONMENT

Topology Freeway, 2000m, 6 lanes
Number of nodes 400
Maximum velocity 100 km/h
Mobility generator Ref. [34]
MAC IEEE 802.11p MAC
Data rate 27 Mbps (unicast), 3 Mbps (broadcast)
Fading model Nakagami Model
Simulation time 1000 s

A. Performance for traffic-intensive applications

For traffic-intensive applications, we evaluated the commu-
nication performance between vehicles and the cloud. The
number of cellular base station was 1, which means that
the communication path to the cloud must go through this
base station. For simplicity, we used a down link traffic
where the data were sent from the cloud to all the vehicles
and data were cached at the base station. Note that, in the
simulation topology, the base station was “cloud”, and the
selected vehicle edge nodes were “edges”. Therefore, “end-
edge-cloud collaboration” was simulated by the collaboration
among non-edge vehicles, edge vehicles, and the base station.

Fig.5 shows the TCP throughput for various numbers of
receivers where the cellular bandwidth was 500 Mbps. The
maximum vehicle velocity was 100 Km/h. We can observe
that “Without edge” approach fails to provide an acceptable
throughput since all the vehicles use cellular communications
and therefore the resource allocated to each vehicle is small.
“Random edge” achieves better performance by conducting
data caching at randomly selected edge nodes. However,
due to the inefficiency of the random edge selection, the
performance improvement is limited. By choosing the best
nodes for the edge nodes based on a fuzzy logic algorithm,
the proposed scheme shows the largest throughput. “Edge
without preemptive” uses fixed edge node and changes a
route only when the link becomes unavailable, resulting in
difficulty of adapting to the change of network environments.
The advantage of the proposed protocol over “Edge without
preemptive” explains that it is promising to conduct a route
change by preemptively finding a better route. The proposed
scheme is able to preemptively change to a better route by
using the Q-learning approach to explore all the possible paths
based on the exchange of periodical hello messages.
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Fig. 5. TCP throughput for various numbers of receivers.

Fig.6 shows the TCP throughput for various maximum
vehicle velocities. The number of vehicle was 300. The perfor-
mance of “Random edge” is affected by the vehicle velocity
significantly, which shows the importance of using an efficient
edge selection algorithm. The proposed scheme can find stable
edge nodes by taking into account the velocity factor, vehicle
distribution, and the signal quality between vehicles for the
edge selection. This ensures that the proposed scheme could
achieve the best performance for different vehicle velocities.
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Fig. 6. TCP throughput for various vehicle velocities.

The effect of the available cellular bandwidth on the pro-
tocol performance is shown in Fig.7. The number of vehicle
was 300, and the maximum vehicle velocity was 100 Km/h.
In “Without edge”, all the receiver nodes directly get the
data from the cloud by using cellular communications, which
results in an inefficient use of cellular resources. Therefore,
the throughput improvement with the increase of cellular
bandwidth is not notable. Other approaches could utilize
the cellular resources more efficiently by conducting edge
computing at edge nodes. However, the performance of “Ran-
dom edge” is still unsatisfactory due to the blindness of the
random edge selection. “Edge without preemptive” performs
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better than “Random edge” by selecting better and more
stable edge nodes. The proposed scheme can further improve
“Edge without preemptive” by finding the best route based
on Q-learning and switching between different communication
interfaces.
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Fig. 7. TCP throughput for various cellular bandwidths.

B. Performance for delay-sensitive unicast applications

We generated UDP traffics to evaluate the performance of
the proposed scheme for delay-sensitive unicast applications.
UDP packet size was 512 bytes, and the data rate for each
traffic flow was set as 1 packet per second. The cellular
bandwidths for uplink and downlink were 250 Mbps and
500 Mbps, respectively. The processing delay at the base
station was set as 50 ms. Fig.8 shows the end-to-end delay
for various numbers of traffic flows. The delay of “Without
edge” is the largest as the use of pure cellular transmis-
sions always encounter the problem of insufficient bandwidths
when then number of traffic flows is large. This is because
all the traffic flows go through the base station, which is
inefficient for some communication pairs that are close to
each other geographically. “Random edge” shows a better
outcome by conducing some IEEE 802.11p communications
through randomly selected edge nodes without going through
the base station. However, the random selection of edge node
is unsatisfactory in terms of MAC layer contention efficiency.
Since the proposed scheme could select the best edge nodes
for selection, it can achieve the lowest delay, which is a
significant improvement especially when the number of traffic
flows is large. The difference between “edge w/o preemptive”
and the proposed scheme shows that it is difficult to achieve
a good performance if the route is not changed until the route
is disconnected. It is important to switch efficiently between
the cellular communications and IEEE 802.11p according
to the usage ratio of cellular spectrum. This requires an
adaptive algorithm that can evolve by efficiently perceiving
the environments.

We also conducted evaluations for different processing
latencies at the base station where the number of traffic
flows was 300. As shown in Fig.9, with the increase of the
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Fig. 8. End-to-end delay for various vehicle densities.

processing delay at the base station, the advantage of the
proposed scheme becomes more significant. This is because
it becomes important to use other types of communication
approaches to support the cellular communications in order
to provide a low delay for all the communication pairs. The
proposed scheme always can achieve a low delay by using
IEEE 802.11p communications for some communication pairs.
By using the Q-learning algorithm, the proposed scheme can
find the best communication interface and the corresponding
route for each communication pair, resulting in the lowest
delay.
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Fig. 9. End-to-end delay for various processing latencies at the base station.

Fig.10 shows the end-to-end delay for various vehicle ve-
locities. The number of traffic flows was 100. We can observe
that the delay of “Without edge” and “Random edge” increases
as the vehicle velocity becomes faster. This explains the
importance of selecting stable edge nodes for the data caching.
By considering the vehicle velocity and vehicle distribution in
the edge node selection, the proposed scheme achieves a stable
latency for different vehicle velocities. The preemptive route
change approach also contributes to the short delay by finding
a better route before the current route is broken.
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C. Performance for delay-sensitive broadcast applications

We also conducted simulations for delay-sensitive broadcast
applications. The number of broadcast source nodes was 1, and
all other vehicles were considered as the intended receivers.
Since the broadcast communication through cellular interface
is not realistic, here “Without edge” denotes the weighted p-
persistence [33]. Fig.11 shows the packet dissemination ratio
for various vehicle densities. Since “Without edge” does not
use edge computing on packet dissemination, it results in a low
packet dissemination ratio due to the redundant rebroadcast
of data. The edge selection of “Random edge” also cannot
achieve a satisfactory result. “Edge without preemptive” shows
a higher packet dissemination ratio as compared with “Without
edge” and “Random edge” by using a more efficient edge
selection. Based on the efficient edge node selection and the
edge-based retransmission scheme, the proposed scheme can
provide the perfect packet dissemination ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  200  300  400  500

Pa
ck

et
 d

is
se

m
in

at
io

n 
ra

tio

Number of nodes

Without edge
Random edge

Edge without preemptive
Proposed

Fig. 11. Packet dissemination ratio for various vehicle densities.

As shown in Fig.12, the proposed scheme shows the lowest
end-to-end delay. When the node density is high, the se-
lection of edge node has more a remarkable impact on the
delay. Since the proposed scheme considers vehicle velocity,

vehicle distribution, and the link quality between vehicles,
the proposed scheme is able to find the best edges, and
therefore satisfy the low latency requirement of delay-sensitive
broadcast applications.
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V. CONCLUSIONS

We discussed the problem of route selection in multi-
access vehicular edge computing environment, and proposed
a scheme based on a reinforcement learning approach. The
proposed scheme employs a “proactive” approach to find
communication routes based on periodical hello message ex-
change with low overhead, and conducts “preemptive” change
of communication interfaces and routes to ensure a high
performance in varying network environments. The propose
scheme uses different learning criteria for traffic-intensive
applications and delay-sensitive applications in order to satisfy
different QoS requirements. The simulation results show that
the proposed approach can achieve a better performance than
existing baselines.
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