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Abstract

The COVID-19 is a highly contagious viral infection which played havoc on everyone’s life in many different ways. According

to the world health organization and scientists, more testing potentially helps governments and disease control organizations

in containing the spread of the virus. The use of chest radiographs is one of the early screening tests to determine the onset

of disease, as the infection affects the lungs severely. This study will investigate and automate the process of testing by

using state-of-the-art CNN classifiers to detect the COVID19 infection. However, the viral could of many different types;

therefore, we only regard for COVID19 while the other viral infection types are treated as non-COVID19 in the radiographs

of various viral infections. The classification task is challenging due to the limited number of scans available for COVID19

and the minute variations in the viral infections. We aim to employ current state-of-the-art CNN architectures, compare their

results, and determine whether deep learning algorithms can handle the crisis appropriately. All trained models are available

at https://github.com/saeed-anwar/COVID19-Baselines
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ABSTRACT

The COVID-19 is a highly contagious viral infection which played havoc on everyone’s life in many
different ways. According to the world health organization and scientists, more testing potentially
helps governments and disease control organizations in containing the spread of the virus. The use of
chest radiographs is one of the early screening tests to determine the onset of disease, as the infection
affects the lungs severely. This study will investigate and automate the process of testing by using
state-of-the-art CNN classifiers to detect the COVID19 infection. However, the viral could of many
different types; therefore, we only regard for COVID19 while the other viral infection types are treated
as non-COVID19 in the radiographs of various viral infections. The classification task is challenging
due to the limited number of scans available for COVID19 and the minute variations in the viral
infections. We aim to employ current state-of-the-art CNN architectures, compare their results, and
determine whether deep learning algorithms can handle the crisis appropriately. All trained models
are available at https://github.com/saeed-anwar/COVID19-Baselines

1. Introduction

The COVID-19 infection is caused by a virus known as

SARS-C0v-2 or novel Coronavirus belongs to the Corona fam-

ily. The virus is highly contagious, as is evident from the expo-

nential growth of positive cases throughout the world in a short

period with limited testing. The infection causes severe damage

to the lungs causing pneumonia with accompanying symptoms

of sore throat, dry coughing, sneezing, and high temperature.

Moreover, some of the patients don’t show symptoms acting as

a carrier is a worrying concern for the health organization.

The World Health Organization (WHO) recommended con-
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e-mail: muhammad.saqib@uts.edu.au (Muhammad Saqib),

saeed.anwar@csiro.au (Saeed Anwar)

ducting more tests for screening out COVID-19 patients to con-

tain the virus’s spread. The testing will help in identifying and

isolating potential COVID-19 patients from patients of other

kinds of infections.

Generally, x-ray imaging is used for the majority of chest in-

fections, such as pneumonia, bronchitis, and bronchiolitis. Al-

though the use of X-Ray is considered non-specific in radio-

logical findings, however, it will help in further management

of a disease. The Reverse Transcription Polymerase Chain Re-

action (RT-PCR) test kits are primarily used for the testing of

COVD-19 patients. The test kits are expensive and also limited

in supply. Moreover, the turnaround time for the test is, on av-

erage, 24 hours, which considerably slows the testing process.

Since the test kits are limited in supply, the use of X-Ray can

be viable options, especially in far-flung and rural areas. This

https://github.com/saeed-anwar/COVID19-Baselines
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Fig. 1: Representative images of the COVIDCT dataset employed for training and evaluation of algorithms.

pandemic is causing health systems overwhelmed with the high

number of patients. The use of chest X-rays could be used in

conjunction with related tests to quickly rule out non-COVID

patients, ultimately easing the burden on health systems. Like

any other pneumonia infection, the COVID-19 has shown dis-

tinct markers on chest X-Rays.

This research investigates how state-of-the-art deep learning

can capture fine-grained details from the images and classify

them from other pneumonia and bacterial infections.

The remainder of the paper is organized as follows. In the

following section 2, related work to Covid-19 using computer

vision is discussed. The section 3 presents the methodology,

and experimental results are discussed in section 4. The paper

is finally concluded in section 5.

2. Related Work

Chen et al. (2020) retrospectively collected 46,096 high-

quality CT images from 106 admitted patients anonymously.

There were 51 laboratory-confirmed COVID-19 patients, while

the rest of 55 were patients of other diseases. Three expert ra-

diologists with more than five years of experience annotated

the COVID-19 dataset with combined consensus. The prob-

lem is framed as a segmentation task, and UNet++ (Zhou et al.,

2018) was trained to segment valid areas in the CT images. The

trained model was deployed at the Renmin Hospital of Wuhan

University and as a web API to assist the diagnosis of COVID-

19 cases around the world.

The COVNet (Li et al., 2020) uses 3D deep learning frame-

work to extract 2D local and 3D features for the detection of

COVID-19. The ResNet (He et al., 2016) is employed as the

backbone to extract features from the input CT slices. The ex-

tracted features are passed through the max-pooling operation.

The final feature map is fed through the fully-connected layer

and eventually through the softmax function to get probabili-

ties for each class. Previous studies have shown the successful

application of deep learning methodologies to chest X-Rays for

the diagnosis of bacterial and viral infections (Rajaraman et al.,

2018; Kermany et al., 2018).

A deep learning-based CT diagnosis system, termed as

DeepPneumonia, is proposed to detect and localize the lesions

causing COVID-19 (Song et al., 2020). Firstly, the lung re-

gion is extracted in each CT image and then fed to the Details

Relation Extraction neural Network (DRE-Net) to produce top

K details in a CT scan using pre-trained ResNet with Feature

Pyramid Network (FPN) and attention module. The attention

module is used to learn the importance of each detail. The pre-

dictions are aggregated by the aggregation module to predict

the patient-level diagnosis.
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Fig. 2: Samples from the COVIDx dataset. The upper row shows the COVID19 infected examples, while the lower row presents

the infection-free images.

Deep learning requires a significant amount of annotated data

for training the model. As the radiologists are busy dealing with

the pandemic, the annotation task is difficult and costly; there-

fore, a weakly-supervised technique is presented by Zheng et al.

(2020) that utilizes weak patient-level labels for the rapid diag-

nosis of COVID-19 subjects. A 3D deep convolutional neural

network called DeCoVNet (Zheng et al., 2020) is used to take

input of CT volumes and 3D lung masks to output the proba-

bilities of COVID-19 and non-COVID-19. A pre-trained model

is used to generate a 3D lung mask. The first stage of the ar-

chitecture consists of a vanilla 3D convolutional base, followed

by batch normalization and max-pooling to create a 3D feature

map. In the second stage, a 3D feature map is passed through

two 3D residual blocks with the batch norm. In the last step,

a Progressive Classifier (ProClf) progressively abstracts the in-

formation in 3D volumes and classifies using softmax function

to output the probability of being COVID-19 and non-COVID-

19.

The Chest x-ray radiography (CXR) is widely used for the di-

agnosis of various infections due to its lower cost and broader

availability. The COVID-19 patients show lung consolidation

over the period and, therefore, could be used as a diagnos-

tic tool in conjunction with a CT scan for better radiological

analysis (Ng et al., 2020). A two-step human-machine col-

laborative strategy is proposed to design network architecture

for the detection of COVID-19 cases from CXR images (Wang

and Wong, 2020). In the first step, the initial network design

prototype is constructed using human-driven principles. In the

second step, initial prototype and human-specific designs are

used in machine-driven exploration to find optimal macro archi-

tecture and microarchitecture for the final deep neural network

architecture. The final architecture COVID-Net is applied for

three-class classification into a) no infection b) non-COVID-19

and c) COVID-19 infection. The experimentation is carried out

on a COVIDx dataset, curated from five multiple sources. Fa-

rooq and Hafeez (2020) proposed three-stage ResNet architec-

ture to classify classes from the COVIDx dataset.

It is essential to estimate uncertainty in deep learning models

and to avoid COVID-19 misdiagnoses, a Dropweights based

Bayesian Convolutional Neural Networks (BCNN) (Ghoshal

and Tucker, 2020) is proposed to deal with the uncertainty

in deep learning. The experiments were carried out on the

COVID-19 CXR dataset. The author found a strong relation-

ship between uncertainty and accuracy, which helped identify
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Fig. 3: Sample architecture of plain networks.

false positives/unknown cases.

We aim to employ the available deep learning state-of-the-art

algorithms to identify the COVID19 and non-COVID19 fea-

tures. The purpose is two-fold: 1) this research will provide

baselines, and 2) it will also establish the performance of cur-

rent state-of-the-art deep learning algorithms.

3. Methodology

For the sake of completeness, we will discuss the basic build-

ing blocks of the current state-of-the-art deep learning architec-

tures for image classification tasks. The Convolutional Neural

Networks (CNNs) are commonly used for image classification

and can extract powerful, generic features from the image by

applying convolution filters. In CNNs, the filter parameters are

learned using backpropagation, low-level features such as edges

are determined in the lower layers of the architecture, and high-

level features such as shapes are discovered in the deeper layers

of the network. The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) (Deng et al., 2009) played a huge role in

the design choices of the modern CNN architectures. The novel

architectures should be end-to-end trainable and be capable of

learning multiscale features with fewer parameters and smaller

model size. The other design choices include dropouts, batch

normalizations, optimizations, and loss functions, etc.

The modern architectures are broadly grouped into cate-

gories.

3.1. Plain Networks

AlexNet Krizhevsky et al. (2012) is the first architecture that

sparked the research interest in deep learning when it won the

ImageNet challenge by a substantial margin. The architecture

Fig. 4: Inception: Basic building block of GoogleNet.

consists of eight layers, including five convolutional layers, ac-

tivation function, and three fully-connected layers. AlexNet,

for the first time, used multi-GPUs to train bigger models and

reduce training time.

Subsequently, Simonyan and Zisserman (2015) proposed Vi-

sual Geometry Group (VGG) that comes in different variations

such as VGG16 and VGG19 are the most common architectures

with 16 and 19 layers, respectively. The typical pattern among

these architectures is the use of only 3×3 filters. The initial lay-

ers utilize a few filters but increase their number as the depth

of the network increase, the kind of pattern that can also be

seen in other architectures. In earlier layers of VGG or other

plain architectures, learn more spatial information for filters,

while the later layers used more filters to balance out the avail-

ability of less spatial information. Initially, the VGG architec-

ture was difficult to train from random initialization of weights.

However, the training became easier with the introduction of

intelligent initialization techniques such as Xavier (Glorot and

Bengio, 2010) and (He et al., 2015). VGG19, the high accurate

model, has a size of 574MB.

Contrary to the plain networks, the succeeding architectures

share a common property i.e. using shortcut paths from earlier

layers to later layers, which addresses the vanishing gradient

problem (Hochreiter, 1998) in training deep neural networks.
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Fig. 5: Basic building block of Residual Network.

3.2. GoogleNet Inception Networks

GoogleNet introduced by Szegedy et al. (2015), was the

winning architecture in the ImageNet challenge. The perfor-

mance of GoogleNet was slightly better than VGG; however,

the GoogleNet model was considerably smaller in size, with

only 28.12MB as compared to 574MB of the VGG model.

The basic building block of the GoogleNet is termed as the

Inception module, which comes in different variations making

it more accurate than the original implementation of GoogleNet

Inception. The idea of inception is to use filters of varying di-

mensions simultaneously, and then it is left to the network to

decide during optimization which weights are essential. In this

way, the network learns multiscale features efficiently.

The 1×1 convolution was used to reduce the dimension of

feature map volume-wise before applying any other filter, thus

decreasing the model size significantly. The inception module,

as shown in the figure 4, applies 1×1 convolution in the first

layer and max-pooling followed by any other filter. The output

of all the filters is concatenated volume-wise before passing into

the next layer of the network.

3.3. Residual Networks

The traditional network suffers from vanishing gradient

problem (Hochreiter, 1998) during backpropagation. The gra-

dient becomes very smaller and cannot update the parameters in

the initial layers causing the network learning to be prolonged.

The Residual Network (ResNet) made it possible to train deeper

networks (He et al., 2016).

The basic module of ResNet is called Residual block, as

shown in the figure 5, which starts at the input of the module

with two branches. One of the branches takes the input through

the series of convolutions, activations, and batch normalization

Fig. 6: The main module of DenseNet showing the concatena-

tion of features from previous layers.

while the other branch is a shortcut that skips all the operations

and is added to the output of the other branch, also known as

identity-mapping. The residual layer starts learning at the iden-

tity function and learns more sophisticated and robust features

going towards the depth of the architecture. In the recent ver-

sion of ResNet, the order of operations in the first branch has

been changed from convolution, activation, batch normalization

(Conv-ReLU-BN) to batch normalization, activation, convolu-

tion (BN-ReLU-Conv). The method is called a pre-activation.

3.4. Dense Networks

In DenseNet (Huang et al., 2017), each layer concatenates

the feature maps from all the previous layers, using the collec-

tive knowledge in the current feature map’s computation. The

current layer passes on its feature map to all the subsequent

layers, which ensure maximum information flow and gradients

between layers of the network.

On the contrary, ResNet adds the features from the mod-

ule input to the output layer. Figure 6 shows the module of

DenseNet; a composition layer uses pre-activation on all the

previous layers before concatenating with the current layer. The

DenseNet has fewer parameters and can learn more complex

features.

3.5. Efficient Networks

Generally, deeper ConvNets tend to obtain better top 1% ac-

curacy on challenging tasks such as ImageNet detection and

classification. However, the trained models are over parame-

terized, difficult to train, and deploy on available hardware re-

sources e.g. Gpip (Huang et al., 2019) requires a considerable
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Fig. 7: Fire module: the backbone module of Squeeze Network.

number of parameters (i.e. 577M) to train and achieve top 1%

accuracy of 84.3%.

There always has been a tradeoff between the accuracy and

efficiency of model selection for a specific application. Tradi-

tionally, models achieved better accuracy by increasing depth

of the architecture (using more layers), a width of architecture

(via more channels), or increasing the resolution of an input im-

age. Tan and Le (2019) proposed compound scaling to size-up

all the three critical parameters (width, depth, and input image

resolution) to improve the model performance. The proposed

network is called EfficientNets (Tan and Le, 2019), which is

the family of highly scalable and efficient neural network ar-

chitectures to use compound scaling for the selection of models

such as EfficientNet-B0 to B7, keeping in view the resource

requirements.

The building block of EfficientNet uses mobile inverted bot-

tleneck MBConv (Sandler et al., 2018) as shown in fig. 9 with

squeeze-and-excitation optimization (Hu et al., 2018).

3.6. Squeeze Networks

Most of the CNN architectures are resource-hungry to

achieve good accuracy on a particular dataset. The smaller

architectures with equivalent accuracy require less bandwidth,

and easily deployable on the hardware of limited capacity as

Fig. 8: Shufflenet Basic building block. “GConv” stands for

group convolution and “DWConv” denote depth-wise convolu-

tion.

well as offer benefits in distributed training. The model weights

for most of the CNN architectures range from 100MB (e.g.

ResNet) to 553MB (e.g. VGG). The weights for AlexNet sits in

the middle with 249MB. Recently, in SqueezNet (Iandola et al.,

2016), the author proposed the architecture with comparable

accuracy to AlexNet with fewer parameters with an incredi-

bly lower weight of 4.9MB. The weights are further reduced

to 0.5MB by applying compression techniques such as weight

pruning and sparsifying a model.

The basic module called Fire Module is used in SqueezNet

architecture with a clever combination of 1×1 and 3×3 filters.

The module consists of a two-phase operation of “squeeze” and

“expands”. The squeeze phase applies a smaller number of 1×1

filter compared to input volume, thus reducing the dimension of

the output feature map. Before feeding to expanding phase, a

ReLU activation is applied to the output of the squeeze phase.

During the expanding phase, a combination of 1×1 and 3×3

filters are used to capture the spatial relationship and extract

more complex features, as shown in fig 7.
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Fig. 9: Mobile Network - MBConvolution Block

3.7. Shuffle Networks

ShuffleNet (Zhang et al., 2018) is another lightweight ar-

chitecture design belong to the family of architectures, such

as MobileNet (Howard et al., 2017), CondenseNet (Huang

et al., 2018), MobileNetV2 (Sandler et al., 2018), and Xcep-

tion (Chollet, 2017). These architectures use group and depth-

wise convolution and are suitable for low-end devices. The au-

thors of ShuffleNet proposed guidelines for effective network

architecture design.

Traditionally a widely accepted indirect metric called FLOPS

is used as an only measure of computational complexity (esti-

mation of actual run-time). However, a direct metric such as

speed and latency are more relevant when considering group

and depth-wise convolutions on low-end devices. The mem-

ory access cost of these operations should be considered in the

neural architecture design for low-end devices. The second

important factor to consider is the degree of parallelism. For

example, under the same FLOPs, a model with a high degree

of parallelism could perform better than the low-degree coun-

terpart. The author used these guidelines to design a network

called ShuffleNet as shown in Figure 8.

3.8. Mobile Networks

MobileNetV2 (Sandler et al., 2018) is tailored for use in com-

puter vision applications designed for resource-constrained de-

vices. The model uses less number of operations and memory

access to give comparable accuracy to AlexNet. Unlike stan-

dard convolution, the MobileNetV1 proposed the use of depth-

wise separable convolutions, which means that a depth-wise

convolution is followed by 1×1 convolution. In depth-wise con-

volution, a single filter is applied per input channel, and point-

wise operation is used to combine the output of the depthwise

convolutions. The models are lightweight due to the decreased

number of multiplications that reduce computational complex-

ity.

In MobileNetV2, the same authors introduced an inverted

residual with a linear bottleneck layer. In a residual block with

the stride of one, the first layer adopts 1×1 convolution, fol-

lowed by depthwise convolution in the second layer. The third

layer uses a 1×1 convolution without activation function, as

shown in fig 9.

3.9. Neural Architecture Search NASNet

Neural architecture search belongs to the family of deep

learning methods called meta-learning. These algorithms use

auxiliary search methods such as random search, evolutionary

search, recurrent neural network, and deep reinforcement learn-

ing to design various characteristics of network architectures.

These characteristics include learning rate, number of filters,

and filter maps etc.. In neural architecture search, these char-

acteristics are learned by another neural network for searching

in discrete search space. Neural architecture search, use two

kinds of convolutional layers called the normal cell and reduc-

tion cell. The normal cell returns the feature map of the same

dimension as that of input, while the reduction cell reduces the

dimension by a factor of two.

The fundamental idea is to design a single cell opposed to a

whole network. The search algorithm will search for optimal

parameters from a set of parameters and then create complete

architecture by stacking normal and reduction cells. Typically,

searching architecture is carried out on smaller datasets, and
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Fig. 10: The basic schematic of Wide-ResNet block with and

without dropout layer.

learned layers are transferred to search architecture for large

datasets. However, these approaches do not permit layer di-

versity required for high accuracy and lower latency in mobile

applications. In MNASNets (Tan et al., 2019), a multi-objective

search using deep reinforcement is proposed to find CNN mod-

els for high accuracy and low inference latency suitable for mo-

bile devices.

3.10. Wide ResNets

When ResNet has scaled up to a thousand layers, a frac-

tional improvement in accuracy requires doubling the layers

and, hence, exponentially increasing the training time. In

Wide-ResNet (Zagoruyko and Komodakis, 2016), the authors

suggested the architecture with decreased depth and increased

width compared to the ResNets to obtain good accuracy over its

thin and deep counterpart.

In a typical ResNet, there are two blocks, a basic (residual)

and a bottleneck block. The bottleneck block was used to make

the network thinner, computationally less expensive, and suit-

able for the design of deeper networks. Nevertheless, the au-

thors used only the residual block with an increasing number

of convolutional layers, feature maps, and filter sizes for better

performance. The authors considered two factors: i) deepening

fact l and ii) widening factor k where l represents the number

of the convolutions in a block, and k is the number of feature

maps in convolutional layers. The number of parameters in-

creases linearly with l, and quadratically with k. Keeping in

Fig. 11: ResNeXt backbone module showing different paths.

the mind that GPUs are more efficient in parallel computations,

consequently widening the architecture is more effective. The

performance can be further improved if dropout is used in the

residual block.

Figure 10 the building block of Wide-ResNet (Zagoruyko

and Komodakis, 2016) with and without the dropout.

3.11. ResNeXt

The ResNeXt (Xie et al., 2017) takes its inspiration from

ResNet’s skip connections, VGG’s stacking of layers, and In-

ception’s (Xie et al., 2017) split-transform-merge strategy.

The ResNeXt module is very similar to the Inception’s the

split-transform-strategy, except that the output paths are merged

by addition instead of depthwise concatenation, as shown in

Fig 11. Another key difference from Inception is that all split

paths share the same topology. ResNeXt proposed a hyper-

parameter called cardinality, which refers to independent paths

used to adjust the model’s capacity. The model achieved better

results with the increase in cardinality rather than going deeper

and wider. The model is also easier to adapt to the new datasets,

as there is only one parameter for adjustment.
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4. Results

4.1. Experimental Setup

We used the default settings for each of the networks. The

input size of the image is the same, as specified by the authors

of the networks. The input batch size is set to 32 with an ini-

tial learning rate of 0.0001. The models are finetuned for 500

epochs from the weights of ImageNet (Deng et al., 2009) due

to limited number of images available in the datasets. The last

layer for classification in all networks are changed to binary,

to differentiate between COVID19 and Non-COVID19 radio-

graphs or CT scans. PyTorch is used as a framework for train-

ing and testing the algorithms.

4.2. Datasets

Since there is no single sizeable dataset available for CXR

images of COVID-19 patients, the dataset is curated from mul-

tiple sources to have sufficient data for training, testing, and

validation.

COVIDx: The first dataset COVIDx (Wang and Wong, 2020) was

made public to the research community, a collection of four classes of

CXR, namely 1. Normal 2. Bacterial 3. Pneumonia (non-COVID), and

4. COVID-19. A total of 5941 PosteroAnterior(PA) CXR are collected

from 2839 patients. Currently, the dataset contains only 68 X-Ray for

COIVD-19 patients. There are 1203, 931, and 660 samples available

for negative pneumonia, bacterial pneumonia, and non-COVID viral

pneumonia, respectively.

COVIDCT: The University of San Diego collected a CT dataset of

349 CT images called COVID-CT (He et al., 2020). The COVID-CT

dataset contains clinical information of 216 COVID-19 patients. The

CT images are extracted using PyMuPDF4 from 760 preprints such as

medRxiv2, bioRxiv3, NEJM, JAMA between January 19th and March

25th, 2020.

4.3. Metrics

We take into account the following most common five metrics

used in detection to evaluate each algorithm discussed earlier in the

manuscript.

• Precision: The ratio of correctly predicted positive COVID19

patients to the total positive predictions (i.e. True positives and

False positives). This metric gives the ability of an algorithm to

determine the rate of false positives. The high the precision is,

the low the false positives are.

• Recall: is also known as the sensitivity of the algorithm. It is

the ratio of correctly predicted positive outcomes (i.e. True pos-

itives) to the actual class observations (i.e. True positives and

False negatives).

• F1 Score: takes false positives and false negatives by taking the

weighted average of the earlier mentioned metrics. F1 score is

useful in cases where class distribution is uneven.

• Accuracy: It is the most used and intuitive measure in classifi-

cation. Accuracy is defined as the ratio of the correct predictions

to the total number of samples. Although high accuracy may be

a good measure; however, it may not be the best in certain situ-

ations where the class distribution is not symmetric. Hence, we

use other metrics to evaluate the performance of algorithms.

• AUC stands for area under the curve and is the second most used

metric for classification. It represents the degree of separability.

The aim here is to model the capability of the network in distin-

guishing between classes. The higher value of the AUC means

the model is better in predicting correct values or, in other words,

positive as positives and negatives as negatives.

4.4. Evaluations

The quantitative results are reported in Table 1 and Table 2 for

COVIDCT and COVIDx datasets, respectively.

The accuracy of the COVIDCT dataset varies from 70% to 81%.

Moreover, GoogleNet achieves the highest average recall of 94.29%,

and DenseNet169 has the highest precision of 100%. The highest per-

formance for area under the curve is 88.80%, achieved via ResNet101.

The accuracy of the deep learning models on the COVIDx dataset

is higher as compared to the COVIDCT dataset ranging from 78.23%

to 87.1%. On average, the accuracy is more than 82%. On the other

hand, the deep models yield lower results for recall while for simi-

lar results for precision on the COVIDx dataset. The highest recall

achieved is 47.62% by MNASNet1.0. Similarly, the best precision is

by GoogleNet and EfficientNet-b3, which is 83.33%. Similarly, the

models are struggling to produce comparable results for the AUC met-

ric, where DenseNet201 gives the top performance, achieving 78.59%.

4.5. Attention

Each model focuses on specific aspects of the image to detect an

object or an artifact. Here, we present the models on infected and non-
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Table 1: Five quantitative measures for state-of-the-art deep learning networks on COVIDCT. The variants of the same algorithm

are differentiated via the number at the end of the method’s name.

Methods average recall average precision average F1 average accuracy average AUC

AlexNet 0.7810 0.7321 0.7558 0.7389 0.8007

VGG11 0.8952 0.7344 0.8069 0.7783 0.8785

VGG13 0.7524 0.8144 0.7822 0.7833 0.8610

VGG16 0.8381 0.7333 0.7822 0.7586 0.8395

VGG19 0.8476 0.7876 0.8165 0.8030 0.8796

ResNet18 0.7524 0.7670 0.7596 0.7537 0.8397

ResNet34 0.8667 0.7982 0.8311 0.8177 0.8851

ResNet50 0.7905 0.8300 0.8098 0.8079 0.8769

ResNet101 0.8571 0.7826 0.8182 0.8030 0.8880

ResNet152 0.7333 0.8191 0.7739 0.7783 0.8670

DenseNet121 0.1905 0.8000 0.3077 0.8548 0.7009

DenseNet161 0.1429 0.7500 0.2400 0.8468 0.6805

DenseNet169 0.2381 1.0000 0.3846 0.8710 0.7379

DenseNet201 0.1905 0.4444 0.2667 0.8226 0.7859

GoogleNet 0.9429 0.6306 0.7557 0.6847 0.7815

Efficient-b0 0.7333 0.7700 0.7512 0.7488 0.8518

Efficient-b1 0.8095 0.7589 0.7834 0.7685 0.8588

Efficient-b2 0.7143 0.7895 0.7500 0.7537 0.8325

Efficient-b3 0.8190 0.8037 0.8113 0.8030 0.8862

Efficient-b4 0.8190 0.8037 0.8113 0.8030 0.8862

Efficient-b5 0.6952 0.7300 0.7122 0.7094 0.7903

Efficient-b6 0.7524 0.7900 0.7707 0.7685 0.8552

Efficient-b7 0.7905 0.7905 0.7905 0.7833 0.8566

SqueezeNet1.0 0.9048 0.7090 0.7950 0.7586 0.8722

SqueezeNet1.1 0.9333 0.7259 0.8167 0.7833 0.8725

MNASNet0.5 0.5238 0.7857 0.6286 0.6798 0.7938

MNASNet1.0 0.8952 0.7833 0.8356 0.8177 0.8845

ResNeXt50-32x4d 0.8000 0.8235 0.8116 0.8079 0.8726

ResNeXt101-32x8d 0.8000 0.7368 0.7671 0.7488 0.8624

Wide-ResNet50.2 0.7905 0.7757 0.7830 0.7734 0.8571

Wide-ResNet101-2 0.8667 0.7712 0.8161 0.7980 0.8863

ShuffleNet-v2-x0.5 0.8190 0.7611 0.7890 0.7734 0.8654

ShuffleNet-v2-x1.0 0.7714 0.7431 0.7570 0.7438 0.8289

MobileNet-v2 0.7810 0.7736 0.7773 0.7685 0.8549
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Table 2: Quantitative results for state-of-the-art deep learning algorithms on COVIDx. The numbers at the end of the method name

indicate variants of the same algorithms.

Methods average recall average precision average F1 average accuracy average AUC

AlexNet 0.0952 0.5000 0.1600 0.8306 0.6445

VGG11 0.1429 0.5000 0.2222 0.8306 0.6815

VGG13 0.1905 0.5000 0.2759 0.8306 0.6875

VGG16 0.1905 1.0000 0.3200 0.8629 0.7240

VGG19 0.1905 0.8000 0.3077 0.8548 0.6366

ResNet18 0.2857 0.8571 0.4286 0.8710 0.7406

ResNet34 0.1905 0.6667 0.2963 0.8468 0.7235

ResNet50 0.1429 0.7500 0.2400 0.8468 0.6588

ResNet101 0.0952 0.4000 0.1538 0.8226 0.5825

ResNet152 0.1429 0.4286 0.2143 0.8226 0.6084

DenseNet121 0.1905 0.8000 0.3077 0.8548 0.7009

DenseNet161 0.1429 0.7500 0.2400 0.8468 0.6805

DenseNet169 0.2381 1.0000 0.3846 0.8710 0.7379

DenseNet201 0.1905 0.4444 0.2667 0.8226 0.7859

GoogleNet 0.2381 0.8333 0.3704 0.8629 0.6990

EfficientNet-b0 0.1429 1.0000 0.2500 0.8548 0.6893

EfficientNet-b1 0.2381 0.4545 0.3125 0.8226 0.6644

EfficientNet-b2 0.3333 0.7000 0.4516 0.8629 0.7180

EfficientNet-b3 0.2381 0.8333 0.3704 0.8629 0.7263

EfficientNet-b4 0.1429 0.7500 0.2400 0.8468 0.7499

EfficientNet-b5 0.0952 0.5000 0.1600 0.8306 0.6251

EfficientNet-b6 0.1429 0.3750 0.2069 0.8145 0.6671

EfficientNet-b7 0.1429 0.7500 0.2400 0.8468 0.7069

SqueezeNet1.0 0.2381 0.7143 0.3571 0.8548 0.6399

SqueezeNet1.1 0.2381 0.4545 0.3125 0.8226 0.6403

MNASNet0.5 0.3333 0.7000 0.4516 0.8629 0.7855

MNASNet1.0 0.4762 0.4545 0.4651 0.8145 0.7305

ResNeXt50-32x4d 0.2381 0.5556 0.3333 0.8387 0.7110

ResNeXt101-32x8d 0.1429 0.7500 0.2400 0.8468 0.6990

Wide-ResNet50.2 0.1905 1.0000 0.3200 0.8629 0.6630

Wide-ResNet101-2 0.2381 0.3125 0.2703 0.7823 0.6144

ShuffleNet-v2-x0.5 0.2381 0.5556 0.3333 0.8387 0.6620

ShuffleNet-v2-x1.0 0.1905 0.4000 0.2581 0.8145 0.6482

MobileNet-v2 0.3333 0.7000 0.4516 0.8629 0.7180
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a) b) c) d) e) f) g) h) i)

Fig. 12: Representative images from COVID-CT to show the algorithm focus areas. The red color in the images shows the focus

of the network. The first three rows of images are of infections with COVID19, while the last two rows of images are COVID19

infection-free. The sequence of the images is a) Input Images, b) AlexNet, c) VGG, d) ResNet, e) DenseNet, f) GoogleNet, g)

EfficientNet-b0 h) EfficientNet-b7 and i) SqueezeNet.

infected radiographs. In Figure 12, we present the CT images with

feature attention where the red color indicates the region where the

models have focused. The first three rows contain COVID19 infec-

tions, while the remaining two rows in Figure 12 are infection-free.

Figure 13 shows four different COVID19 infection radiographs

from four different orientations. ResNet, DenseNet, and GoogleNet

presented in the second, third, and fourth columns focused on most

of the chest radiographs while the remaining models concentrated on

particular regions of the chest. It is challenging for the models to pin-

point exactly the artifacts caused by COVID19, as is obvious from the

feature attention mechanism.

5. Conclusion

In this work, we have tested the capacity of the current state-of-

the-art deep learning algorithms and provide baselines from future re-

search comparisons on two publicly available COVIDCT and COVIDx

datasets. We aimed to differentiate between COVID19 infected and

non-infected scans and radiographs. We have shown the quantitative

results and attention of the models on sample images. We have em-

ployed several metrics to give a more comprehensive understanding of

network performance. Although the results are promising, the need for

a more significant number of images will be helpful for further training

and testing.
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a) b) c) d) e) f) g) h)

Fig. 13: Samples from the COVIDx dataset to show the feature attention. All input images contain COVID19 infections. The

sequence shown in the figure is a) Input Images, b) ResNet, c) DenseNet, d) GoogleNet, e) ResNeXt, f) MNASNet, g) EfficientNet,

and h) ShuffleNet.
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