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Abstract

This paper proposes a mathematical model to perform optimal operational planning of large-scale energy systems with high
share of renewable energy. Furthermore, it analyses the influence of different unit commitment modelling approaches on the
operational planning outcomes. The value of co-optimisation of electricity and heating sector is emphasized in this paper.
The results show the influence of massive renewable penetration in the energy sector towards 2050, and how this influences
generation from other sources such as thermal and hydro. Including unit commitment constraints with integer variables leads to
more realistic behaviour of the units, at the cost of increasing considerably the computational time. Relaxing integer variables
reduces significantly the computational time, without highly compromising the accuracy of the results. Neglecting the unit
commitment constraints leads to inaccurate results in terms of underestimation of costs, curtailment, wind’s and solar PV’s
average revenue per energy unit sold, price volatility, and to overestimation of the flexibility of thermal units. Hence, depending
on the purpose of the analysis, it is recommended to consider carefully the choice of unit commitment modelling approach
and acknowledge the limitations. When the focus is on prices and revenues, using unit commitment constraints with integer

variables is preferable.
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Abstract—This paper proposes a mathematical model to per-
form optimal operational planning of large-scale energy systems
with high share of renewable energy. Furthermore, it analyses the
influence of different unit commitment modelling approaches on
the operational planning outcomes. The value of co-optimisation
of electricity and heating sector is emphasized in this paper.
The results show the influence of massive renewable penetration
in the energy sector towards 2050, and how this influences
generation from other sources such as thermal and hydro.
Including unit commitment constraints with integer variables
leads to more realistic behaviour of the units, at the cost of
increasing considerably the computational time. Relaxing integer
variables reduces significantly the computational time, without
highly compromising the accuracy of the results. Neglecting
the unit commitment constraints leads to inaccurate results
in terms of underestimation of costs, curtailment, wind’s and
solar PV’s average revenue per energy unit sold, price volatility,
and to overestimation of the flexibility of thermal units. Hence,
depending on the purpose of the analysis, it is recommended
to consider carefully the choice of unit commitment modelling
approach and acknowledge the limitations. When the focus is
on prices and revenues, using unit commitment constraints with
integer variables is preferable.
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NOMENCLATURE

Acronyms

VRE Variable Renewable Energy

CHP Combined Heat and Power

P2H Power-to-Heat

DA Day Ahead

e Unit Commitment

MIP Mixed Integer Linear Programming

RMIP Relaxed Mixed Integer Linear Programming
Sets

g € GGG Generation and pure storage units

yeY Years

sES Seasons

teT Time steps

a €A Areas

reR Regions

ar € AR Areas in regions

Juan Gea-Bermudez is with the Department of Management, Technical Uni-
versity of Denmark (DTU), Produktionstorvet, Bygning 426, 2800 Kongens
Lyngby, Denmark (e-mail: jgeab@dtu.dk).

Kaushik Das and Matti Koivisto are with DTU Wind Energy, Technical Uni-
versity of Denmark, Risg, Frederiksborgvej 399, 4000 Roskilde, Denmark.

Hardi Koduvere is with the Department of Electrical Power Engineer-
ing and Mechatronics, Tallinn University of Technology (TalTech).

Subsets
STO ¢ GGG  Pure storage units
GDcCG Dispatchable generation units
PTOH C HO Electricity to heat generation units
EL C GGG Technologies delivering electricity to con-
sumers

HEAT C GGG Technologies delivering heat to consumers

Parameters
FCy ., Installed input fuel consumption capacity [MW]
zloss Transmission loss [-]
Uss, <+ Unitsize of input fuel capacity of a generation

unit [MW/unit]

¢ fom Fixed annual cost [€]

SLy Season length [days]

MMT, Minimum maintenance time [days]

D;fns’t Exogenous gross electricity consumption rate
(MW]

ngyﬁ’t Exogenous gross heat consumption rate [MW]

Positive decision variables

p%{a,y,s,t Net delivered electricity [MW]
Pg.a,y,s.t Net delivered heat [MW]
dg,a,y,s,t Fuel consumption rate [MW]
stolg a,y,s¢ Storage loading rate [MW]
Tr ! y.s,t Transmission flow [MW]
o<t Units available for generation on [-]
ganst  Units not available for generation on mainte-
nance [-]
gansi  Units not available for generation starting

maintenance [-]

nav,pm,sd . . . .
9.a..5,1 Units not available for generation stopping

maintenance [-]

cgofy Variable operational annual cost [€]
5 Carbon dioxide tax annual cost [€]

I. INTRODUCTION

Due to climate change and environmental concerns, energy
systems including all energy vectors such as heating, trans-
portation and agriculture, are converting to electricity-based
energy usage. The European Commission has the vision of
decarbonising the whole energy system by 2050 [1]. Denmark
in this direction has the ambition to completely phase-out
coal by 2030 [2]. Renewable based electricity generators such
as hydro, wind, solar, or biomass are replacing the carbon-
based generators. Many of these renewable energy sources



are inherently variable in nature such as wind, solar, or micro-
hydro. Consequently, increasing the share of such Variable Re-
newable Energy (VRE) sources in electricity systems increases
the variability and uncertainty in the full energy system.
Maintaining a stable and secure operation in the electricity
system with large share of VRE can be very challenging
for the power system operators. Major challenges involved
in operational planning are estimation of operational reserves
[3], or determining the ramp requirements and flexibility for
the generators. This information is then used to mitigate the
impact of variability in the electric power systems. Operational
planning should include co-optimisation of all the sectors to
avoid infeasibilities and sub-optimal solutions. For example,
estimation of reserves from combined heat and power (CHP)
units while only performing optimization of electrical power
systems can create infeasibilities for the units in real-time due
to heating constraints, and thereby, challenging the security
of the system. Operational planning needs to be performed
for long terms (at least one year) in order to determine
adequacy of generation, quantification of reserves, planning
of scheduled maintenance, hydrothermal scheduling, etc [4].
However, operational planning for large energy systems can
have very high computational burden and large complexities.
Performing these operational planning studies for short term
can lead to infeasible solutions and is otherwise sub-optimal
for reasons such as unable to consider long-term constraints,
for example yearly schedule of hydro reservoirs.

In order to perform operational planning, unit commitment
(UC) [5] or economic dispatch needs to be performed while
optimizing all the energy sectors for long term. Many studies
have analysed investment planning of energy systems [6], [7].
Schwele et. al. [6] demonstrated the value of UC for gener-
ation expansion planning as opposed to only using economic
dispatch. Poncelet et. al. [7] developed generation expansion
planning models considering flexibility and operating reserves.
However, investment planning studies cannot capture all the
details because of the computational limitations. All these
studies only consider the stochasticity of generations and loads
for few representative days or weeks. Therefore, these models
are unable to capture all the possible scenarios and therefore,
are likely not detailed enough for operational planning studies.
Different UC modelling approaches have been researched
for many years [5], [8], [9]. Mixed integer programming
(MIP) is a widely used methodology for unit commitment.
However, MIP based methods are computationally expensive.
Lagrangian relaxation offers saving in computational time
without compromising accuracy [10]. However, the application
of such methods has been limited either to small test systems
(for example, a 6 bus system in [11]) or to large systems
but for small time intervals (24 hours in [12]) and limited
amount of technologies involved (such as only for electrical
systems). Recently, UC based studies have also been applied
for multi-carrier energy systems but again the application has
been limited to small test systems [13]. The integration of VRE
has also been limited in the sense of modelling the details
of weather dependencies. To the authors’ knowledge, there
is no research done on operational planning of large multi-
carrier energy systems for long-term studies (at least one year).

Therefore, there is a clear unmet need for research in this
direction, where this paper contributes to.

This paper develops and evaluates a mathematical model to
estimate and analyse different operational planning parameters
(such as curtailment of VRE, energy prices, electricity imbal-
ances for reserve estimation, revenue generated by different
technologies and regions, inter-area tie line flows, congestion
rent, etc.) for a very large energy system over a long period of
time (one year) including detailed representation of renewable
variations. The energy system comprising of all the North
Sea countries for future scenarios (2020, 2030 and 2050)
is developed and studied. The computational and practical
challenges in modelling and implementation for such a large
system are discussed. The computational cost and accuracy of
results for different UC modelling approaches are compared.

The paper is structured as follows. Section II explains
the mathematical model-based methodology applied to model
the Day-Ahead (DA) market operation. Since the scale of
the problem is large in terms of technologies, geography
and time period, special considerations need to be taken to
reduce computational complexity as described in Section III.
Section IV presents the case study. Section V shows the results
and discusses the limitations of the study while section VI
summarizes the conclusions.

II. MATHEMATICAL MODELLING

The methodology used in this paper to simulate the DA
market can be split in four stages: DA optimisation (section
II-A), VRE simulations (section II-B), storage and planned
maintenance optimisation (section II-C), and stochastic outage
simulations (section II-D). The stages are linked as shown in
the flow chart of Figure 1. The sensitivity cases studied in
this paper, which focus on the UC modelling approach, are
presented in section II-E.

The optimisations and simulations, except for the VRE
simulations, are performed with the energy system model Bal-
morel [14], an energy system tool, deterministic, open source
[15], with a bottom-up approach. It has been traditionally used
to model the electricity and district heating sectors, although
it is currently being developed to increase its capabilities and
include more sectors.

The temporal representation used is composed of years y €
Y, which are disaggregated into seasons s € S (in this paper
days), which are composed of time steps t € T (in this paper
hours).

The geographical representation used is composed of coun-
tries, which are composed of regions r € R, which are
disaggregated into areas a € A. Regions are built to represent
copperplate zones for electricity transmission, whereas areas
represent copperplate zones for heat transmission.

A. Day-Ahead optimisation

The DA optimisation of the energy markets is performed in
a daily basis to replicate the behaviour of the spot market of
electricity. This means that consecutive dispatch optimisations
of 24 hours are performed. The results are linked from day to
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Fig. 1: Flow chart of the methodology.

day, which means that operational decisions made in previous
days can have a limiting effect on the operation on the
following days, depending on the flexibility of the units.

The storage content at the beginning of each day for the
DA optimisation, as well as the planned maintenance, is
fixed from the storage and planned maintenance optimisation.
Additionally, the availability of the units within the day is also
affected by stochastic outage, which together with the planned
maintenance determine the final availability of the units to
participate in the markets. Detailed mathematical formulation
of the problem can be found in appendix A of [16]. Due to
space limitation, only a few equations are shown here.

1) Objective function: The objective function constitutes of
all operational costs of the studied system in the studied time
steps and during the solving phase the value of the objective
function is minimized (Equation 1). The time steps considered
in this optimisation correspond to one day. In this paper, the
costs have been aggregated into to variable operational and
maintenance costs (vom), and emission tax costs (emi). Fixed
operational and maintenance costs (fom) which depend on the
installed capacity are also included in the objective function
as a parameter. The disaggregation of these costs can be found
in equations A2-A6 of [16].
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2) System constraints: There are two main system con-
straints that need to be fulfilled in every time step. One of them
is the electricity balance, in which the use of the electricity
storage is optimized, and where most of the electricity demand

is considered inelastic, except for the use of electricity to heat
in district heating networks:
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The other system constraint is the heat balance, where
the use of heat storage is optimized and the heat demand
considered inelastic:
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Ancillary services in the electricity sector were not included
to simplify the problem.

3) Technological constraints: Generation technologies in
the model are split in three categories: dispatchable generation
units, pure storage units, and VRE units. Dispatchable tech-
nologies include electricity-only, Combined Heat and Power
(CHP), boilers, heat pumps, geothermal, and hydroelectric
power with reservoirs. These units are subject to several tech-
nical constraints. The operation of these technologies depends
on the available units in each time step and specific technical
characteristics of each type. The equations relevant for each
of these technologies are described from A-29 to A-48 in the
report [16]. Those storage units that do not receive inflow
except from the active loading are defined as pure storage
units. Examples of these technologies are hydro pumping,
electric batteries, hot water tanks, or pit heat storage. The
relevant equations for these units are equations A-49 to A-
71 in [16]. Non-dispatchable technologies included are solar
PV, solar heating, wind onshore and offshore, and hydro-run-
of-river. The equations limiting their production are A-72 and
A-73 in [16]. Furthermore, electricity trade is allowed between
regions, which are assumed to be copper plates, and is limited
to the available transmission capacity between the regions in
each time step. The relevant equation limiting their operation
is A-74 in [16]. Heat trade between areas is not allowed.

B. Modelling of renewable generation including fluctuations

The CorRES model [17] is used for simulating the VRE
generation time series used as inputs for Balmorel. CorRES
is based on data from the Weather Research and Forecasting
(WRF) model [18]. In addition to modelling the spatiotemporal
dependencies in wind and solar PV generation, CorRES allows
modelling of VRE technology development impacts on the
VRE time series. For the presented case study, the assumed
VRE technology developments towards 2050 are described in
[19]. The resolution of the simulated VRE generation time
series is hourly; data are aggregated to the regions used in
Balmorel.



C. Storage and planned maintenance optimisation

When simulating the DA market, it is important to capture
that some of the decisions that market participants take are
based on future expectations of market prices, rather than
just planning for the next 24 hours. Planned maintenance and
use of storage are part of these long-term decisions. In this
paper, these two decisions are obtained by performing a full
year dispatch optimisation. Planned maintenance and storage
content at the beginning of each season are saved and forced in
the DA optimisation. Planned maintenance is also used in the
stochastic outage simulation to calculate the available capacity
for production that can suffer an unexpected outage.

The formulation is similar to the one in section II-A, with a
few exceptions. The time steps considered in this optimisation
correspond to one year. All the equations can be found in [16].
In this paper only some equations are shown.

1) Available units: The availability of the units due to
planned maintenance is endogenised in this optimisation.
Planned maintenance decisions influence the availability factor
of the units when simulating the DA market.
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Additionally, the maximum number of units on maintenance
is limited by the total number of units:
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2) Yearly maintenance requirement: The following equa-
tion make sure the minimum maintenance time (MMT) per
technology is respected in each year:
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3) Uninterrupted maintenance: Maintenance is assumed to
take place uninterrupted, i.e. in consecutive seasons:
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4) Logical conditions: The number of units on maintenance
depends on the units starting or stopping maintenance:
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In order to reflect the discrete nature of the generation units
that are part of the energy system, the following variables
are restricted to be integer variables. As mentioned in section
III-B, this constraint is relaxed however due to computational
complexity in the optimisation.
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D. Stochastic outage simulations

Unexpected operational problems can lead to making units
unavailable until the problem is fixed, which can influence
market prices. Hence, it is relevant to capture these occur-
rences. Using as input parameters the total capacity of a
unit type in each area, the size of a single unit, the planned
maintenance (if previously calculated), and the probability of
suffering an outage, Monte carlo simulations are performed for
each time step and unit in the system to simulate these outages.
The outcome from these simulations is then fed to the DA
optimisation, and the relevant variables fixed. This approach is
applied to all units excepts to VRE ones, since their availability
is part of the time series used. The formulation can be found
in equations A-85 and A-86 of [16].

E. Sensitivity cases: unit commitment modelling approaches

To analyse the importance of the UC modelling approach
when modelling the DA market, three different sensitivity
cases of UC modelling approaches are studied in the DA
optimisations: 1) adding UC constraints with integer com-
mitment variables (UC-MIP), 2) adding UC constraints with
relaxed commitment variables (UC-RMIP), and 3) not adding
constraints nor corresponding commitment variables (NO-
uco).

III. SPECIAL CONSIDERATIONS FOR LONG-TERM
OPERATIONAL PLANNING OF LARGE-SCALE ENERGY
SYSTEM

A. Unit commitment assumptions

Introducing UC in the optimisation allows for an improved
representation of conventional generation, at the cost of in-
creasing considerably computational complexity due to the use
integer variables. Solving a large-scale MIP problem can be
intractable. To deal with this problem, one can either relax
the integer variables, or limit the technologies modelled with
integer variables. In this paper, the second approach is con-
sidered so the impact of the different optimisation approaches
can be evaluated. The technologies modelled with UC integer
variables are almost all type of fuel-based thermal plants,
i.e. gas turbines, steam turbines, combined cycle turbines and
boilers. Engines were not included since they are very fast
and their size is generally much smaller than other generators,
making their impact negligible. The rest of the technologies,
i.e. hydro reservoirs, other storage, P2H, and VRE, were not
modelled with UC variables to reduce the complexity of the
problem.

B. Simplifications in storage and planned maintenance opti-
misation

Optimal planning of maintenance is solved as a Relaxed
Mixed Integer Problem (RMIP), including all days of the
years but with 1 every 3 hours to reduce complexity. Planned
maintenance is only computed for the units modelled with UC
costs and variables (see section III-A).



IV. CASE STUDY: THE NORTH SEA OFFSHORE GRID

The study case used in this paper corresponds to the offshore
grid scenario presented in [19], developed as part of the
North Sea Offshore Network - Denmark project. The scenario
focuses on the following countries: Norway, Great Britain,
Netherlands, Belgium, and Germany. The sectors included
are the electric and district heating sectors. The study case
shows towards 2050 a high share of VRE, transmission
interconnection, and low sector coupling in the countries in
focus. The capacity development was highly influenced by the
assumptions on increasing CO, EU ETS price: 5.93, 75.16,
and 127.77 2015€ /ton in 2020, 2030, and 2050 respectively.
More details about the scenario can be read in [19], [20], and
[21].

V. RESULTS AND DISCUSSION

First, section V-A focuses on key results obtained from
the storage and planned maintenance optimisations. Section
V-B presents the results from the Day-Ahead optimisations,
focusing on the influence of VRE penetration and the UC
modelling approach. The limitations of the study are discussed
in section V-C. Costs and prices are in €2012.

A. Storage and planned maintenance optimisation

1) Planned maintenance: The installed capacity under
planned maintenance of district heating boilers burning waste
in the countries in focus is shown in Figure 2. Most of the
planned maintenance takes place during summer, which is
when the district heat demand is lowest. By 2050 there is
more maintenance in May and September, which could be
linked to stronger sector coupling between the electricity and
heat sector.
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Fig. 2: District heating boilers burning waste on planned
maintenance per month in the countries in focus (MWday).

2) Planned storage use: The aggregated planned energy
content along the year of hydro reservoirs in Norway is
shown in Figure 3. The minimum value of each profile has
been subtracted. The results show that reservoirs are mainly
filled during the summer and discharged during winter. The
maximum energy content is higher in 2020 than in 2030 and
2050. This is a result of storing less energy in the reservoir
during the year, which is linked to using hydro energy for
balancing VRE. These results strengthen the importance of
performing full year optimisations.
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Fig. 3: Planned energy content along the year of hydro
reservoirs in Norway (TWh). The minimum value of each
profile has been subtracted.

B. Day-Ahead optimisation

1) Annual production: The aggregated generation of elec-
tricity and heat per year, scenario, and technology in the
countries in focus for different UC approaches is depicted
in Figure 4. The penetration of VRE in the electric sector
towards 2050 is remarkable, at the expense of decreasing the
use of thermal technologies. The results show that the share
of CO, free generation increases from 64% in 2020 to 91%.
On the heating side, partial electrification is observed towards
2050, although the majority of district heat is still delivered
with CHP units. Introducing UC constraints increases slightly
the aggregated production of thermal power units and reduces
VRE generation.
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Fig. 4: Production development per commodity, year, technol-
ogy type, and UC approach (TWh).

The average capacity factor of thermal power units for
electricity with/without heat generation is shown in Figure
5 for the UC-MIP approach. The difference with NO-UC
and UC-RMIP is negligible. The electricity capacity factor is
calculated with rated electricity generation capacity, whereas
the heat one uses rated heat generation capacity. The results
show that towards 2050, the average electricity capacity
factor decreases for CHP back pressure units (CHP-BP),



TABLE I: Disaggregated operational costs (billion €).

TABLE II: Influence of UC approach in aggregated yearly
curtailment per technology type in the countries in focus.

CHP extraction units (CHP-EXT) and electricity-only units
(CONDENSING), especially for the last two types. The
heat capacity factor also tends to decrease. These results
suggest that massive penetration of VRE might challenge the
profitability of thermal units towards 2050.
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Fig. 5: Average capacity factor development of thermal power
units for electricity (left) and heat (right) generation using UC-
MIP. The difference with NO-UC and UC-RMIP is negligible.

2) System costs: The disaggregated operational costs
development in the countries in focus per UC approach is
shown in Table I. The total operational costs increase in
2030 with respect to 2020, and decrease in 2050 compared
to 2030. This development is linked to VRE penetration and
CO; tax assumptions. By 2030, there is still considerable
fossil generation, leading to high CO, tax costs. By 2050,
even though the CO, tax is higher than in 2030, there is
much less fossil generation, which together with further
VRE penetration leads to considerably less variable costs.
Using UC-RMIP leads to much closer results to UC-MIP
than using NO-UC, although the difference decreases towards
2050, again due to less fossil generation. Not including UC
constraints, i.e. using NO-UC, underestimates both variable
and CO; costs since it overestimates the flexibility of the
units when ignoring relevant costs such as start-up.

3) Electricity prices: The influence of the UC approach
in the cumulative probability curves for the electricity prices
in each scenario and year, for the region DK1 is shown in
Figure 6. The influence of the optimisation approach decreases
towards 2050, which is explained with the decrease of thermal
power capacity and use towards 2050, since they are the ones
affected by the different UC approaches. UC-MIP leads to
overall higher prices in all price-range due to forcing discrete
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2020 [ UC-RMIP 82 13.6 1.9 237 Technology type | —0>0——030T 2050 1 2020 | 2030 | 2050
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2050 [{jcc_%\l/\[/{g igg 3(1) 2% ggg block sizes to be on/off for thermal units. The number of hours

with very low prices (where VRE curtailment sets the price),
are higher with UC-RMIP, and especially with UC-MIP. These
low prices generally correspond to those hours where it is
cheaper (or the only feasible way) to increase the use of more
expensive generation units, rather than starting/shutting them.
In the mid-range prices, the prices for UC-RMIP tend to be
the lowest, which can be explained in a similar way to VRE
curtailment, but instead, what it is being "curtailed" is the next
available cheaper generator. On the high-range prices, NO-
UC underestimates high prices, which can be explained with
the non-consideration of restrictive constraints like minimum-
on/off time, minimum production, and ramping. The order of
magnitude of the prices is highly influenced by the CO, tax
assumption development (section IV).

4) Curtailment: The influence of the UC approach on
curtailment for different technology types in the countries in
focus per year are shown in Table II. Not considering UC costs
leads to less curtailment. On the other hand, wind offshore
is curtailed more often than onshore due to operation costs
assumptions, i.e. variable costs for offshore are more expensive
than for onshore. The impact of not considering UC costs on
curtailment increases towards 2050, when there is higher VRE
penetration.

5) Average revenue of wind and solar PV units: The
influence of the UC approach on the variability of the average
revenue per energy unit sold in each region and year from
the operation in the DA market for wind and solar PV units
is shown in Figure 7. The results show a decrease in the
variability of the average revenue across countries towards
2050, mainly due to grid expansion, which remarks the
importance of large-scale energy system analysis. Solar PV’s
average revenue is higher in 2020 and 2030 than wind unit’s,
but slightly smaller in 2050. With a UC-MIP approach,
average revenues are slightly higher for both technologies.
The yearly levels of average revenue are directly linked to
the DA price development.

6) Electricity-only thermal plant operation: The influence
of the UC approach in the utilization factor of electricity-
only thermal generation units using natural gas or nuclear
fuels is shown in Table III. The results show a decrease in
utilization for all the considered units towards 2050. Units
burning natural gas half their capacity factor with respect to
2020 in 2030 and stay almost constant by 2050. Nuclear power
capacity factor also decreases considerably towards 2050. The
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Fig. 6: Probability distribution function of the hourly electricity price in DK1 for each year and UC modelling approach.

Year = 2020 Year = 2030 Year = 2050

Figure 8, which shows the hourly operation of nuclear power
plants for four consecutive days in Great Britain. The figure
depicts that towards 2050, with higher VRE penetration, unless
UC costs and constraints are considered, nuclear units start up
and shut down with high frequency, which might be extremely
challenging, and maybe unrealistic. These results strengthen
the importance of multiple scenario year analysis as well as
the UC modelling approach used.
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Fig. 7: Regional variability of the average revenue per energy
unit sold of wind and solar PV units in DA market towards
2050. Influence of UC modelling approach.

TABLE III: Influence of UC modelling approach and year in
annual capacity factor of electricity-only thermal generation
units for different fuels.

Capacity factor
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Fig. 8: Hourly capacity factor of nuclear power in four

consecutive days in Great Britain in different scenario years.

NATURAL GAS NUCLEAR
Modelling approach | 2020 | 2030 | 2050 | 2020 | 2030 | 2050
NO-UC 17.1 7.6 7.6 95.2 85.5 55.1
UC-RMIP 18.0 8.6 7.7 93.5 87.0 61.5
UC-MIP 19.7 9.2 8.0 94.8 87.4 62.6

Impact of UC modelling approach.

UC approach impacts the utilization of nuclear power by 2050,
overestimating its flexibility when using NO-UC. These results
are influenced by the decrease of nuclear power in the system
towards 2050, and the increasing penetration of VRE.

The impact of the UC modelling approach on hourly nuclear
operation, highly affected by UC constraints, is shown in

7) Computational time: The influence of the UC modelling
approach on the average computational time of the optimi-
sation for a simulation of a day is shown in Table IV. The
computational time required to solve the UC-MIP case is
much higher than the others, which decreases significantly
towards 2050 since the number of thermal power plants is
considerably reduced in this scenario. Using UC-RMIP leads



TABLE 1V: Influence of year and UC modelling approach
on average computational time for a simulation of a day
(seconds)!.

Modelling approach 2020 2030 2050 Average
NO-UC 3.47 4.55 3.21 3.74
UC-RMIP 30.29 51.04 44.56 41.96
UC-MIP 293.89 | 264.93 | 152.51 237.11

to closer computational times to NO-UC than to UC-MIP.

C. Limitations of the study

The simplifications undertaken to reduce the complexity of
the problem limit the findings of this study. The flexibility of
technologies for which UC constraints were not applied could
have been overestimated, especially for hydro power units.
Furthermore, performing the analysis with several weather
years and/or performing stochastic optimisation would help
understand the role of uncertainty in the results. In this
paper, a unique weather year was used for simplification
(2012). Adding ancillary services would have also impacted
the results, especially prices, affected by must-run operation.

VI. CONCLUSIONS

This paper proposes a method to perform optimal op-
erational planning of large-scale energy systems with high
penetration of renewable energy. Furthermore, it analyses the
influence of UC modelling on the results. The results highlight
the importance of analysing multiple scenario years with long
time series, including several sectors, as well as the value
of not restricting the analysis to small scale. The results for
the studied case show how the penetration of VRE towards
2050 challenges thermal units’ traditional operation in the
electricity and district heating sectors towards 2050. Including
UC constraints with integer variables leads to more realistic
behaviour of the units, at the cost of increasing considerably
the computational time. Relaxing integer variables reduces
significantly the computational time, but medium-level prices
are underestimated. Not including UC constraints leads to
underestimation of costs, VRE curtailment, VRE’s average
revenue per energy unit sold, as well as price volatility. It
also overestimates the flexibility of the thermal units. Hence,
depending on the purpose of the analysis, it is recommended
to think carefully on which UC modelling approach to use
and acknowledge the limitations. When the focus is on prices
and revenues, using unit commitment constraints with integer
variables is preferable, otherwise, relaxing the integer variables
is encouraged.
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