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Abstract

In recent years, artificial neural networks (ANNs) have won numerous contests in pattern recognition, machine learning, and

artificial intelligence. The basic unit of an ANN is to mimic neurons in the brain. Neuron in ANNs is expressed as f(wx+b) or

f(wx).This structure does not consider the information processing capabilities of dendrites. However, recently, studies shown

that dendrites participate in pre-calculation in the brain. Concretely, biological dendrites play a role in the pre-processing to

the interaction information of input data. Therefore, it’s time to perfect the neuron of the neural network. This paper, add

dendrite processing section, presents a novel artificial neuron, according to our previous studies (CR-PNN or Gang transform).

The dendrite processing section can be expressed as WA.X. Because I perfected the basic unit of ANNs-neuron, there are so

many networks to try, this article gives the basic architecture for reference in future research.
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Abstract

In recent years, artificial neural networks (ANNs) have won numerous contests in pattern
recognition, machine learning, and artificial intelligence. The basic unit of an ANN is to
mimic neurons in the brain. Neuron in ANNs is expressed as  f wx b or  f wx . This
structure does not consider the information processing capabilities of dendrites. However,
recently, studies shown that dendrites participate in pre-calculation in the brain. Concretely,
biological dendrites play a role in the pre-processing to the interaction information of input
data. Therefore, it is time to perfect the neuron of the neural network. This paper, add
dendrite processing section, presents a novel artificial neuron, according to our previous
studies (CR-PNN or Gang transform). The dendrite processing section can be expressed as
WA X . Because I perfected the basic unit of ANNs— neuron, there are so many networks to
try. This article gives the basic architecture for reference in future research.

Keywords: neural network, neuron, CR-PNN, Gang transform

1. Introduction

An artificial neural network (ANN) is an algorithmic
architecture that imitates the biological brain [1, 2]. Today,
neural networks are gradually changing our lives and making
the world better [3]. First of all, I want to thank those who
contributed to the present state of the art, e.g., Geoffrey
Hinton, YannLeCun, Yoshua Bengio, and so on.

Recently, artificial neural networks (ANNs), particularly
“deep learning” [4], have made some impressive recent
advances, such as machine vision, speech recognition,
autonomous vehicles, and machine translation. Thus, in the
tech world today, optimism is high. Some people think
ANNs are approaching human intelligence gradually, even it
is still far away [1].

Neurons are the fundamental units in the biological brain.
Accordingly, the fundamental units of ANNs are artificial
neurons. With the development of technology, people have a

deeper understanding of the biological brain and neurons.
However, the artificial neuron has maintained its original
structure. It may be time to perfect the neuron of the artificial
neural network.

The following presents a very brief introduction to the
basic knowledge and latest developments in artificial neural
networks and biological Neural Network.

1.1 Artificial neural networks

An ANN comprises many interconnected functional units
or neurons and can learn the relationship of input space and
output space. Thus, they usually are used to solve
classification or regression problems [5]. Over the years,
based on the application and the characteristics of the data
involved, different architectures of ANNs have been
developed. For example, Convolutional Neural Networks
(CNN) [6, 7] in computer vision, Recurrent Neural Networks
(RNN) [8] or Long Short Term Memory Network (LSTM) [9]
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in sequence and time series modeling, and Generative
Adversarial Network (GANs) [10].

In the last decade, some newer architectures with newer
learning algorithms are developed to endure the need to
develop human-like efficient machines in different
application areas. From the perspective of information
dimension, it can be divided into a network focusing on
spatial information [CNN, the representative field is
computer vision (CV).] and a network focusing on temporal
information [RNN, the representative field is natural
language processing (NLP).]. There are several newer CNN
architectures and efficient mechanisms: Alexnet [7], VGG
[11], Googlenet [12], Inception-V3 [13], ResNet [14],
ResNeXt [15], Convolutional Block Attention Module
(CBAM) introduced by Woo et al. [16], and competitive
squeeze-excitation (SE) mechanism introduced by Hu et al.
[17]. There are several newer RNN architectures and
efficient mechanisms: Deep Recurrent Attentive Writer
(DRAW) [18], Grid Long Short-Term Memory [19], gating
mechanism introduced by Jing et al. [20], and factorized
recurrent network architecture introduced by Belletti et al.
[21].

Besides, the learning of ANNs — by changing the
distribution of weights to approximate the relationship
between input and output space— has been studied. Lately,
success was achieved in many techniques, such as L1 and
L2 regularization [22], batch normalization [23], a good
collection of weight initialization techniques [24, 25], and a
good set of activation functions [5].

1.2 Biological Neural Network

The human brain has approximately 100 billion biological
neurons, and neurons are connected via specialized structures
known as synapses to sense stimulations and to pass signals
to other neurons [26]. A neuron is the fundamental structural
and functional unit in the neural information network and is

composed of a cell body (soma), dendritic trees, and an axon
[27, 28]. The most extended parts of many neurons are
dendrites [29], and the active electrical properties of
dendrites shape neuronal input.

In the field of biology, researchers have been studying the
mechanism of the element of neurons over the years [28, 30-
32]. Recently, studies discovered a class of calcium-mediated
dendritic action potentials (dCaAPs) [32, 33]. Here, we quote
the original words in the literature: “These dCaAPs enabled
the dendrites of individual human neocortical pyramidal
neurons to classify linearly nonseparable inputs—a
computation conventionally thought to require multilayered
networks.” [32] The intersection of dendrites may exist
computing. This means dendrites participate in pre-
calculation in a biological neuron or biological neural
network.

Revisiting the previous ANNs, we found few studies
highlight perfecting the neuron of ANNs. Fortunately, it
happens that Gang et al. [34] proposed a module of fast
calculation. The module can process linearly nonseparable
inputs. Thus, it can simulate the function of dendrites and
perfecting the neuron.

2. Artificial neuron

2.1 Traditional artificial neuron

In 1943, McCulloch and Pitts proposed ANN models with
adjustable weights [35]. More than ten years later, Rosenblatt
put forward the Perceptron Learning Algorithm [36]. In
1986, Rumelhart et al. proposed learning representations by
back-propagating errors [37]. By then, a typical artificial
neuron was established.

Figure 1 showed the traditional artificial neuron. This
architecture of artificial neuron ignores the pre-calculation of
Dendrites. If X is the input and f is the nonlinear activation
function, the output y can be represented by,

Fig. 1. Traditional neuron. (a) Traditional artificial neuron. (b) Traditional imitation to biological neuron.
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 21y f W X (1)

Where 21W is the weight matrix,  1 21, , , , =nx x x X . In
the backward pass, the weight matrix can be updated with,

new
EW W
W

 
 


(2)

Where newW are the updated weight matrix for W , and
E is the cost function and  is the learning rate.

2.2 Novel Gang artificial neuron

For the biological neurons, the XOR operation is
performed in the dendrites with dCaAPs [32, 33], and
AND/OR operations are performed at the soma and at tuft
and basal dendrites with sodium and NMDA spikes [38-40].
The XOR operation means or contains the brain pre-
processing to the interaction information of input data. For
understanding a picture task, It refers to the relationship
across parts in an input-picture. For understanding an article
or a speech task, It refers to the relationship across parts in an
input-word. However, traditional artificial neurons only
imitate the soma.

2.2.1 Dendrite processing section

In previous studies, inspired by Taylor series and Jiushao
Qin or Horner Algorithm, we presented a module that
upgrades the input order and introduces the interaction of
input [34, 41]. The module is represented as follows.

, 1 1i i i iA W A X   (3)

Where 1iA  and iA are the input and output of the
previous layer, respectively, X is the original input.
Coincidentally, It can simulate the dendrite processing
section.

In figure 2a, we use one module to simulate the dendrite.
The “dendrite” contains the interaction item across both input
variables and can be represented as follows.

10A W X X  (4)

Where A is the output of dendrite or the input of the cell
body.

Additionally, we also can use more modules to simulate
the dendrite (see Fig. 3). The "dendrite" contains the
interaction item across multiple input variables (the number
of modules plus 1). For example, if we use two modules to
simulate the dendrite. The "dendrite" contains the interaction
item across three input variables and can be represented as
follows.

1 10

2 21 1

A W X X
A W A X

 







(5)

Fig. 2. Novel neuron. (a) Gang artificial neuron. (b) Gang imitation to biological neuron.

Fig. 3. Gang artificial neuron with multiple interactions.
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Where 2A is the output of dendrite or the input of the cell
body.

The operation of the “dendrite” only uses matrix
multiplication and Hadamard product, and due to Jiushao
Qin or Horner Algorithm, and upgrading interaction item
only need to add one module; thus, the computational
complexity is lower [34, 41].

2.2.2 architecture of Gang neuron

2.2.2.1 Gang neuron with one module

Figure 2 shown the Gang artificial neuron with one
module. The architecture of Gang artificial neuron can be
represented as

 
10

21

A W X X

y f W A

 





(6)

Where 10W and 21W are the weight matrix,
 1 21, , , , =nx x x X . In the backward pass, the weight
matrix can be updated with,

21 21 21
21new
EW W
W

 
 


(7)

10 10 10
10new
A EW W

AW
  

 


(8)

Where 21
newW and 10

newW are the updated weight matrix for
21W and 10W respectively, and E is the cost function, and

21 and 10 are the learning rate. The learning rate of
“dendrite” and cell body can be different.

2.2.2.2 Gang neuron of unicellular organism

In nature, there are unicellular organisms, such as bacteria
and fungus. The first organisms to appear on Earth were
presumably single-celled [42]. Thus, figure 3 shown the
Gang artificial neuron with multiple interactions to imitate
unicellular organisms. The architecture has been shown to be
able to realize strong nonlinear expression [34, 41] and can
be represented as follows.

 

1 10

2 21 1

1

1,

l l l

l l l

A W X X
A W A X

A W A X

y f W A





 
 


 

 







(9)

Where l represents the number of modules to simulate
the dendrite.

2.2.2.3 simplified Gang neuron

The weight matrix of the cell body 21W in Fig.2 or 1,l lW 

is defined as a constant matrix onesW where all its elements
are 1. [Considering batch training, we described it as a
matrix rather than a vector.]

Thus, the architecture in figure 2 can be represented as

  10
onesy f W W X X  (10)

And the architecture in figure 3 can be represented as

 

1 10

2 21 1

1l l l

l
ones

A W X X
A W A X

A W A X

y f W A



 
 


 

 







(11)

3. ANNs using Gang artificial neuron

3.1 Single-layer network

Figure 4 shows the single-layer network. This architecture
imitates the intricate dendrite of multiple neurons, and one
information can be obtained by multiple neurons [32, 33, 42].

3.2 BPNN using Gang artificial neuron

The backpropagation neural network (BPNN) is the most
typical neural network. Here, we show a BPNN using Gang
artificial neuron with one module (see Fig. 5). The forward
propagation can be represented as follows.

Fig. 4. Single-layer network.
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 
10

21

h h

h h h

A W X X

H f W A

 





(12)

 
10

21

o o

o o

A W H H

Y f W A

 





(13)

Where =[ 1 ; H ]hH , 10
hW , 21

hW , 10
oW , and 21

oW are the

weight matrix,  1 21, , , , =nx x x X . The backpropagation is
represented according to formula 7 and 8.

3.3 Information fusion network

Figure 6 shows the information fusion from different
neurons. This kind of information interaction is common in
the biological brain [38-40]. This architecture in Fig. 6 can
be expressed as follows.

Fig. 5. BPNN using Gang artificial neuron.

Fig. 6. Information fusion network.
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 

 

1 10

2 21 1

, 1 1

1,
1

1 10

2 21 1

, 1 1

1,

x x

x x x

l l l l
x x x

l l l
x x

z z

z z z

l l l l
z z z

l l l
e z z

A W X X
A W A X

A W A X

h f W A

A W Z Z
A W A Z

A W A Z

h f W A

 



 



 
 


 

 


  
 
 















(14)

 
10

21

h h

h h

A W H H

y f W A

 





(15)

Where  1 21, , , , =nx x x X ,  1 21, , , , =nz z z Z ,

and  1 21, , , , =eh h h H . e is the number of neurons. The

network can learn by backpropagation is represented
according to formula 7 and 8.

4. Some typical ANNs architecture using Gang
neuron

4.1 Convolution layer using Gang neuron

Figure 7 shows the comparison of using Gang neuron or
traditional neuron in the convolution layer (an example). The
Gang neuron extracts information about the interactions
between inputs of space.

4.2 RNN schematic diagram using Gang neuron

Figure 8 shows the comparison of using Gang neuron or
traditional neuron in schematic diagram of RNN. The Gang
neuron extracts information about the interactions between
inputs of time. Where x represents the current input and h
represents the output of the previous time.

Fig. 7. Convolution layer using Gang neuron or traditional neuron.
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5. Discussion and conclusion

In this paper, we compared the development of artificial
neural networks with biological neural networks. As
expected, development directions are different. Researchers
in ANNs paid more attention to the architectures aiming to
different application areas, while researchers in biology
focused on exploring the neural mechanisms. Both directions
achieved good success. It may be time to learn from each
other.

As we know, artificial neural networks are inspired by
biological neural networks. Seventy years ago, people
designed artificial neurons by imitating the knowledge about
biological neurons at that time. Today, due to the
development of biology, we have a relatively good
understanding of how the work of neurons, especially
dendrites.

We found, at the time of design, the traditional artificial
neurons ignored a fact that dendrites participate in pre-
calculation in a biological neuron or biological neural
network.
More specifically, biological dendrites play a role in the
brain pre-processing to the interaction information of input
data. This can be illustrated briefly by two tasks in life. For
understanding a picture task, biological dendrites play a role
in extracting the relationship across parts of an input-picture.

For understanding an article or a speech task, biological
dendrites play a role in extracting the relationship across
parts in an input-word.

This paper perfected the neuron of ANNs by introducing
the dendritic module and presented a novel neuron, named
Gang neuron.

6. Outlook
In this paper, we have shown some basis architecture

using Gang neuron. These architectures can be implemented
easily. However, because I perfected the basic unit of
ANNs— neuron, there are a lot of networks to try. I show
my guess: traditional artificial neurons are insufficient in
extracting the interaction information of input data. Thus we
have designed a lot of convolutional layers. Gang neurons
maybe reduce the number of layers in an existing network for
the same task.

Application letter
I'm Gang Liu, 26 years old, a 2nd

year Ph.D. candidate from the
Institute of Robotics and Intelligent
Systems, School of Mechanical
Engineering, Xi'an Jiao Tong
University, P. R. China. I am crazy
about math and computer. I plan to

Fig. 8. Schematic diagram of RNN using Gang neuron
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apply for a Chinese National Fund program, which will
support those Ph.D. candidates in China to go abroad to
some world-class Universities in their fields. This program is
a short time (6-24 months) co-education experiences more
like a visiting scholar. If you're interested in my work and
give me a chance to study in your team, please contact me.
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