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Abstract

The growing popularity of mobility-on-demand fleets increases the importance to understand the impact of mobility-on-demand

fleets on transportation networks and how to regulate them. For this purpose, transportation network simulations are required

to contain corresponding routing methods. We study the trade-off between computational efficiency and routing accuracy of

different approaches to routing fleets in a dynamic network simulation with endogenous edge travel times: a computationally

cheap but less accurate Network Fundamental Diagram (NFD) based method and a more typical Dynamic Traffic Assignment

(DTA) based method. The NFD-based approach models network dynamics with a network travel time factor that is determined

by the current average network speed and scales free-flow travel times. We analyze the different computational costs of the

approaches in a case study for 10,000 origin-destination (OD) pairs in a network of the city of Munich, Germany that reveals

speedup factors in the range of 100. The trade-off for this is less accurate travel time estimations for individual OD pairs. Results

indicate that the NFD-based approach overestimates the DTA-based travel times, especially when the network is congested.

Adjusting the network travel time factor based on pre-processed DTA results, the NFD-based routing approach represents a

computationally very efficient methodology that also captures traffic dynamics in an aggregated way.
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Network Fundamental Diagram Based Routing of Vehicle Fleets in
Dynamic Traffic Simulations

Florian Dandl, Gabriel Tilg, Majid Rostami-Shahrbabaki and Klaus Bogenberger

Abstract— The growing popularity of mobility-on-demand
fleets increases the importance to understand the impact of
mobility-on-demand fleets on transportation networks and how
to regulate them. For this purpose, transportation network sim-
ulations are required to contain corresponding routing methods.
We study the trade-off between computational efficiency and
routing accuracy of different approaches to routing fleets in
a dynamic network simulation with endogenous edge travel
times: a computationally cheap but less accurate Network
Fundamental Diagram (NFD) based method and a more typical
Dynamic Traffic Assignment (DTA) based method. The NFD-
based approach models network dynamics with a network
travel time factor that is determined by the current average
network speed and scales free-flow travel times. We analyze
the different computational costs of the approaches in a case
study for 10,000 origin-destination (OD) pairs in a network of
the city of Munich, Germany that reveals speedup factors in
the range of 100. The trade-off for this is less accurate travel
time estimations for individual OD pairs. Results indicate that
the NFD-based approach overestimates the DTA-based travel
times, especially when the network is congested. Adjusting the
network travel time factor based on pre-processed DTA results,
the NFD-based routing approach represents a computationally
very efficient methodology that also captures traffic dynamics
in an aggregated way.

I. INTRODUCTION

Ride-hailing and ride-pooling services enjoy increasing
popularity in many cities worldwide. In order to evaluate
the impact of such systems in a regulated or unregulated
environment, traffic planners and policy-makers need to inte-
grate these services into traffic models that often only include
public transportation and private vehicles. With the inclusion
of these mobility services into mode-choice models, pre-
dicting the impact of measures on the modal split becomes
possible. Considering traditional modes, Dynamic Traffic
Assignment (DTA) represents a method to compute the flows
in multimodal networks. However, mode choice of individual
travelers in the presence of the new mobility services depends
on the level of service of the respective providers, mostly user
waiting and service time (time until drop-off), as well as the
price [1]. This level of service, in turn, depends on the status
of the individual vehicles of the fleet, the network state and
the routing strategies of the operator. The resulting vehicle
routing problems are typically NP-hard integer problems and
computationally very expensive, especially for larger street
networks and fleet sizes that affect traffic dynamics in a
city (e.g. [2]). The advancement of routing algorithms, e.g.
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by contraction hierarchies [3]–[5], enables fleet control in
real-time, but traffic planners interested in the bigger picture
and researchers not focusing on the routing aspect might
want to use even faster routing algorithms to simulate more
scenarios in the same time. Since advanced fleet control is
computationally very demanding, integrating the fleet routing
problem into a DTA further limits the number of scenarios
that can be investigated [6], [7].

Mobility service operators require a lot of routing function
calls in order to respond to requests of travelers. Based on
the current estimation of travel times, the operator generates
hypothetical routes between vehicle locations and each re-
quest’s pick-up point and another point-to-point route from
the latter to the traveler’s desired drop-off point. Depend-
ing on the vehicle-customer assignment, repositioning and
charging policies as well as re-assignment constraints of the
operator, even a single vehicle might generate many routing
function calls before a route is finally locked [8]–[10].

In order to gain fast routing calls, some studies focusing
on fleet operation ignore network dynamics and pre-process
the street network in the free-flow state to create travel time
tables between all nodes [11], [12]. This pre-processing step
also costs some time, but only has to be done once as long as
travel times remain constant. By pre-processing the network
based on travel times from DTA for multiple time intervals,
exogenous traffic congestion can be represented [13]. How-
ever, this approach cannot capture traffic dynamics generated
by increased traffic efficiency due to pooling or induced
demand from mode-choice decisions [14].

In simulations with endogenous capacity utilization and
travel times, the loops shown in Fig. 1 iterate multiple times.
Therefore, the importance of efficient routing functionality
for simulation frameworks becomes evident. In large-scale
networks, finding an approximate but very efficient routing
solution can be preferable over a more exact but costlier
approach.

This paper combines very efficient routing based on travel
time tables with the capabilities of network fundamental
diagrams (NFD), also called macroscopic fundamental di-
agram, to capture city-wide traffic states in an aggregated
fashion. Thereby, we trade off a more realistic routing for
substantial gains in computational efficiency. As travel times
influence the mode choice of travelers much more than the
exact sequence of route segments, we present a comparison
of origin-destination travel times based on a DTA to quantify
the mentioned trade-off. We expect that the performance of
this approach strongly correlates with the degree of scatter in
the NFD. Hence, scenarios with varying network sizes and
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Fig. 1. Possible workflows of traffic and on-demand fleet simulations with endogenous demand from a traveler mode choice model. a) illustrates an
DTA-based approach and b) an NFD-based approach. The processes of interest for this study are highlighted in grey.

origin-destination distributions are analyzed in a case study
for Munich, Germany.

The remainder of this paper is structured as follows.
First, we describe the problem considered in Section II.
Subsequently, Section III elaborates on the general workflow,
the travel time estimation based on the DTA and the NFD,
as well as on the used routing algorithms. A case study is
described in Section IV and its results are presented and dis-
cussed in Section V. Finally, Section VI draws conclusions
and outlines future research.

II. PROBLEM DESCRIPTION

The main goal of this paper is the comparison of routing
approaches that can be used to simulate fleet coordination
within a transportation network graph G = (N,E) with
nodes N and edges E. The edge travel times are assumed
to be depending on the outcome of travelers’ mode choice
and therefore endogenous simulation parameters. In the first
approach, which we denote by DTA-based approach, travel
times tie for each edge e ∈ E are extracted from a DTA
valid for time interval i. The second, NFD-based approach
uses travel times f i · te, where te denotes free-flow travel
times and f i is a network travel time factor for time interval
i derived from the NFD. The computational effort and the
resulting routes are compared.

Instead of the edge sequence of a vehicle’s route, it is often
considered as sufficient to estimate the origin-destination
(OD) travel times (or distances) during the route planning
phase. The mode choice of hypothetical travelers is mostly
affected by this OD travel time, while the network state
will be influenced by the actual route. Hence, we compare
both complete routing calls (returning the complete list of
sections) and travel time calls (returning only the travel
time between two nodes) for the DTA- and the NFD- based
approaches for both use cases.

The routes between stops, i.e. the pick-up and drop-off
locations, represent one-to-one routing problems. Additional
to these one-to-one routing calls, on-demand fleet operators
might use many-to-one routing calls to determine which

vehicles are in the network vicinity and available to serve
a new customer. Instead of this procedure, it is also possible
to use some filter criterion (e.g. geometric vicinity [15]) and
then call multiple one-to-one routing calls. For this study, the
computational effort is only examined for one-to-one routing
calls, together with the required time for network evaluation.

III. BACKGROUND AND METHODOLOGY

A. Workflow of Transportation Models

The workflow of the intended NFD-based transportation
model that motivated this study (shown on the right of
Fig. 1) is similar to other, typically DTA-based transportation
models. This includes on-demand mobility fleet models im-
plemented in MATSim [16] or mobitopp [17] (shown on the
left of this Figure). On-demand fleet operators need to query
a very large number of calls to a routing engine based on the
last network state to plan the movements of their fleets and
generate realistic offers. Travelers choose their mode (e.g.
private vehicle, public transportation, on-demand provider)
and thereby affect traffic states across the entire network.
However, there are some aspects of our proposed NFD-based
method that lead to substantial computational performance
improvements. First, routing calls can be executed much
faster by pre-processing, which has a large impact due to
the large amount of routing calls. Secondly, the update
of network-wide traffic states is much simpler: instead of
keeping track of every single vehicle and traveler, the NFD
merely requires to trace the total number of vehicles in
the network. Moreover, this efficiency gain allows us to
update travel times in every time step of the simulation
and guarantees consistency of network-wide traffic states
and route planning. Contrarily, DTA-based approaches are
typically applied for longer time intervals and the work flow
for a single interval might require several iterations before
the routes are planned on a convergent network state.

In this study, we compare one iteration (at time interval
instead of daily level) of DTA-based and NFD-based simula-
tion workflows and focus on these differences (marked grey
in Fig. 1). For a very large number of one-to-one routing



calls, the computational effort and quality of solution are
evaluated, whereas the DTA-based approach is assumed to
return the correct route and route travel time. Since the NFD
and the free-flow travel time table can be pre-processed,
these steps do not count into the computational effort of an
iteration.

B. Dynamic Traffic Assignment

Dynamic Traffic Assignment models represent the com-
plex dynamic characteristics of a transport network and
describe the transition of traffic states and the evolution of
recurrent and non-recurrent congestion. OD flows, for in-
stance, may be used as a main input on the demand side, and
are loaded into the network along with various parameters
such as capacities and the driving behavior of travelers that
capture the performance of the network on the supply side. In
essence, the role of DTA is to provide an interaction between
the demand for mobility and the network supply which
results in traffic propagation considering the capacity of the
traffic network. An excess of demand leads to congestion and
delays experienced by the drivers. As a consequence, drivers
may reconsider their route of travelling or shift to alternative
modes of transportation [18]. DTA models are conventionally
categorized into two wide-ranging groups: analytical models
and simulation-based models. Simulation-based DTA models
use a traffic simulator to replicate the complex traffic flow
dynamics which are critical for developing meaningful opera-
tional strategies for real-time deployment. The use of a traffic
simulator eliminates the need of any analytical formulations
and provides a solution procedure for general networks [19].

Simulation-based DTA systems are particularly suited to
evaluate a wide range of Advanced Traffic Management
Systems (ATMS) and Advanced Traveler Information Sys-
tems (ATIS) [20]. With an increasing availability of com-
putational power, DTAs have been substantially evolved in
the last decade to evaluate network performance in various
applications. The critical objective is to model the real-
time evolution of travel demand and network conditions in
the context of a DTA system and capture the within-day
dynamics. There are various examples of successful adoption
of simulation-based DTA in literature for traffic planning,
route planning, and for control strategy generation [21]–[23].

C. Network Fundamental Diagram

The NFD describes the functional relationship of network
production and network-wide vehicle accumulation. Early
ideas were introduced in [24]–[26]. The macroscopic explicit
function of the network-wide outflow and the aggregated
accumulation was formulated by [27] and verified in [28].
The authors found a well-defined and low-scatter relationship
of the space-mean flow and the network accumulation for
empirical data from Yokohama. Amongst other domains of
applications in traffic control and management, the NFD has
been applied for route guidance, see for example [29]–[31].

In this paper, we aim to exploit the NFD for routing
purposes as well. More specifically, we derive estimates for a

scaling factor of free-flow travel times that approximate dy-
namic travel times in the network. For the sake of simplicity
and computational performance, we scale the travel time on
all edges of the network with the same factor. Therefore,
the fastest routes are unaffected and can be completely pre-
processed and saved in a travel time table. Dynamically
changing travel times reflecting congestion effects are ad-
justed by scaling with the network-wide factor. We are aware
that not partitioning a large network might increase the
observed scatter in the NFD [32].

For this study, the NFD is derived from the results of
the DTA. Please note that one advantage of the NFD-based
approach is that no DTA is generally necessary. The NFD can
be estimated based on loop detector or floating car data [33],
[34]. In the absence of data, analytical estimation methods
can be applied to derive the NFD [35]–[38]. For each time
interval i, we extract the average flow qie [veh/h] and density
kie [veh/km] for each edge e in the network based on the
simulation outputs. We calculate the link-weighted averages
as suggested in [28] as follows:

qi =

∑
e∈E qiele∑
e∈E le

(1)

ki =

∑
e∈E kiele∑
e∈E le

(2)

where le is the length of link e. Based on qi and ki for each
time interval i we derive an average speed vi = qi/ki for
a certain average density in the network, which then can be
used to derive an average travel time in the network. This
average travel time serves as input for the vehicle routing
problem described in the next section.

D. Routing Algorithms

Since the introduction of Dijkstra’s routing algorithm [39],
more memory, faster CPUs and algorithms exploiting the
improved hardware made great leaps. As an example, a
bidirectional Dijkstra with two priority queues in memory
can reduce the number of nodes that have to be explored to
find the optimal route. Estimating the costs to the destination
during the local search process also allows to reduce the
number of explored nodes [40]; this approach is called A∗

and a typical heuristic for shortest path problems is the
Euclidian distance between the next node and the destination.
Instead of the Euclidian distance, nodes of the network can
be used as landmarks to derive a heuristic; this approach
is called ALT (A*, Landmark, Triangle inequality) [41]. The
more recent ideas of highway and (customizable) contraction
hierarchies allow solving one-to-one routing problems even
for the network of the whole of Europe with 42 million edges
in milliseconds, which enables every-day use of routing
queries in map applications [3], [5], [42].

The application of advanced and more efficient routing
algorithms also increases the performance of transportation
simulation models. Recently, Schneck and Noekel integrated
customizable contraction hierarchies in the bi-conjugate
Frank-Wolfe algorithm [43]. For their use case, this approach



achieves a speedup by a factor of 42 compared with a typical
Dijkstra implementation.

Of course, having a complete travel time table available
reduces the effort to retrieve travel time information to a
lookup in a matrix, which is by far faster than any routing
algorithm can be. For city-scale networks with a node count
in the range of 1,000 to 100,000, it is still feasible to save
one of these matrices for the free-flow case. Actual routing,
i.e. determining the sequence of edges a vehicle has to drive
to get from A to B, is also as efficient as it can be: an exact
landmark is available for every neighboring node during the
search process. Hence, not a single node that is not on the
optimal route has to be explored and no priority queue is
required. This reduces the number of travel time lookups to
Nr · Nn, where Nr is the average number of nodes in a
route and Nn is the average number of neighbors of a node.
As Nn is typically not higher than 3 in street networks, the
complexity of the routing algorithm run time scales linearly
with the number of nodes, i.e. O(|N |). For the remainder
of this paper, this routing solution is denoted by Lookup
Dijkstra. Creating the travel time table can be performed
with the Floyd-Warshall algorithm [44], [45] within minutes
for a typical street network (i.e. a sparse adjacency matrix)
for city scale.

Remark regarding the evaluation of computational effort:
routing function calls in this study include some overhead
compared to node-to-node routing as the functions are taking
points on edges as input as well. This is necessary to enable
en-route rerouting of fleet vehicles.

E. Approaches for Routing in Network Simulations with
Endogenous Travel Times

This study compares following routing approaches for
simulation frameworks with endogenous edge travel times
(as illustrated in Fig. 1):

a) a DTA-based workflow with the use of bidirectional
Dijkstra algorithm

b) an NFD-based workflow with Lookup Dijkstra
For the NFD-based approach, the Floyd Warshall is pre-
processed based on free-flow travel times. In order to show
the effect of network dynamics on travel times, a network
travel time factor scales the travel times. For this study,
we assume that the travel times within the network scale
linearly with the inverse of the network average speed vi.
The network travel time factor f i is chosen as the inverse
ratio of the current average speed during a time interval and a
network average speed v0, which should reflect the free-flow
condition.

tie = f i · te (3)

f i =
v0
vi

(4)

In a study area with homogeneous speed limits, the choice
v0 = maxi(v

i) is reasonable. For this study, the network
average velocity at 05:00 is used because the maximum
value of the network average velocity is not representative
of the average of free flow velocities. With large speed

Fig. 2. Studied street networks of the city of Munich. The three areas
(polygon color) are denoted as A99 (pink), B2R(red) and Schwabing (blue).
Highways and major roads are highlighted in violet and green, respectively.

limit differences (or even no speed limit on motorways),
a few vehicles on these high-speed roads can generate
unrepresentative network-average velocities during the night.
The maximum value of a 5-minute interval can be used if
the speed limits are homogeneous in the network.

IV. CASE STUDY

For the case study, three areas of a large-scale network of
Munich, Germany, i.e. A99 area spanning 475 km2, B2R
area spanning 49 km2 and Schwabing area spanning 4.5
km2 are used as illustrated in Fig. 2. We utilize a micro-
simulation model of the network developed in Aimsun micro-
simulator [46], [47]. It consists of 37,650 street sections
(about 4,962 km in length) with 16,790 nodes [7]. After
reducing the network to the minimum routing network, the
networks contain 8,380 nodes with 20,574 edges (A99 area),
5,818 nodes with 14,642 edges (B2R area) and 959 nodes
with 2,364 edges (Schwabing area).

A 24-hour simulation was performed with break points
at 06:00, 10:00, 14:00 and 18:00. We recorded the edge
travel times every 5 minutes and created one NFD data
point according to equations 1 and 2, as well as the average
network speed derived from it.

Since demand distribution is quite different for the morn-
ing and evening hours in Munich, we analyzed the travel
times from the DTA- and NFD-based methods in the morning
(05:00 - 10:00) and afternoon/evening (14:00 - 19:00) hours
separately. For the evaluation of computational effort and
quality of the solution, 10,000 OD pairs were chosen at
random for each study area.

The routing algorithms were implemented in Python 3.7
and computations were performed on an Intel® CoreTM i7-
8665 CPU with 48 GB RAM.

V. RESULTS AND DISCUSSION

A. Network Fundamental Diagram

Based on the DTA, we estimated the NFD as described
in Section III-C. We applied a locally estimated scatter
plot smoothing (LOESS) regression [48] to the data set to
reduce the scatter. The LOESS method allows us to keep the
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Fig. 3. LOESS regression to NFD data points generated from DTA 5-
minute interval results according to equations (1) and (2).

TABLE I
COMPUTATIONAL EFFORT FOR TRAVEL TIME (TT) AND ROUTE

FUNCTION CALLS IN THE MUNICH AREA-A99 SCENARIO

Number Queries Unit 104 105 106 107

CPU Time TT/Route DTA [h] 0.07 0.42 3.9 39.2
CPU Time TT NFD [sec] 0.29 2.9 28.8 288
Speedup Factor TT NFD 911 536 499 495
CPU Time Route NFD [min] 0.02 0.23 2.3 23.3
Speedup Factor Route NFD 153 90 84 83

temporal evolution of the data. Thus, this procedure is not
neglecting any hysteresis phenomena. The results are shown
in Figure 3. The x-axis shows the average network density
in veh/km, and the y-axis displays the average network flow
in veh/h. We show the NFDs for an entire day for each
of the studied regions. The displayed NFDs regard to both
the loading and unloading of the network. Generally, we
observe clock-wise hysteresis loops for each network studied.
That is, that the production is higher during loading periods
than during unloading periods. Moreover, we see that the
maximum production increases with the network size. The
reason for this is the fact that the larger networks include
more arterials and city-highways with higher speed limits.
This leads to a higher production.

Moreover, we can distinguish between a larger hysteresis
loop which occurs during the morning peak and a smaller
one at the afternoon/evening peak for the two larger areas.
For ‘Schwabing’, the hysteresis loops are small. This can be
retraced to the fact that the network is not fully unloading
after the morning peak, and thus the effect of loading and
unloading is smaller for the evening peak.

B. Computational Effort

The main motivation of the NFD-based approach is
to reduce computational effort. Such an improvement for
function calls returning the travel time only is given by
design as a simple lookup will always be much faster than
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Fig. 4. Mean difference between DTA- and NFD-based approaches to
determine travel times for all OD-pairs over the average network speed
(one point per time interval).

any routing algorithm making multiple travel time lookups.
Additionally, the computation times of processes that are
reiterated according to the workflow need to be considered.
For the A99 area, the computation time of the DTA lasted
approximately 2 minutes per 5-minute time interval. This
additional contribution dominates the total computation time
for a smaller number of travel time or routing queries. As the
NFD-based approach does not require the DTA simulation in
each workflow iteration, the speed-up factor for a rather small
number of queries is larger than 1,000. With an increasing
number of routing calls the speedup factor converges to the
ratio of average computation time for a bidirectional Dijkstra
over a simple table lookup, which is approximately 500.

Next, we analyzed the computational gain when actual
routes, i.e. the sequence of edges, are computed. As men-
tioned in section III-A, the computation times of the DTA
workflow has a constant component from the computation
of the DTA. The component dependent on the number of
routing function calls is determined by the average route
computation time, which we derived from the average value
of the 10,000 sample OD-pairs in the A99 scenario. In
this case, the NFD-based approach with Lookup Dijkstra
generates a speedup between 80 and 150. Since routing com-
putations based on Dijkstra’s algorithm already last about
20 minutes per 5-minute time interval for 100,000 routing
calls, the importance of routing for the total computation
time becomes apparent.

C. Origin-Destination Travel Times

For the evaluation of the network travel time factor and the
resulting OD travel times, the fastest path travel times were
determined for each OD-pair in the chosen OD-pair samples.
For each time interval, the average of the differences between
the OD-travel times from the DTA-based and the NFD-based
approach is computed and form one data point in Fig. 4.
The first observation is that the average network speeds (x-
axis) are higher for the larger areas. While the Schwabing
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Fig. 5. Mean difference between DTA- and NFD-based approaches to
determine travel times for all OD-pairs over the inverse of average network
speed (one point per time interval).

area mostly consists of residential streets with low speed
limits, the B2R area contains the city’s inner highway belt,
which has 2-3 lanes, a speed limit of 50 and 60 km/h
and therefore supplies a lot of traffic. The A99 area also
contains the outer highway belt, which has 3-4 lanes and
a speed limit of 120 km/h during the day. Furthermore,
Fig. 4 depicts the consistency for the morning and evening
hours. The more homogeneous the area is, the better the
match. However, routes computed from the NFD approach
are larger than their counterparts from the DTA approach in
all cases. The difference increases with decreasing average
speed within the network. The hyperbolic shape (especially
for the Schwabing) of the difference over the average net-
work speed motivated the plot of the difference over the
inverse average network speed in Fig. 5.

The functional form and the choice of the maximum
network average speed in the NFD as v0 in equation 4 are a
first approach to determine the network travel time factor f i,
but resulted in too large f i values. Reducing v0 to account
for the different free-flow speeds across the network would
lead to lower slopes of the curves illustrated in Fig. 5. This
could substantially reduce the difference in travel time as
these are linear for the most part. Considering the non-zero
y-intercept of the curves, a functional form:

f i = v1

(
1

vi
− 1

v2

)
(5)

We apply a least-squares fitting procedure to determine the
coefficients v1 and v2. Then we recompute the difference in
travel times for all OD-pairs in the sample with this network
travel time factor. Fig. 6 shows that the mean of the travel
times are matching much better for both approaches. For
comparison, the average of all trip times in Area-A99 is more
than 900 seconds.

As the means are matching better after the fit, the standard
deviations can be analyzed for further insight. The vari-
ance/standard deviation of the travel time differences for all
OD-pairs is a measure for homogeneity within the network.
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the Area-A99 scenario over the average network speed (one point per time
interval).

In order to classify the results between the different areas,
we show the standard deviations of the relative differences.
As expected, the standard deviation increases for lower
average network speeds (see Fig. 7). Interestingly, the relative
deviations are largest for the smallest and (infrastructure-
wise) most homogeneous area. The total standard deviation
reaches up to 150 seconds for the smallest area (Schwabing),
200 seconds for B2R and 300 seconds for the largest area
(A99).

All in all, the fit increases the quality of the model quite
a lot. However, choosing the network travel time factor
according to equation 5 requires a DTA, whereas the choice
of equation 4 is valid independently of the database on
which the NFD is estimated. The computational efficiency
discussed in Section V-B can be achieved independently of
the method to determine f i as the fit of v1 and v2 can be
performed prior to the routing simulations.
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Fig. 8. Difference in street sections’ utilization (excluding residential streets
for clarity) for routes of all OD-pairs in the Area-A99 scenario for DTA
and NFD based approach. The width relates to the sum of the counts of
DTA- and NFD-based approaches.

D. Routing

In the NFD-based approach, the route choice is indepen-
dent of congestion. Hence, the appearance of an edge in a
route is also independent of the choice of f i. Streets that
are drawn in green colors in Fig. 8 are part of more routes
in the DTA based approach, which is able to represent the
spatial character of congestion. Therefore, the relative usage
of these streets is higher in congested network states than
in free-flow conditions. Even though the inner highway belt
(B2R) is heavily congested in Munich, the relative time loss
of routes through the inner city is even higher. Hence, fleet
operators in simulations based on the DTA-based approach
route less vehicles into the inner city than in NFD-based
simulations.

It is noteworthy that this result is also replicated in
the B2R-area simulation whereas the outer highway belt
in the A99-area simulation only shows a smaller amount
of increased use in the DTA approach. It requires further
analysis to what extent the choice of the OD samples is
responsible for this result.

VI. CONCLUSION

This study compared NFD-based and DTA-based ap-
proaches to simulate the vehicle routing problem in networks
with endogenous travel times. The overall goal was to find
a method to utilize the computational efficiency, which a
pre-processed travel time table provides for routing com-
putations, while including network dynamics effects on the
resulting route travel times. Increased travel times due to
congestion are modeled with a network travel time factor,
which is first derived only from the NFD. The analysis
was conducted for a case study of the city of Munich,
Germany, for which we studied three different network sizes.
The results show that the NFD-based approach substantially
reduces computational cost: travel time queries could be
performed more than 500 times as fast and the route queries

returning the sequence of the fastest route are returned more
than 80 times as fast. However, this severe speedup also
leads to differing travel time estimates compared to the more
detailed DTA-approach for all network sizes. Generally, we
see larger differences for slower speeds. An analysis of OD
travel times for both approaches reveals that an affine relation
between the network travel time factor and the inverse
network speed is possible to fit the average OD travel times
quite well to the DTA counterpart. This fit to DTA results can
also be pre-processed and does not limit the computational
gains of the shown procedure. The standard deviations of
the OD travel time differences per time interval reveal that
the variance of the two models increases for lower speed,
which can be explained by congestion generating additional
inhomogeneity in the network.

In the end, the choice of the routing methodology depends
on the use case. Modelers can decide whether they require
the more realistic DTA-based approach or computation time
is of higher significance.

Future work includes the investigation of network parti-
tioning in the context of the NFD-based routing approach.
A possible method to gain the computational efficiency of
the shown methodology and the benefits from partitioning
is the application of partition travel time factors for OD
trips within one region and another travel time factor for OD
trips between different regions. Additionally, the variance of
aggregated results like mode share and traveled miles by
mode will be investigated for both NFD- and DTA-based
routing within full transportation network simulations.
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